
Discussion 6
Harishankar Vishwanathan

Overview
- The boot process

- BIOS, bootloader, and the kernel

- HW3 overview
- Setup & outline
- First steps
- Paging
- Tools that will help

The boot process
BIOS ⟶ Bootloader (real mode, 16-bit) ⟶ kernel (protected mode, 32-bit)

BIOS
- Firmware/software that is in the motherboard’s ROM.
- Initialize controllers, network interfaces, etc.
- Ends by loading the bootloader, in xv6 at 0x7c00

Bootloader
- The BIOS loads this code from the first sector of the hard disk into memory at

physical address 0x7c00 and starts executing in real mode.
- Bootloader

- switch to 32−bit protected mode, jump into C.
- xv6/bootasm.S

Kernel
- Load the kernel by reading the kernel ELF file from disk

- xv6/bootmain.c

- Once in kernel main()
- Set up page tables.
- xv6/main.c
-

HW3: first steps
- Writing a minimal “Hello World” kernel and booting into it.
- Steps:

- Use GRUB as our bootloader
- Needs a header file that uses follows the multiboot specification: multiboot_header.asm

- Write a boot.asm file that
- Link them together into kernel.bin
- Make an ISO using grub2-mkrescue
- Run our kernel in QEMU

Demo
- Downloading source files
- Writing our minimal “Hello World” kernel
- Compiling, linking, and booting.

At this point ...
- make qemu

- Boots into our minimal kernel and prints: Hello World

- Makefile errors
- Recipe:ingredients syntax
- Follow the recipes and see what gave you an error
- List of files (demo)

- Qemu errors
- Try to switch to a different server (eg. circinus-14 to circinus-15)
- Or open another terminal and type killall qemu-system-i386
- To quit QEMU virtual monitor, Alt+2, followed by q or quit

HW4: paging
- Virtual to physical address translation is hardware-assisted by the MMU
- The MMU uses page tables to do this.

- Page table contain the virtual - physical mapping

- Once paging enabled, every address that the CPU encounters goes through
the translation mechanism.

- We set the page table data structures, and enable paging.

Page Table Recap
- One level with 4MB pages

- Page Directory -> Physical address

- Two level page tables with 4k pages
- Page Directory -> Page Table -> physical address

- CR3 contains the base address of the page directory
- After constructing page table, you need to put base address of page directory into CR3

Demo 2
- Page tables

- Follow instructions
- Enable paging
- Boot into main
- Check serial.log

Page size discussion
- We use 4KB pages
- A Page Table is 4KB in size:

- Contains 1024 Page Table Entries.
- Each PTE is 4 bytes long
- Each PTE points to a 4KB region of physical memory
- So 1 Page Table maps 4MB of physical memory

- For 8MB physical memory?
- How many page tables? (2 page tables)

- For 256 MB physical memory?
- 64 page tables.

Implementing page tables in main.c
Similar to what we did in assembly

- Declare regions of memory to hold the Page Table Directory and Page
Tables.

- Load the Page Table Entries in Page Table(s) with the correct physical
addresses and flags.

- Make the Page Table Directory entries point to the start of each page table
- Load CR3 with the start address of Page Table Directory

Notes
- Page alignment

- Page Table Directory address needs to be page aligned.
- Page Tables addresses need to be page aligned.

- qemu-gdb
- https://zoo.cs.yale.edu/classes/cs422/2011/lec/l2-hw.shtml (Section: Remote Debugging xv6 under QEMU)

- Tmux (a terminal multiplexer)
- Just run: tmux
- Ctrl + B is the default bind key. Ctrl +B followed by % should create two multiplexed

terminal sessions.
- Use Ctrl + B followed by arrow keys to navigate between the two sessions.
- https://linuxize.com/post/getting-started-with-tmux/

https://zoo.cs.yale.edu/classes/cs422/2011/lec/l2-hw.shtml
https://linuxize.com/post/getting-started-with-tmux/

×

