

Lecture: x86 instruction set

Anton Burtsev

What does CPU do internally?

CPU execution
loop

● CPU repeatedly reads
instructions from
memory

● Executes them
● Example

 ADD EDX, EAX
 // EDX = EAX + EDX

What are those instructions?
(a brief introduction to x86

instruction set)

This part is based on David Evans’ x86 Assembly Guide
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Note

● We’ll be talking about 32bit x86 instruction set
● The version of xv6 we will be using in this class is a

32bit operating system
● You’re welcome to take a look at the 64bit port

x86 instruction set

● The full x86 instruction set is large and complex
● But don’t worry, the core part is simple
● The rest are various extensions (often you can

guess what they do, or quickly look it up in the
manual)

x86 instruction set

● Three main groups
● Data movement (from memory and between

registers)
● Arithmetic operations (addition, subtraction, etc.)
● Control flow (jumps, function calls)

General registers

● 8 general registers
● 32bits each

● Two (ESP and EBP)
have a special role

● Others are more or
less general
● Used in arithmetic

instructions, control
flow decisions,
passing arguments
to functions, etc.

BTW, where are these registers?

Registers and Memory

Data movement instructions

We use the following notation

● We use the following notation
● <reg32> Any 32-bit register (EAX,EBX,ECX,EDX,ESI,EDI,ESP, or EBP)
● <reg16> Any 16-bit register (AX, BX, CX, or DX)
● <reg8> Any 8-bit register (AH, BH, CH, DH, AL, BL, CL, or DL)
● <reg> Any register

● <mem> A memory address (e.g., [eax], [var + 4], or dword ptr
[eax+ebx])

● <con32> Any 32-bit constant
● <con16> Any 16-bit constant
● <con8> Any 8-bit constant
● <con> Any 8-, 16-, or 32-bit constant

mov instruciton

● Copies the data item referred to by its second operand (i.e.
register contents, memory contents, or a constant value) into the
location referred to by its first operand (i.e. a register or memory).
● Register-to-register moves are possible
● Direct memory-to-memory moves are not

● Syntax

mov <reg>,<reg>

mov <reg>,<mem>

mov <mem>,<reg>

mov <reg>,<const>

mov <mem>,<const>

mov examples

mov eax, ebx ; copy the value in ebx into eax

mov byte ptr [var], 5 ; store 5 into the byte at location var

mov eax, [ebx] ; Move the 4 bytes in memory at the address

 ; contained in EBX into EAX

mov [var], ebx ; Move the contents of EBX into the 4 bytes

 ; at memory address var.

 ; (Note, var is a 32-bit constant).

mov eax, [esi-4] ; Move 4 bytes at memory address ESI + (-4)

 ; into EAX

mov [esi+eax], cl ; Move the contents of CL into the byte at

 ; address ESI+EAX

mov: access to data structures
struct point {

 int x; // x coordinate (4 bytes)

 int y; // y coordinate (4 bytes)

}

struct point points[128]; // array of 128 points

// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th

 ; point into edx

lea load effective address

● The lea instruction places the address specified
by its second operand into the register specified
by its first operand
● The contents of the memory location are not

loaded, only the effective address is computed and
placed into the register

● This is useful for obtaining a pointer into a memory
region

lea vs mov access to data structures
● mov
// load y coordinate of i-th point into y

int y = points[i].y;

; ebx is address of the points array, eax is i

mov edx, [ebx + 8*eax + 4] ; Move y of the i-th point into edx

● lea
// load the address of the y coordinate of the i-th point into p

int *p = &points[i].y;

; ebx is address of the points array, eax is i

lea esi, [ebx + 8*eax + 4] ; Move address of y of the i-th point into esi

lea is often used instead of add

● Compared to add, lea can
● perform addition with either two or three operands
● store the result in any register; not just one of the source operands.
● Examples

LEA EAX, [EAX + EBX + 1234567]

 ; EAX = EAX + EBX + 1234567 (three operands)

LEA EAX, [EBX + ECX] ; EAX = EBX + ECX

 ; Add without overriding EBX or ECX with the result

LEA EAX, [EBX + N * EBX] ; multiplication by constant

; (limited set, by 2, 3, 4, 5, 8, and 9 since N is

; limited to 1,2,4, and 8).

Arithmetic and logic instructions

add Integer addition

● The add instruction adds together its two operands,
storing the result in its first operand
● Both operands may be registers
● At most one operand may be a memory location

● Syntax

add <reg>,<reg>

add <reg>,<mem>

add <mem>,<reg>

add <reg>,<con>

add <mem>,<con>

add examples

add eax, 10 ; EAX ← EAX + 10

add BYTE PTR [var], 10 ; add 10 to the

 ; single byte stored at

 ; memory address var

sub Integer subtraction

● The sub instruction stores in the value of its first
operand the result of subtracting the value of its
second operand from the value of its first
operand.

