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Abstract

Many functional languages—including Racket, Clojure, and
Scala—provide a persistent-map datatype with an implemen-
tation based on Hash Array Mapped Tries (HAMTs). HAMTs
enable efficient functional lookup, insertion, and deletion
operations with a small memory footprint, especially when
taking advantage of implementation techniques that have
been developed since the original HAMT implementation.
Racket’s latest HAMT implementation is based on an in-
termediate data structure, a stencil vector, that supports an
especially compact representation of HAMTs with help from
the compiler and memory manager. That is, stencil vectors
provide an abstraction to improve HAMT performance with-
out burdening the compiler with all of the complexity and
design choices of a HAMT implementation. Benchmark mea-
surements show that HAMTs in Racket have performance
comparable to other state-of-the-art implementations, while
stencil-vector HAMTs are more compact and run as fast as
alternative representations in Racket. Although we only re-
port on Racket, our experience suggests that a stencil-vector
datatype in other dynamic-language implementations might
improve HAMT performance in those implementations.

CCS Concepts: - Software and its engineering — Com-
pilers; Runtime environments; Data types and struc-
tures.
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1 Introduction

Key-value maps are pervasive in program implementations.
In an imperative style, programs traditionally use hash ta-
bles as a general and efficient implementation of maps. To
support a functional style, languages and libraries can of-
fer a persistent form of maps, where adding or removing a
key-value pair returns a new map value, instead of mutating
the given map. To make that addition or deletion efficient,
the new map value will share internal structure with the
given map; the details of that sharing are private to the im-
plementation, but it invariably involves a tree structure, as
opposed to the mutable array that is used in a traditional
hash table. That way, a functional update operation requires
reallocating only nodes along the spine from the root of the
internal tree to the changed node.

The tree within a persistent-map implementation might
be a balanced binary search tree using the integers that are
produced by a hash function. An alternative is to use a trie,
where searching is based on inspecting a prefix of a number’s
representation instead of comparing whether one number
is less than another. When hashing converts every key to a
integer whose representation is bounded, a trie can have a
bounded depth without needing to be balanced.

The Hash Array Mapped Trie (HAMT) data structure was
first described and implemented in C++ by Bagwell [1]. It
represents trie nodes compactly by associating a bitmap with
each node, and only positions with bits set in the bitmap are
represented in the node’s array of child references. That is,
the size of each node corresponds to the number of its non-
empty children instead of its maximum number of children,
which makes the representation much more compact. Sub-
sequent refinements to Bagwell’s design include reordering
and distinguishing child references based on whether they
represent leaves or subtrees, and those details also can be
represented in the bitmap.

When a data structure is important enough to the perfor-
mance of a programming language, it may receive special
treatment by the compiler and runtime system. For example,
implementations of Lisp typically have a special representa-
tion for cons cells, allowing them to take up just two words
of memory (perhaps encoding consness through bits in the
pointer), whereas other kinds of two-word values need an
additional tag word. Operations on important datatypes are
often hand-coded in a low-level layer or inlined by the com-
piler. HAMTs could similarly benefit from direct compiler
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and runtime support, but they are more complex than the
kinds of datatypes that normally receive special treatment.

Racket’s HAMT-based persistent map is important enough
for its performance to be worth compiler support. For ex-
ample, the macro expander makes heavy use of persistent
maps to implement sets of scopes and binding environments.
To gain the benefits of compiler support without embed-
ding too many HAMT details into the compiler and run-
time implementation, we have introduced an intermediate
data structure into the Racket backend compiler (which is
Chez Scheme): a stencil vector. A stencil vector is a one-
dimensional array plus a mask bitmap, where the vector is
conceptually as long as the bitmap is wide, but a vector el-
ement is represented in memory only if the corresponding
bit is set in the mask. The stencil-vector datatype enables
the compiler and runtime system to offer two benefits: (1)
a stencil vector has a HAMT-style bitmap that determines
the vector’s size, so the representation does not have to in-
clude a redundant size field for safe-mode bounds checks
and for garbage collection, and (2) a bitmap-based update
operation can allocate and fill a new stencil vector between
garbage-collection points, which avoids the need to initialize
the vector’s memory with collector-friendly values [15] or
to coordinate updates with the collector through a write
barrier.

