
CS 238P
Operating Systems

Discussion 7

Today’s agenda

• Solving midterm from winter 2018

Question 1.a: Basic page tables
Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Question 1.a: Basic page tables

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Bits 31-22 can be either 0x0, 0x1, 0x2

Question 1.a: Basic page tables

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

If bits 31-22 are 0x0:

Look at the page table (PT) at address 0x1000

Question 1.a: Basic page tables

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

If bits 31-22 are 0x0:

Look at the page table (PT) at address 0x1000

Question 1.a: Basic page tables

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Page table (PT) at address 0x1000 has 2
entries 0x0 and 0x1 (all other zeros) => 
 
bits 21-12 can be either 0x0 or 0x1

Question 1.a: Basic page tables

Lets sum up the first PD entry range:

It maps addresses from 0x0 to 0x1FFF

0x0 = 0b

0x1FFF = 0b

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Question 1.a: Basic page tables

Second PD entry range:

It maps addresses from 0x400000 to 0x401FFF

0x400000 = 0b

0x401FFF = 0b

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Question 1.a: Basic page tables

Third PD entry range:

It maps addresses from 0x800000 to 0x801FFF

0x800000 = 0b

0x801FFF = 0b

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the mapping look like?

Remind virtual to physical address mapping:

Question 1.a: Basic page tables

Final answer:

0x0 - 0x1FFF

0x400000 - 0x401FFF

0x800000 - 0x801FFF

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: which virtual addresses are mapped

Remind virtual to physical address mapping:

Question 1.a: Basic page tables

Page directory is at PHYSICAL address 0x0

You need to find a mapping from some virtual
address into physical 0x0

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the virtual address of PD

Question 1.b: Basic page tables

How to find it?

1. Look through page table mappings. You need to find an entry which map to
0x0

2. If you found, traverse to page directory and find index of the PDE
corresponding for this PT

3. Create an address.

1. Index in PD - first 10 bits

2. Index in PT - middle 10 bits

3. Offset - last 12 bits of physical address of PD (in our case 0x0)

If haven’t found - there is no mapping

Problem description:

cr3 = 0x0

PD at address 0x0:

0 -> 0x1

1 -> 0x2

2 -> 0x1

PT at address 0x1000:

0 -> 0x3

1 -> 0x4

PT at address 0x2000:

0 -> 0x5

1 -> 0x4 
 
 
Question: what is the virtual address of PD

Question 1.b: Basic page tables

Is equal 0x0?

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Last function arg

7. ….

8. First function arg

9. Return address

10.Local variables <- caller

11.Old ebp <- caller

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Last function arg

7. ….

8. First function arg

9. Return address

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Last function arg

7. ….

8. First function arg

9. Return address

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have
Already done

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Last function arg

7. ….

8. First function arg

9. Return address

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Argument a of foo

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Argument a of foo

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Argument a of foo

Local var or esp

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Argument a of foo

Local var or esp

Old ebp

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: What is in the stack?

Question 2.a: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

To solve remember how stack looks like in
general when you just entered a function:

1. First local variable

2. …

3. Last local variable

4. esp

5. ebp

6. Return address

7. Last function arg

8. ….

9. First function arg

10.Local variables <- caller

11.Old ebp <- caller

Don’t have
Don’t have
Don’t have

Already done

Already done

Return address

Argument a of foo

Local var or esp

Old ebp
Return address

Argument 1
Argument 2

Argument 3 of baz
or local variable

Question 2.b: Stack and calling conventions
Stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

Return address

Argument a of foo

Local var or esp

Old ebp
Return address

Argument 1
Argument 2

Argument 3 of baz
or local variable

Problem description:

int foo(int a) {

... <- stopped here

}

int bar(int a, int b) { ...

foo(...); ...

}

int baz(int a, int b, int c) { ...

foo(...); ...

}

Question: Can Alice make a conclusion if foo()
is called from the context of bar() or baz()

Answer:

We can't decide which
function called foo, if ebp
in 0x8010b5a4 would point
to 0x8010b5b4 then we
could say that foo was
called from a function that
takes two arguments, i.e.,
bar but since we don't
know what is there in
0x8010b5b4 we can't
make this decision

Question 3: Process organization

Problem description:

xv6 processes have the following memory layout created as part of the exec()
function. First, the kernel allocates pages for the kernel text and data (not that
these pages are both executable and writable). Then xv6 allocates two pages:
stack and guard. The guard page is made is placed between the stack and the
rest of the program to make sure that if the stack overflows the operating
system can catch an exception caused by the access to the guard page and
terminate the program early.

Question: is it possible to write a C program that escapes the guard page
mechanism and accidentally overwrites the text section of the program

Text DataGuard (1 Page)Stack

Question 3: Process organization

Problem description:

xv6 processes have the following memory layout created as part of the exec()
function. First, the kernel allocates pages for the kernel text and data (not that
these pages are both executable and writable). Then xv6 allocates two pages:
stack and guard. The guard page is made is placed between the stack and the
rest of the program to make sure that if the stack overflows the operating
system can catch an exception caused by the access to the guard page and
terminate the program early.

Question: is it possible to write a C program that escapes the guard page
mechanism and accidentally overwrites the text section of the program

Text DataGuard (1 Page)Stack

Answer:

Yes, it is possible to write a C program that escapes the guard
page mechanism. If a C program has a local variable that is of
size greater than 2 pages, we would skip the guard page and
overwrite the text and data section.

