
CS 250P Name (Print):

Fall 2019
Midterm
11/13/2019
Time Limit: 3:30pm - 4:50pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes, open electronics exam. But no online or in-class
communication, and no Internet search.

• Ask us if something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 5

2 5

3 5

4 15

5 15

6 10

7 10

Total: 65
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1. Basics of CPU instruction set

(a) (5 points) Write a simple assembly program that computes factorial of N, i.e., the product
of all positive integers less than or equal to N. You can use any instruciton set you know
(e.g., x86 or RISC), you don’t have to be precise (the sketch of the code will work)

2. Basics of digital design

(a) (5 points) Design a logical circuit that adds two two-bit numbers. Make sure that an
additional output signals the overflow.
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3. Pipelines and stalls

(a) (5 points) Consider a 32-bit in-order pipeline with full bypassing that has the following
stages:

Fetch Decode/Regread IntALU Writeback

IntALU Datamem Datamem Writeback

FPALU1 FPALU2 Writeback

After decode, Int-adds go through the stages labeled ”IntALU” and ”Writeback”, loads/stores
go through the stages labeled ”IntALU”, ”Datamem”, ”Datamem”, and ”Writeback”,
while FP-adds go through the stages labeled ”FPALU1”, ”FPALU2”, and ”Writeback”.

How many stall cycles are introduced between the following pairs of successive instructions
(remember, the processor implements full bypassing)?

(i) Int-add, providing the address for a load/store,

(ii) Load, providing the data for an FP-add

(iii) Load, providing the data for a store,

(iv) FP-add, followed by dependent FP-add.
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4. Branch delay slot

Consider a 7-stage in-order processor, where the instruction is fetched in the first stage, and
the branch outcome is known after 3 stages. Estimate the CPI (cycles per instruction) of the
processor under the following scenarios (assume that all stalls in the processor are branch-
related and branches account for 20% of all executed instructions, assume that all branches are
taken 60% of the time and not-taken 40% of the time).

(a) (5 points) On every branch, fetch is stalled until the branch outcome is known.

(b) (5 points) Every branch is predicted not-taken and the mis-fetched instructions are squashed
if the branch is taken.

(c) (5 points) The processor has two delay slots and the two instructions following the branch
are always fetched and executed, and You are able to move three instructions before the
branch into the delay slot.
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5. Loop unrolling

Consider a basic in-order pipeline with bypassing (one instruction in each pipeline stage in any
cycle). The pipeline has been extended to handle FP add and FP mult. Assume the following
delays between dependent instructions:

• Load feeding any instruction: 3 stall cycles

• FP ALU feeding any instruction (except stores): 4 stall cycles

• FP MULT feeding any instruction (except stores): 7 stall cycles

• FP ALU feeding store: 3 stall cycles

• Int add feeding any instruction: 0 stall cycles

• A conditional branch has 1 delay slot (an instruction is fetched in the cycle after the
branch without knowing the outcome of the branch and is executed to completion)

Below is the source code and default assembly code for a loop.

Source Code:

for (i=1000; i>0; i--) {

x[i] = y[i] + z[i];

}

Assembly Code:

Loop:

L.D F1, 0(R2) // Get y[i]

L.D F2, 0(R3) // Get z[i]

ADD.D F3, F2, F1 // Add the two numbers

S.D F3, 0(R4) // Store the result into x[i]

DADDUI R2, R2, #-8 // Decrement R2

DADDUI R3, R3, #-8 // Decrement R3

DADDUI R4, R4, #-8 // Decrement R4

BNE R2, R1, Loop // Check if we’ve reached the end of the loop

NOP

(a) (5 points) Show the schedule (what instruction issues in what cycle) for the default code.
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(b) (5 points) How should the compiler order instructions to minimize stalls (without un-
rolling) (note that the execution of a NOP instruction is effectively a stall)? Show the
schedule. How many cycles can you save per iteration, compared to the default schedule?

(c) (5 points) How many times must the loop be unrolled to eliminate stall cycles? Show the
schedule for the unrolled code.
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6. Branch prediction

The following “for” loop executes inside an infinite while loop. The inner “for” loop executesfive
iterations and has a branch inside.

while (1) {

for (i = 0; i < 10; i++) {

if ((i & 1) == 0) {

...

}

}

...

}

(a) (5 points) Assume that your CPU is using a 2-bit saturating counter predictor. Provide
the pattern of branch prediction decisions by the predictor (assume that the external while
loop ran for 100 iterations already, and the counters are in the steady state). What is
the prediction success rate? I.e., out of 20 branches executed in one iteration of the inner
“for” loop, what fraction is predicted correctly?
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(b) (5 points) Imagine you implement a local history predictor (you’re free to choose history
size). How does this change the accuracy of the branch prediction?

7. Out-of-order execution

(a) (10 points) Consider an out-of-order processor similar to the one described in class. The
architecture has 32 logical registers and 42 physical registers. On power up, the following
program starts executing (to simplify the problem, some of the initialization code is not
shown and you can ignore that code).

line1: L.D LR1 0(LR2)

ADD.D LR1, LR1, LR1

ST.D LR1, 0(LR2)

ADD.D LR2, LR2, 8

BNE LR2, LR3, line1

The processor has a width of 4, i.e., every pipeline stage can move 4 instructions through
in every cycle. Show the renamed code for the first 20 instructions of this program. How
soon will the 20th instruction get committed?

Assumptions:

Assume that branch prediction is perfect for a simple program like this. With the help of
a trace cache, even fetch is perfect. Assume that caches are perfect as well. Assume that
the dependent of an ADD.D instruction can leave the issue queue in the cycle right after
the ADD.D. Assume that the dependent of an L.D cannot leave in the next cycle, but the
cycle after that. Assume a ROB, an issue queue, and an LSQ with 20 entries each. When
the thread starts executing, its logical register LR1 is mapped to physical register PR1,
LR2 is mapped to PR2, and so on. An instruction goes through 5 pipeline stages before
it gets placed in the issue queue and an additional 5 pipeline stages (6 for a LD/ST) after
it leaves the issue queue (in other words, an instruction will take a minimum of 11 cycles
to go through the pipeline). When determining if a L.D can issue, you need not check to
see if previous store addresses have been resolved (just to make the problem simpler).
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