In this paper, we describe Racket’s HAMT implementation
and its use of stencil vectors, and we provide benchmarks to
demonstrate how this implementation performs better than
other implementations that we have previously deployed
in Racket. We also show performance comparisons to state-
of-the-art implementations on the JVM—which is a kind
of apples-to-oranges comparison, but it provides evidence
that Racket’s implementations are comparable to the state
of the art. Thus, while stencil vectors are currently specific
to Racket, the fact that they can improve a competitive im-
plementation suggests that compiler and runtime support
might usefully translate to other dynamic-language imple-
mentations.

2 Prior Work

The trie data structure was first implemented by Briandais [2]
and named by Fredkin [6]. Bagwell [1] used the idea of tries
with the bits of a hash code to serve as the strings, and he
combined it with partitioning based on hash codes and the
linear hash principles of Litwin et al. [8] to solve problems
of collision management and storage growth. Bagwell’s im-
plementation of tries has a smaller memory footprint than
previous implementations, and by using hash codes as keys,
it guarantees an upper bound of O(logsz(n)) for lookup, in-
sertion, and deletion.

Bagwell’s mutable HAMT implementation was adapted by
Hickey [7] to implement a functional and immutable HAMT
data structure for Clojure. Scala through version 2.12 uses a
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HAMT implementation, but where the implementations of
Bagwell and Hickey store key-value pairs for a node in the
node itself, Scala’s HAMT stores a key—-value pair in a leaf
node, and it also records a computed hash code alongside
the key.

Steindorfer and Vinju [12] improve HAMT’s implementa-
tion with their Compressed Hash-Array Mapped Prefix-tree
(CHAMP) implementation. CHAMP improves locality and
ensures that the tree remains in a canonical and compact rep-
resentation after deletion. Scala 2.13 and later use CHAMP.
Compared to the HAMTs of Scala 2.12 and Clojure, CHAMP
achieves a smaller memory footprint through its layout for
internal trie nodes, which saves space at the cost of more bit-
wise arithmetic: a mapped position in a node is represented
by an array of slots that may refer to a key—value pair or
subtree, instead of having separate key—value and subtree
slots where only one or the other is used. At the same time,
the slots are reordered so that subtree references are grouped
together, which improves locality during iterations.

For applications that involve one-to-many mappings, a
map data structure can be used with values that are col-
lections, but the AXIOM data structure [13] provides more
direct support for one-to-many mappings. It builds on the
ideas of CHAMP, but it further refines the use of mask bits
to distinguish node types, which lets it more compactly rep-
resent one-to-many relations and speed iteration operations
over a combination of keys and values. The approach to dis-
tinguishing one-to-many mappings could also be used to
distinguish one-to-zero mappings, enabling the same data
structure to compactly represent both maps and sets.

Variations on the HAMT idea, like CHAMP and AXIOM,
share many common implementation details. Some of that
commonality is the target of stencil vectors as presented here.
As even more direct support, Steindorfer and Vinju [14] de-
scribe a domain-specific language for generating trie-based
implementations of collections.

3 HAMTs

Figure 1 illustrates the basics of how a HAMT representa-
tion works compared to a traditional array representation
of hash tables. The picture shows keys without values, so it
demonstrates a hash set rather than a hash map, but that’s
enough to cover the essentials.

Part (a) of the figure shows the hash codes for example
key objects A, B, C, and D.

Part (b) depicts an array-based table, where each hash
code is converted to an index by taking its modulus with
respect to the table size. Also, each index is used directly
as an array index, which is why the slots of the array are
consecutively numbered in the upper left of the slots.

Part (c) shows a HAMT representation where only A and
B have been added to the table. To determine an index within
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Figure 1. Insertion of A, B, C, and D objects into a HAMT, based on the example and picture by Steindorfer and Vinju [12].

the node, each hash code is considered as a sequence of base-
N digits, where N is the HAMT’s branching factor. For this
example, N is 32. The hash codes of A and B differ in the
first (least-significant) base-32 digit, so they are mapped to
different indices in the topmost HAMT node, and no further
nodes are needed. Within the node, the upper left of each
slot shows the index for that slot. Although the indices are
in order, they do not match the array indices, because only
non-empty slots are represented in the node’s array.

