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What does CPU do internally?



  

CPU execution 
loop

● CPU repeatedly reads 
instructions from 
memory

● Executes them
● Example

  ADD EDX, EAX
  // EDX = EAX + EDX



  



  

What are those instructions?
(a brief introduction to x86 

instruction set)

This part is based on David Evans’ x86 Assembly Guide
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html


  

Note

● We’ll be talking about 32bit x86 instruction set
● The version of xv6 we will be using in this class is a 

32bit operating system
● You’re welcome to take a look at the 64bit port



  

x86 instruction set

● The full x86 instruction set is large and complex
● But don’t worry, the core part is simple
● The rest are various extensions (often you can 

guess what they do, or quickly look it up in the 
manual)



  

x86 instruction set

● Three main groups
● Data movement (from memory and between 

registers)
● Arithmetic operations (addition, subtraction, etc.)
● Control flow (jumps, function calls)



  

General registers

● 8 general registers
● 32bits each

● Two (ESP and EBP) 
have a special role

● Others are more or 
less general
● Used in arithmetic 

instructions, control 
flow decisions, 
passing arguments 
to functions, etc.



  

BTW, where are these registers?



  

Registers and Memory



  

Data movement instructions



  

We use the following notation

● We use the following notation
● <reg32>  Any 32-bit register (EAX,EBX,ECX,EDX,ESI,EDI,ESP, or EBP)
● <reg16>  Any 16-bit register (AX, BX, CX, or DX)
● <reg8>  Any 8-bit register (AH, BH, CH, DH, AL, BL, CL, or DL)
● <reg>    Any register

● <mem>   A memory address (e.g., [eax], [var + 4], or dword ptr 
[eax+ebx])

● <con32> Any 32-bit constant
● <con16> Any 16-bit constant
● <con8> Any 8-bit constant
● <con>   Any 8-, 16-, or 32-bit constant



  

mov instruciton

● Copies the data item referred to by its second operand (i.e. 
register contents, memory contents, or a constant value) into the 
location referred to by its first operand (i.e. a register or memory). 
● Register-to-register moves are possible
● Direct memory-to-memory moves are not

● Syntax

mov <reg>,<reg>

mov <reg>,<mem>

mov <mem>,<reg>

mov <reg>,<const>

mov <mem>,<const>



  

mov examples

mov eax, ebx  ; copy the value in ebx into eax

mov byte ptr [var], 5 ; store 5 into the byte at location var

mov eax, [ebx] ; Move the 4 bytes in memory at the address 

                 ; contained in EBX into EAX

mov [var], ebx ; Move the contents of EBX into the 4 bytes 

                 ; at memory address var. 

                 ; (Note, var is a 32-bit constant).

mov eax, [esi-4] ; Move 4 bytes at memory address ESI + (-4)  

                 ; into EAX

mov [esi+eax], cl ; Move the contents of CL into the byte at 

                  ; address ESI+EAX



  

mov: access to data structures
struct point {

     int x;    // x coordinate (4 bytes)

     int y;    // y coordinate (4 bytes)

}

struct point points[128]; // array of 128 points

// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th 

                           ; point into edx



  

lea load effective address

● The lea instruction places the address specified 
by its second operand into the register specified 
by its first operand 
● The contents of the memory location are not 

loaded, only the effective address is computed and 
placed into the register 

● This is useful for obtaining a pointer into a memory 
region



  

lea vs mov access to data structures
● mov
// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th point into edx

● lea
// load the address of the y coordinate of the i-th point into p

int *p = &points[i].y;

; ebx is address of the points array, eax is i

lea esi, [ebx + 8*eax + 4] ; Move address of y of the i-th point into esi



  

lea is often used instead of add

● Compared to add, lea can
● perform addition with either two or three operands
● store the result in any register; not just one of the source operands.
● Examples

LEA EAX, [ EAX + EBX + 1234567 ] 

     ; EAX = EAX + EBX + 1234567 (three operands)

LEA EAX, [ EBX + ECX ] ; EAX = EBX + ECX 

     ; Add without overriding EBX or ECX with the result

LEA EAX, [ EBX + N * EBX ] ; multiplication by constant 

; (limited set, by 2, 3, 4, 5, 8, and 9 since N is 

; limited to 1,2,4, and 8).



  

Arithmetic and logic instructions



  

add Integer addition

● The add instruction adds together its two operands, 
storing the result in its first operand
● Both operands may be registers
● At most one operand may be a memory location 

● Syntax

add <reg>,<reg>

add <reg>,<mem>

add <mem>,<reg>

add <reg>,<con>

add <mem>,<con>



  

add examples

add eax, 10 ; EAX ← EAX + 10

add BYTE PTR [var], 10 ; add 10 to the 

               ; single byte stored at 

               ; memory address var 



  

sub Integer subtraction

● The sub instruction stores in the value of its first 
operand the result of subtracting the value of its 
second operand from the value of its first 
operand. 

● Examples

sub al, ah   ; AL ← AL - AH

sub eax, 216 ; subtract 216 from the value 

             ; stored in EAX 



  

inc, dec Increment, decrement

● The inc instruction increments the contents of its 
operand by one

● The dec instruction decrements the contents of its 
operand by one

● Examples

dec eax ; subtract one from the contents 

        ; of EAX.

inc DWORD PTR [var] ; add one to the 32-

                    ; bit integer stored at 

                    ; location var



  

and, or, xor Bitwise logical and, or, 
and exclusive or

● These instructions perform the specified logical 
operation (logical bitwise and, or, and exclusive 
or, respectively) on their operands, placing the 
result in the first operand location 

● Examples

and eax, 0fH ; clear all but the last 4 

             ; bits of EAX.

xor edx, edx ; set the contents of EDX to 

             ; zero. 