Char xv6_hacked[PAGE_SIZE*2];

Int this_variable_is_allocated_in_text_section = 228;

Question: How xv6 keep track of
available physical memory (using
kalloc function)?

Original question: Xv6 uses
234MB of physical memory. But
how does it keep track of
available physical memory?
Specifically, explain the following:
the xv6 memory allocator (kalloc())
always returns a virtual address,
but how does the allocator know
which physical page to use for
each virtual address it allocates?

Question 4.a: Physical and virtual memory
allocation

How to solve questions like that:

1. Open xv6 source code: https://github.com/mit-
pdos/xv6-public

2. Search for kalloc

3. Open a function and try to understand what’s
going on

https://github.com/mit-pdos/xv6-public
https://github.com/mit-pdos/xv6-public

Question: How xv6 keep track
of available physical memory
(using kalloc function)?

Question 4.a: Physical and virtual memory
allocation

1. Synchronization lock

2. Getting a linked list of available spaces

3. Pop first element from the list

4. Release the lock

Question: How xv6 keep track
of available physical memory
(using kalloc function)?

Question 4.a: Physical and virtual memory
allocation

How you found out it is a linked list of free spaces?

Look like linked list

Init function calls freerange

freerange calls kfree on
every page available

Add page into linked list

Question: Xv6 defines the V2P() macro
that allows the kernel to convert
between virtual and physical
addresses:

#define V2P(a) (((uint) (a)) - KERNBASE)

Does V2P() macro work for virtual
addresses that belong to the user part
of the address space (i.e., a virtual
address inside the user data or stack)?

Question 4.b: Physical and virtual memory
allocation

Kernel memory:

Question: Xv6 defines the V2P() macro
that allows the kernel to convert
between virtual and physical
addresses:

#define V2P(a) (((uint) (a)) - KERNBASE)

Does V2P() macro work for virtual
addresses that belong to the user part
of the address space (i.e., a virtual
address inside the user data or stack)?

Question 4.b: Physical and virtual memory
allocation

Kernel memory:

Answer: No, because the V2P mapping for
kernel is simple - kernel is physically located at
0x0, but virtually at 2gb. It is not true for user
programs. You need to go through page table
mechanism

Question: Xv6 defines the V2P() macro
that allows the kernel to convert
between virtual and physical
addresses:

#define V2P(a) (((uint) (a)) - KERNBASE)

Does V2P() macro work for virtual
addresses that belong to the user part
of the address space (i.e., a virtual
address inside the user data or stack)?

Question 4.b: Physical and virtual memory
allocation

Kernel memory:

Answer: No, because the V2P mapping for
kernel is simple - kernel is physically located at
0x0, but virtually at 2gb. It is not true for user
programs. You need to go through page table
mechanism

Problem description:

#include "param.h"

#include "types.h"

#include "user.h" #include "syscall.h"

 int main() {

 char * message = "aaa\n";

 int pid = fork();

 if(pid != 0){

 char *echoargv[] = { "echo", "Hello\n", 0 };

 message = "bbb\n";

 exec("echo", echoargv);

 }

 write(1, message, 4);

 exit();

}

Question: What is the output

Question 5: Exec and fork

The fundamental question here is
who would run first child or parent?

Problem description:

#include "param.h"

#include "types.h"

#include "user.h" #include "syscall.h"

 int main() {

 char * message = "aaa\n";

 int pid = fork();

 if(pid != 0){

 char *echoargv[] = { "echo", "Hello\n", 0 };

 message = "bbb\n";

 exec("echo", echoargv);

 }

 write(1, message, 4);

 exit();

}

Question: What is the output

Question 5: Exec and fork
The fundamental question here is who
would run first child or parent?

It is undefined

Answer:

There are two possible outputs:

1.

aaa

Hello

2.

Hello

Aaa

Problem description:

What would be if we remove mapping
0-4MB (Virtual) -> 0-4MB (Physical) from
entrypgdir:

__attribute__((__aligned__(PGSIZE)))

pde_t entrypgdir[NPDENTRIES] = {

 // Map VA's [0, 4MB) to PA's [0, 4MB)

 // [0] = (0) | PTE_P | PTE_W | PTE_PS,

 // Map VA's [KERNBASE,
KERNBASE+4MB) to PA's [0, 4MB)

 [KERNBASE>>PDXSHIFT] = (0) | PTE_P |
PTE_W | PTE_PS,

};

Question 6: Initial page tables
How to solve:

1. Open source code

2. Find entrypgdir

3. Try to analyze whats
going on

What about those guys?
Would they be executed?

Problem description:

What would be if we remove mapping
0-4MB (Virtual) -> 0-4MB (Physical) from
entrypgdir:

__attribute__((__aligned__(PGSIZE)))

pde_t entrypgdir[NPDENTRIES] = {

 // Map VA's [0, 4MB) to PA's [0, 4MB)

 // [0] = (0) | PTE_P | PTE_W | PTE_PS,

 // Map VA's [KERNBASE,
KERNBASE+4MB) to PA's [0, 4MB)

 [KERNBASE>>PDXSHIFT] = (0) | PTE_P |
PTE_W | PTE_PS,

};

Question 6: Initial page tables

Answer:

The code wouldn’t run, because as
entry.S would load the page directory
all other setup instructions would not
be available anymore