Part (d) shows a HAMT where C has been added. The hash
codes of B and C have the same first two base-32 digits and
differ in the third, so the table is now three nodes deep.

Part (e) shows the table after adding D, which has the
same first base-32 digit as B and C, but a different second
digit. If another key were added that has the same first two
base-32 digits as D, then that element and D would be moved
to another node, and the HAMT would start to look more
tree-like.

Part (f) shows the same HAMT representation as (e), but
where the indices on slots are encoded by a mask. For exam-
ple, the first node’s slots have indices of 0 and 2 because the
set bits in 00101, are at positions 0 and 2 (counting from the
least-significant end). A mask and an index can be combined
with bitwise shift and popcount operations to convert an
index to an array position.

Left implicit in figure 1 is some way of distinguishing
node slots that contain keys versus subtrees. In a language
like Java or Racket, instanceof or a structure predicate can
be used to make that distinction. The CHAMP design [12]
uses another possibility: use two masks, where one mask has
a bit set for each slot that refers to a subtree, and another
mask has a bit set for each slot that refers to a key (and
the two bitmaps are mutually exclusive). Since branching
factors N in the range of 8 to 32 tend to perform well, there
can easily be room for two N-bit masks within one machine
word. The masks could be interleaved or concatenated, but
concatenation fits well with the idea of grouping all subtree
slots before key slots, which tends to promote locality.

Separating subtree references from keys offers a further
advantage for storing values alongside keys, since a subtree
reference will occupy a single machine word, while a key and
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value pair will require two words. Racket HAMTs further
separate keys from values using a third mask, which has a bit
for each key that has a value. (Every bit set in the value mask
must also be set in the key mask.) A key without a value is
implicitly mapped to “true,” which is useful for compactly
representing sets without a separate data structure. This
choice limits the branching factor N further, since it can be
only 1/4 of the word size to preserve a power-of-2 N, but
branching factors of 8 and 16 work well on 32-bit and 64-bit
architectures, respectively.’

While there are tradeoffs in the details, many good choices
for HAMT nodes create a correspondence between bits in a
mask (or concatenation of masks) and the number of slots
in a node. Whether slots are used to hold keys, values, sub-
trees, or metadata such as the total size of a tree, the general
strategy is a mask combined with a compressed array. That
general strategy can be supported to good effect in the run-
time system through a new datatype, which brings us to
stencil vectors.

4 Stencil Vectors

A stencil vector is a one-dimensional array of fixed size N,
where each of its N elements is either present or absent. It
is furthermore a compressed array, since only the elements
that are present are represented in memory. Concretely, a
stencil vector consists of (a) a mask bitmap of N bits and (b)
an array of present elements. The “stencil” part of a stencil
vector is that its bitmap indicates which slots of the array
need to be represented. If bit i is the jth bit that is set in the
bitmap, then the array’s ith element is present and stored
in the jth position of the array. If bit i is unset, then the
ith element is not present and has no representation in the
stencil-vector’s array.

As long as a small N suffices, as it does for representing
HAMT nodes, then a stencil vector’s mask and array can be
stored consecutively in memory, and accessing an element
of a stencil vector requires only a few instructions. When an

1AXIOM [13] suggests an alternative, which is to use two bits total to
represent four possible states: subtree, key with value, key without value,
or empty. In Racket, however, slightly less than a word size is available for
representing masks efficiently, so using two bits instead of three does not
enable a larger branching factor.
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element iis present (i.e., the ith bit is set in the stencil vector’s
mask), the element’s array index is computed by counting
the number of bits that are set below the ith bit, which on
many machines is a bitwise “and” operation followed by a
“popcount” operation.

Another key to stencil-vector performance is a functional-
update operator to produce a new stencil vector. A functional-
update primitive can be faster than allocating a plain array
and filling it, because the runtime system sees filling an
array as a side-affecting sequence that requires extra steps to
cooperate with the generational garbage collector.” Limiting
a stencil vector’s size to a small enough N means that the
allocation and filling step can reasonably be inlined and
atomic with respect to garbage collection.