  

shl, shr shift left, shift right

● These instructions shift the bits in their first operand's contents left 
and right, padding the resulting empty bit positions with zeros

● The shifted operand can be shifted up to 31 places. The number of 
bits to shift is specified by the second operand, which can be either 
an 8-bit constant or the register CL
● In either case, shifts counts of greater then 31 are performed modulo 32. 

● Examples

shl eax, 1 ; Multiply the value of EAX by 2 

           ; (if the most significant bit is 0)

shr ebx, cl ; Store in EBX the floor of result of dividing 

            ; the value of EBX by 2^n 

            ; where n is the value in CL.



  

More instructions… (similar)

● Multiplication imul

imul eax, [var] ; multiply the contents of EAX by the 

                ; 32-bit contents of the memory location 

                ; var. Store the result in EAX.

imul esi, edi, 25 ; ESI ← EDI * 25 
● Division idiv
● not - bitvise logical not (flips all bits)
● neg - negation 

neg eax ; EAX ← - EAX 



  

This is enough to do arithmetic



  

Control flow instructions



  



  

EIP instruction pointer

● EIP is a 32bit value indicating the location in 
memory where the current instruction starts 
(i.e., memory address of the instruction)

● EIP cannot be changed directly
● Normally, it increments to point to the next 

instruction in memory
● But it can be updated implicitly by provided control 

flow instructions



  

Labels

●  <label> refers to a labeled location in the 
program text (code). 

● Labels can be inserted anywhere in x86 
assembly code text by entering a label name 
followed by a colon

● Examples

       mov esi, [ebp+8]

begin: xor ecx, ecx

       mov eax, [esi]



  

jump: jump 

● Transfers program control flow to the instruction at 
the memory location indicated by the operand. 

● Syntax

 jmp <label>
● Example

begin:  xor ecx, ecx

        ... 

        jmp begin ; jump to instruction labeled 

                  ; begin



  

jcondition: conditional jump

● Jumps only if a condition is true
● The status of a set of condition codes that are stored in a 

special register (EFLAGS)
● EFLAGS stores information about the last arithmetic operation 

performedm for example, 
– Bit 6 of EFLAGS indicates if the last result was zero
– Bit 7 indicates if the last result was negative

● Based on these bits, different conditional jumps can be 
performed
● For example, the jz instruction performs a jump to the specified 

operand label if the result of the last arithmetic operation was 
zero

● Otherwise, control proceeds to the next instruction in sequence



  

Conditional jumps

● Most conditional jump follow the comparison instruction (cmp, we’ll cover it below)
● Syntax

je <label> (jump when equal)

jne <label> (jump when not equal)

jz <label> (jump when last result was zero)

jg <label> (jump when greater than)

jge <label> (jump when greater than or equal to)

jl <label> (jump when less than)

jle <label> (jump when less than or equal to) 
● Example:  if EAX is less than or equal to EBX, jump to the label done. Otherwise, 

continue to the next instruction

  cmp eax, ebx

  jle done



  

cmp: compare

● Compare the values of the two specified operands, setting the condition 
codes in EFLAGS
● This instruction is equivalent to the sub instruction, except the result of the 

subtraction is discarded instead of replacing the first operand. 
● Syntax

cmp <reg>,<reg>

cmp <reg>,<mem>

cmp <mem>,<reg>

cmp <reg>,<con>
● Example:  if the 4 bytes stored at location var are equal to the 4-byte 

integer constant 10, jump to the location labeled loop. 

  cmp DWORD PTR [var], 10

  jeq loop



  

Stack and procedure calls



  

What is stack?



  

Stack

● It's just a region of 
memory 
● Pointed by a special 

register ESP
● You can change ESP

● Get a new stack



  

Why do we need stack?



  

Calling functions

// some code...
foo();
// more code..

● Stack contains 
information for how to 
return from a subroutine 
● i.e., from foo()

● Functions can be called 
from different places in the 
program

       if (a == 0) {
        foo();
        …

    } else {

        foo();

        …

    }



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Stack

● Main purpose:
● Store the return address 

for the current procedure
● Caller pushes return 

address on the stack
● Callee pops it and jumps



  

Call/return

● CALL instruction
● Makes an unconditional jump to a subprogram and 

pushes the address of the next instruction on the stack

    push eip + sizeof(CALL); save return  

                           ; address 

    jmp _my_function
● RET instruction

● Pops off an address and jumps to that address



  

Stack

● Other uses:
● Local data storage
● Parameter passing
● Evaluation stack

– Register spill



  

Manipulating 
stack

● ESP register
● Contains the memory 

address of the 
topmost element in 
the stack 

● PUSH instruction

     push 0xBAR

● Subtract 4 from ESP
● Insert data on the 

stack



  

Manipulating 
stack

● POP instruction

     pop EAX

● Removes data from 
the stack

● Saves in register or 
memory

● Adds 4 to ESP



  

Some examples



  

Thank you!
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