Event Overview
The Fall 2022 High-Performance Computing Joint Seminar Series hosted by the University of Utah and Pacific Northwest National Laboratory aims to bring together researchers with expertise in High-Performance Computing algorithms, applications, software frameworks, tools, and architectures to share, discuss, and explore recent and ongoing research and to broaden opportunities for future collaborations. These weekly seminars will cast a broad net and aims to offer something for students, faculty members, and researchers in cross-organizational research opportunities.

For more information
Kevin Barker
Kevin.Barker@pnnl.gov
Saday Sadayappan
saday@cs.utah.edu

Schedule of Events
All Events: 3:00-4:00 P.M. PT (4:00-5:00 P.M. MT)

9/22/22
ALGORITHMS & APPLICATIONS
The ExaGraph Codesign Center
Mahantesh Halappanavar | Pacific Northwest National Laboratory
Scalable Multi-Phase Flows in Complex Domains Using Adaptive Octree Meshes
Hari Sundar | University of Utah

9/29/22
ALGORITHMS & APPLICATIONS
ExaRL: Exploring the Scalability of Scientific Reinforcement Learning
Joshua Suetterlein | Pacific Northwest National Laboratory
Designing High-Performance and Feature Rich GPU Filters Using Exascale Computing
Prashant Pandey | University of Utah

10/6/22
COMPILERS & FRAMEWORKS
COMET: Domain-specific COMpiler for Extreme Targets
Gokcen Kestor | Pacific Northwest National Laboratory
Enriching Data Layouts and Co-Optimization to Reduce Data Movement
Mary Hall | University of Utah

10/20/22
COMPILERS & FRAMEWORKS
TAMM: Tensor Algebra for Many-body Methods
Erdal Mutlu | Pacific Northwest National Laboratory
Porting Uintah to Heterogeneous Systems
Martin Berzins | University of Utah
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Organizer</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/3/22</td>
<td>PERFORMANCE PORTABILITY & ALGORITHM / ARCHITECTURE CO-DESIGN</td>
<td>Ang Li</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Performance Portability and Optimization Using Machine Learning</td>
</tr>
<tr>
<td>11/10/22</td>
<td>ALGORITHM / ARCHITECTURE CO-DESIGN</td>
<td>Roberto Gioiosa</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antionio Tumeo</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>12/1/22</td>
<td>ARCHITECTURE & VLSI</td>
<td>Rajeev Balasubramonian</td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardware Acceleration Strategies for Emerging Workloads</td>
</tr>
</tbody>
</table>