The stencil-vector API for Chez Scheme includes stencil-
vector for creating a stencil vector, stencil-vector-mask
for accessing its mask, stencil-vector-ref for accessing
an element by array index, and stencil-vector-update
for functional update of an existing stencil vector. In the
examples below, we use numbers prefixed with #b, which is
Scheme syntax for a base-2 number.

(stencil-vector mask element ...) allocates a new
stencil vector whose mask and content are mask and the
given element values. The mask must be a fixnum in the
range of supported masks, which is 0 through 2°%-1 on a
64-bit platform and 0 through 22°-1 on a 32-bit platform. The
number of provided elements must match the number of bits
set in mask. Note that the compiler can statically verify this
correspondence in an immediate call to stencil-vector
where the mask argument is a literal number. Examples:

> (stencil-vector #b10010 'a 'b)
#<stencil-vector #b10010: 'a 'b>
> (stencil-vector #b111 'a 'b 'c)
#<stencil-vector #b111: 'a 'b 'c>

(stencil-vector-mask st-vec) returns the mask for
the stencil vector st-vec. The mask is always a fixnum.

> (stencil-vector-mask (stencil-vector #b10010 'a 'b))
18

(stencil-vector-ref st-vec j) returns the jth item
in the array for st-vec, where j must be an index that is
less than the number of bits set in st-vec’s mask. Except for
a bounds check, which is omitted in unsafe mode, accessing
an element from a stencil vector is the same at the machine
level as accessing an element from a plain Scheme vector.

> (stencil-vector-ref (stencil-vector #b10010 'a 'b) 1)
'b
> (stencil-vector-ref (stencil-vector #b111 'a 'b 'c) 1)
'b

2 Although our implementation of stencil vectors currently supports imper-
ative updates with the associated administrative work to cooperate with
the garbage collector, we ignore those operations for our purposes here.
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(stencil-vector-update st-vec remove-mask add-
mask element ...) performs a functional update of st-
vec. This is the one operation that relies on a corespondence
between bits set in st-vec’s mask and the positions of el-
ements, because elements corresponding to remove-mask
are removed, and then the elements are inserted at posi-
tions based on add-mask. The remove-mask argument must
have only bits that are currently set in st-vec’s mask, while
add-mask argument must have only bits that are unset after
subtracting remove-mask from st-vec’s mask. If remove-
mask and add-mask have bits in common, those are places

where an element in the stencil vector is being replaced. The
number of element arguments must match the number of
bits set in add-mask.
> (define st-vec (stencil-vector #b101 'a 'b))
> (stencil-vector-update st-vec #b0 #b10 'c)
#<stencil-vector #b111: 'a 'c 'b>
> (stencil-vector-update st-vec #b0 #b1000 'c)
#<stencil-vector #b1101: 'a 'b 'c>
> st-vec ; unchanged by updates
#<stencil-vector #b101: 'a 'b>
> (stencil-vector-update st-vec #b1 #b1 'c)
#<stencil-vector #b101: 'c 'b>
> (stencil-vector-update st-vec #b100 #b100 'c)
#<stencil-vector #b101: 'a 'c>
> (stencil-vector-update st-vec #b100 #b0)
#<stencil-vector #bl: 'a>

A HAMT implementation needs additional functions that
correlate mask bits to positions, but those functions do not
need to be primitive. For example, an operation to access the
element corresponding to a bit value can be implemented
using fxpopcount and other bitwise operations:*

(define (stencil-vector-bitwise-ref st-vec bit-val)

(define i (fxpopcount (fxand (stencil-vector-mask st-vec)
(fx- bit-val 1))))
(stencil-vector-ref st-vec i))

> (stencil-vector-bitwise-ref (stencil-vector 5 'a 'b) 4)

'b

To get the last ounce of performance for Racket’s HAMT
implementation, we compile it with Chez Scheme’s unsafe
mode. In that mode, stencil-vector-bitwise-ref asabove
becomes as fast as any primitive version would be.

