250P Computer Systems Architecture, Winter 2019

Pipelining

Adapted from Rajeev Subramanium's Spring '16 CS6810 course (University of Utah)

A correction has been done in slide No.8, which was incorrect in the video, i.e., the version shown in <u>class.</u>

4 Feb 2019

Aftab Hussain University of California, Irvine

A data processing technique

where the data processing elements are connected in a series

and some of those elements are executed in parallel using time slicing.

http://www.cs.utah.edu/~rajeev/cs6810/pres/12-6810-03.pdf

Break the job into smaller stages

Improve utilization of resources by allocating different groups of resources to work in each stage.

Instructions

Let's see how instruction execution happens in unpipelined mode

http://www.cs.utah.edu/~rajeev/cs6810/pres/12-6810-03.pdf

Overhead in pipelining - latches

Overhead in pipelining - latches

Need for latches - [White-Board]

At every rising clock edge, a latch + samples whatever value is on its I/P + stores it in its output + retains it until the next rising clock edge

Pipelining Equations

- Unpipelined: time to execute one instruction = T + Tovh
- For an N-stage pipeline, time per stage = T/N + Tovh
- Total time per instruction = N (T/N + Tovh) = T + N Tovh
- Clock cycle time = T/N + Tovh
- Clock speed = $1 / (T/N + T_{ovh})$
- Ideal speedup = (T + Tovh) / (T/N + Tovh)
- Cycles to complete one instruction = N
- Average CPI (cycles per instr) = 1

Problems 1, 2 on <u>Rajeev's</u> <u>Slides</u> (Slide nos. 5 - 8) Thank you