● Examples

sub al, ah ; AL ← AL - AH

sub eax, 216 ; subtract 216 from the value

 ; stored in EAX

inc, dec Increment, decrement

● The inc instruction increments the contents of its
operand by one

● The dec instruction decrements the contents of its
operand by one

● Examples

dec eax ; subtract one from the contents

 ; of EAX.

inc DWORD PTR [var] ; add one to the 32-

 ; bit integer stored at

 ; location var

and, or, xor Bitwise logical and, or,
and exclusive or

● These instructions perform the specified logical
operation (logical bitwise and, or, and exclusive
or, respectively) on their operands, placing the
result in the first operand location

● Examples

and eax, 0fH ; clear all but the last 4

 ; bits of EAX.

xor edx, edx ; set the contents of EDX to

 ; zero.

shl, shr shift left, shift right

● These instructions shift the bits in their first operand's contents left
and right, padding the resulting empty bit positions with zeros

● The shifted operand can be shifted up to 31 places. The number of
bits to shift is specified by the second operand, which can be either
an 8-bit constant or the register CL
● In either case, shifts counts of greater then 31 are performed modulo 32.

● Examples

shl eax, 1 ; Multiply the value of EAX by 2

 ; (if the most significant bit is 0)

shr ebx, cl ; Store in EBX the floor of result of dividing

 ; the value of EBX by 2^n

 ; where n is the value in CL.

More instructions… (similar)

● Multiplication imul

imul eax, [var] ; multiply the contents of EAX by the

 ; 32-bit contents of the memory location

 ; var. Store the result in EAX.

imul esi, edi, 25 ; ESI ← EDI * 25
● Division idiv
● not - bitvise logical not (flips all bits)
● neg - negation

neg eax ; EAX ← - EAX

This is enough to do arithmetic

Control flow instructions

EIP instruction pointer

● EIP is a 32bit value indicating the location in
memory where the current instruction starts
(i.e., memory address of the instruction)

● EIP cannot be changed directly
● Normally, it increments to point to the next

instruction in memory
● But it can be updated implicitly by provided control

flow instructions

Labels

● <label> refers to a labeled location in the
program text (code).

● Labels can be inserted anywhere in x86
assembly code text by entering a label name
followed by a colon

● Examples

 mov esi, [ebp+8]

begin: xor ecx, ecx

 mov eax, [esi]

jump: jump

● Transfers program control flow to the instruction at
the memory location indicated by the operand.

● Syntax

 jmp <label>
● Example

begin: xor ecx, ecx

 ...

 jmp begin ; jump to instruction labeled

 ; begin

jcondition: conditional jump

● Jumps only if a condition is true
● The status of a set of condition codes that are stored in a

special register (EFLAGS)
● EFLAGS stores information about the last arithmetic operation

performedm for example,
– Bit 6 of EFLAGS indicates if the last result was zero
– Bit 7 indicates if the last result was negative

● Based on these bits, different conditional jumps can be
performed
● For example, the jz instruction performs a jump to the specified

operand label if the result of the last arithmetic operation was
zero

● Otherwise, control proceeds to the next instruction in sequence

Conditional jumps

● Most conditional jump follow the comparison instruction (cmp, we’ll cover it below)
● Syntax

je <label> (jump when equal)

jne <label> (jump when not equal)

jz <label> (jump when last result was zero)

jg <label> (jump when greater than)

jge <label> (jump when greater than or equal to)

jl <label> (jump when less than)

jle <label> (jump when less than or equal to)
● Example: if EAX is less than or equal to EBX, jump to the label done. Otherwise,

continue to the next instruction

 cmp eax, ebx

 jle done

cmp: compare

● Compare the values of the two specified operands, setting the condition
codes in EFLAGS
● This instruction is equivalent to the sub instruction, except the result of the

subtraction is discarded instead of replacing the first operand.
● Syntax

cmp <reg>,<reg>

cmp <reg>,<mem>

cmp <mem>,<reg>

cmp <reg>,<con>
● Example: if the 4 bytes stored at location var are equal to the 4-byte

integer constant 10, jump to the location labeled loop.

 cmp DWORD PTR [var], 10

 jeq loop

Stack and procedure calls

What is stack?

Stack

● It's just a region of
memory
● Pointed by a special

register ESP
● You can change ESP

● Get a new stack

Why do we need stack?

Calling functions

// some code...
foo();
// more code..

● Stack contains
information for how to
return from a subroutine
● i.e., from foo()

● Functions can be called
from different places in the
program

 if (a == 0) {
 foo();
 …

 } else {

 foo();

 …

 }

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Stack

● Main purpose:
● Store the return address

for the current procedure
● Caller pushes return

address on the stack
● Callee pops it and jumps

Call/return

● CALL instruction
● Makes an unconditional jump to a subprogram and

pushes the address of the next instruction on the stack

 push eip + sizeof(CALL); save return

 ; address

 jmp _my_function
● RET instruction

● Pops off an address and jumps to that address

Stack

● Other uses:
● Local data storage
● Parameter passing
● Evaluation stack

– Register spill

Manipulating
stack

● ESP register
● Contains the memory

address of the
topmost element in
the stack

● PUSH instruction

 push 0xBAR

● Subtract 4 from ESP
● Insert data on the

stack

Manipulating
stack

● POP instruction

 pop EAX

● Removes data from
the stack

● Saves in register or
memory

● Adds 4 to ESP

Some examples

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