The implementation of stencil vectors for Chez Scheme
requires about 150 lines of library code, about 90 lines of code
in the compiler pass for inlining primitives, about 15 lines of
support in the garbage collector’s domain-specific language,
and about a dozen lines of glue in the C-implemented kernel
for boot-file loading and the C APL

5 From Stencil Vectors to HAMTs

A full implementation of HAMTs using stencil vectors is too
long to fit in this paper, but we sketch some key functions in

3The fxpopcount operation returns the number of bits that are set in (the
two’s complement representation of) a fixnum.
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the implementation to illustrate how stencil-vector HAMTs
work.

Assuming a branching factor of 16 (which works on a 64-
bit platform), we reserve 16 stencil-vector slots for each of
the subtrees, keys, and values. A subtree slot will be mapped
only if the key slot for the same index is not mapped, and
vice versa. A value slot will be mapped only if the key slot
for the same index is mapped.

(define BRANCHING-FACTOR 16)

(define SUBTREE-BITPOS 0)
(define KEY-BITPOS (+ SUBTREE-BITPOS BRANCHING-FACTOR))
(define VAL-BITPOS (+ KEY-BITPOS BRANCHING-FACTOR))

When we want to add a key and value to a node where the
index is not already mapped to a key or subtree, then a simple
form of the addition is*

(define (node-add-key node key val idx)
(stencil-vector-update
node
0
(ior (<< 1 (+ idx KEY-BITPOS))
(<< 1 (+ idx VAL-BITPOS)))
key
val))

Note that we know to provide the key and val arguments
to stencil-vector-update in that order, because keys are
always stored before values.

With 48 slots in a stencil vector reserved for subtrees,
keys, and values, our implementation on 64-bit Chez Scheme
would have 10 unused slots per node. Those used slots take
up no additional memory outside the mask bits, of course, but
they could be used to store additional metadata. In Racket’s
implementation of HAMTs, we allocate one extra slot in ev-
ery stencil-vector node to record the total number of items in
the subtree that is represented by the node; that way, getting
the size of a HAMT is a constant-time operation without
needing an extra wrapper object around the topmost node.
The same metadata word also encodes whether the node
is part of a HAMT that uses eq?, eqv?, or equal? hashing
(again, without needing an extra wrapper object). Avoiding
a wrapper object while making nodes larger by one word is
a good trade-off when small HAMTs are common, as they
are in Racket.

If we adjust the implementation to use a slot in a stencil-
vector node to encode a count, then it turns out to be conve-
nient to use the first slot for the count, so we shift the other
slots and bit positions:

(define COUNT-BITPOS 0)

(define SUBTREE-BITPOS 1)

(define KEY-BITPOS (+ SUBTREE-BITPOS BRANCHING-FACTOR))
(define VAL-BITPOS (+ KEY-BITPOS BRANCHING-FACTOR))

4We use << for a bitwise left-shift, >> for a bitwise right shift, ior for a
bitwise “inclusive or,” and so on.
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Now, node-add-key needs to update the count on a node by
removing the old count and adding a new one, in addition to
adding the key and value. The count slot is always first, so
the updated count is supplied to stencil-vector-update
before key and val. Furthermore, since the count is always
in the first slot of a node, we can access the old count using
stencil-vector-ref and array index 0:
(define (node-add-key node key val idx)
(stencil-vector-update
node
(<< 1 COUNT-BITPOS)
(ior (<< 1 COUNT-BITPOS)
(<< 1 (+ idx KEY-BITPOS))
(<< 1 (+ idx VAL-BITPOS)))
(+ 1 (stencil-vector-ref node 0))
key
val))

Suppose that a key is added to a node where another key
already exists at the same index. In that case, the two keys
will be combined (with their values) in a new subtree. The
node must be updated to remove the old key and value while
adding the subtree (which must contain two keys):

(define (node-remove-key-add-subtree node subtree idx)
(stencil-vector-update

node
(ior (<< 1 COUNT-BITPOS)

(<< 1 (+ idx KEY-BITPOS))

(<< 1 (+ idx VAL-BITP0S)))
(ior (<< 1 COUNT-BITPOS)

