
Brief GDB Tutorial

Claudio A. Parra

University of California

parraca at uci dot edu

October 9, 2021

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 1 / 15

Overview

1 The Basics
what is gdb
getting started
run

2 Stopping the Execution
break and continue
conditional break
next, step, and finish

3 Viewing Data
print
dump memory content
watch
other commands

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 2 / 15

What is GDB?

gdb stands for GNU Debugger.

A debugger is a program that helps you analyze the execution of
another program. GDB is the de-facto debugging tool in Linux. If
you are a Mac user, use lldb .

Some tasks you can perform in gdb are:

Execute one line of code at the time.

Run the code until a given point.

Stop the execution based on conditions.

Stop the execution based on a variable being modified.

See the current content of variables, registers, and execution stack.

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 3 / 15

Getting started

In order to add debugging info to the compiled code, add the flag -g to
the compiler.

Terminal

// gcc <compiler flags> -g <source code> <linker flags>

$ gcc -Wall -Werror -o my prog.bin -g my prog.c -lm

Now my prog.bin contains information about its own source code, line
count, variable and function names, etc.

To start gdb, just type it and follow it by the name of the binary you want
to analyze.

Terminal

$ gdb my prog.bin

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 4 / 15

Getting started II

GDB works similarly to your system’s shell:

Type commands, and press enter.

Press or to see the history.

Press Tab to auto-complete (most of the time).

While on it, you can call help , or help <command> to get help
about a particular command.

If press just , gdb runs the last command again.

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 5 / 15

run

It simply runs your program. If your program is correct, then it should run
flawlessly here too.

Terminal

(gdb) run

Starting program: /home/user/.../my prog.bin

// all the printing of your code

[Inferior 1 (process <PID>) exited normally]

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 6 / 15

run

Now, this does not mean that the logic of your code is correct, or that
there are no cases in which your code breaks. If you get a serious error,
like a segmentation fault, gdb will give you some useful information too.

Terminal

(gdb) run

Starting program: /home/user/.../my prog.bin

// all the printing of your code

Program received signal SIGSEGV, Segmentation fault.

0x000055555555478f in main () at my prog.c:27

27 d->x = i;

(gdb)

Here we can see that line 27 triggered the segfault. If you are in this
situation, probably you want to slow down things and see what is
happening.

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 7 / 15

break and continue

The break command establishes a “breakpoint” lets you stop the
execution of your code if the execution ever reaches that point:

A particular line of code (gdb) break my prog.c:26

At a particular function (gdb) break get distance

Once you have setup all the breakpoints that you want, you may start the
program from the beginning with run . If you reach a breakpoint, use the
command continue to continue the execution. The code will stop in the
next breakpoint (if there is any).

With info breakpoints you can see a list of your breakpoints. With

delete <b#> you can delete a breakpoint, where <b#> is its number.

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 8 / 15

break and continue

Terminal

(gdb) break my prog.c:26

Breakpoint 1 at 0x79a: file my prog.c, line 26.

(gdb) break get distance

Breakpoint 2 at 0x70a: file my prog.c, line 12.

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000007a0 in main at my prog.c:26

2 breakpoint keep y 0x000000000000070a in get distance

at my prog.c:12

(gdb) run

Starting program: /home/user/.../my prog.bin

Breakpoint 1, main () at my prog.c:26

26 for(i=0; i<n dots; i++){
(gdb) delete 2

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000007a0 in main at my prog.c:26

breakpoint already hit 1 time

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 9 / 15

break <where> if <condition>

Many times you want to stop the execution only if certain condition is
true. In those cases you can use a conditional break that stops only if
the condition is true:

Terminal

(gdb) break my prog.c:36 if i == n dots - 1

Breakpoint 1 at 0x805: file my prog.c, line 36.

(gdb) run

// all the print of your code

Breakpoint 1, main () at my prog.c:36

(gdb) print d

36 dis = get distance(d, d->next);

(gdb) print i

$1 = 15

(gdb) print n dots

$2 = 16

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 10 / 15

next , step and finish

If you want to run one line of code at the time, then you want to use this
commands. The difference is that next treats function calls as one
line, but step gets into the function. finish finishes executing the
current function.

Terminal

(gdb) break my prog.c:35

Breakpoint 1 at 0x7fc: file my prog.c, line 35.

(gdb) run

Starting program: /home/user/.../my prog.bin

Breakpoint 1, main () at my prog.c:35

35 for(i=0; i<n dots; i++){
(gdb) step

36 dis = get distance(d, d->next);

(gdb) step

get distance (p=0x555555756260, q=0x555555756280) at my prog.c:12

12 int dx = q->x - p->x;

(gdb) step

13 int dy = q->y - p->y;

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 11 / 15

next , step and finish

If you want to run one line of code at the time, then you want to use this
commands. The difference is that next treats function calls as one
line, but step gets into the function. finish finishes executing the
current function.

Terminal

(gdb) break my prog.c:35

Breakpoint 1 at 0x7fc: file my prog.c, line 35.

(gdb) run

Starting program: /home/user/.../my prog.bin

Breakpoint 1, main () at my prog.c:35

35 for(i=0; i<n dots; i++){
(gdb) next

36 dis = get distance(d, d->next);

(gdb) next

39 d->next->x, d->next->y);

(gdb) next

37 printf("(%d,%d)--- %2f ---(%d,%d)\n”,
(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 11 / 15

print

The print command is very versatile. You can print different kinds of
variables:

Terminal

(gdb) print n dots

$1 = 16 // integer in decimal

(gdb) print/x n dots

$2 = 0x10 // integer in hexadecimal

(gdb) print d

$3 = (struct Point *) 0x555555756260 // pointers

(gdb) print *(d)

$4 = {x = 0, y = 0, next = 0x0} // structures

(gdb) print $sp

$1 = (void *) 0x7fffffffdc70 // registers

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 12 / 15

x/<num><fmt> <obj>

This command, similar to print, let you see the content of memory
addresses or registers.

<obj> : the address or register (if register, precede with a $).

<num> : the number of elements to print from <obj> .

<fmt> : format to use: x , d , f , c ...

Terminal

(gdb) x/8x $sp // print 8 elements in hex starting from $s

0x7fffffffdc70: 0x3b40 0xf7de 0x7fff 0x0000 0x0000 0x0000 0x0000 0x0000

(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 13 / 15

watch

The command watch allows you to stop the execution whenever a
particular variable is modified. The variable must be in the current
execution scope:

Terminal

(gdb) watch d

Hardware watchpoint 2: d

(gdb) continue

Continuing.

Hardware watchpoint 2: d

Old value = (struct Point *) 0x555555756260

New value = (struct Point *) 0x555555756280

main () at my prog.c:26

26 for(i=0; i<n dots; i++){
(gdb)

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 14 / 15

Other Useful Commands

list : prints the source code surrounding the current line.

where : prints the execution call stack at the current point.

backtrace : similar to where , but after a crash.

info frame : shows list of CPU registers that compose the current
stack frame.

info reg : shows list of CPU registers, and their values.

Claudio A. Parra (UCI) Brief GDB Tutorial October 9, 2021 15 / 15

	The Basics
	what is gdb
	getting started
	run

	Stopping the Execution
	break and continue
	conditional break
	next, step, and finish

	Viewing Data
	print
	dump memory content
	watch
	other commands