(<< 1 (+ idx SUBTREE-BITPOS)))

(+ 1 (stencil-vector-ref node 0))
subtree))

We have so far assumed that a value is always present in
anode when its key is present. To more compactly represent
sets, Racket HAMTs refrain from storing a value when it
is #t (i.e., the “true” literal). When a key-value mapping is
updated in a HAMT to replace an old value with a new one,
the update operation will need to check whether the value
bit is set and adjust it as appropriate. In some cases, the value
bit and its associated slot are removed, in some cases they
are added, and in some cases the bit stays the same while
the slot may be updated:

(define (node-replace-val node idx val)
(define bit (<< 1 (+ idx VAL-BITPOS)))
(cond
[(andtest? (stencil-vector-mask node) bit)
; old value is not #t
(if (eq? val #t)
(stencil-vector-update node bit 0)
(stencil-vector-update node bit bit val))]
[else
; old value is #t
(if (eq? val #t)
node
(stencil-vector-update node @ bit val))]l))

As this function illustrates, there is some branching cost to
saving space by omitting #t values, and similar branches
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are needed in other functions, like node-add-key. Happily,
the leaves of the functions are efficient stencil-vector update
operations. The time-space trade-off may vary for other
contexts, and stencil vectors accommodate different imple-
mentation choices at that level.

6 Stencil Vectors as Scheme Objects

To understand the performance effect of stencil vectors and
alternatives for HAMTs in Racket, it’s helpful to understand
the internal representation of values generally. Racket uses
Chez Scheme as its core compiler and runtime system [5],
and we have added stencil vectors at that level, so the repre-
sentation details are Chez Scheme’s [3]. At the end of this
section, we reflect on how the details might be different in
another dynamic-language implementation.

In Chez Scheme, every value is represented by a word-
sized reference that may encode a memory address, but some
references are for immediate values (such as small integers
or booleans). The lower tag bits of a reference provide an
initial layer of type information, including whether the refer-
ence encodes a memory address versus an immediate value.
For some references that encode memory addresses (again,
determined by the reference’s tag bits), a second layer of type
information is in a word at the start of the object’s memory.

Figure 2 illustrates how a 64-bit reference xx...xxxxyyy, is
decoded as a value, where the lower three bits yyy are used
as tag bits. If the lower three bits are 000, then the value is
an immediate integer, that is, a fixnum. If the lower three bits
are 001, then the value represents a cons cell, and the bits
after the tag bits determine the cell’s location in memory;’
no further tagging is needed at that memory address. We
omit some other cases from the figure, but the most general
case is when the tag bits are 111, in which case the reference
refers to memory that starts with a word that has its own
tag bits using a secondary encoding. All allocated objects
are at least 8-byte-aligned,® so we preserve access to the
full address space for pointers using the bits that would
otherwise always be 000.

In the secondary encoding reached through 111, the bits
000 indicate a Racket vector, while the bits 011110 indicate
our new stencil-vector datatype. After secondary tag bits,
the rest of the first word of an object can be used for a
type-specific purpose. In the case of a vector, the remaining
bits indicate the vector’s size. In the case of a stencil vector,
the remaining bits hold a mask, and the size of the stencil

SIf you view the reference to a cons cells as a pointer, then it points to
just before the actual memory of the cons cell, which has the sometimes-
convenient property that all fields are at a positive offset from that pointer.
The assumption of 8-byte alignment applies to both the 32-bit and 64-bit
implementations. The allocator for 64-bit Chez Scheme aligns to 16 bytes,
but an object reference is sometimes allowed to reach into the middle of
another object to address a double-precision floating-point number.
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XX...xxxx000, integer

value XX...XXXX3

XX...xxxx001, cons cell

xX...xxxx000, + 8 xX...xxxx000, + 16

cdr

car

xX..xxxx111, secondary-tagged object

xX...xxxx000, + 8 xX..xxxx000, + 16
0...010000, vector

length = 2

xX...xxxx000, + 24

element 0 element 1

xx..xxxx111, secondary-tagged object

xX...xxxx000, + 8 xX...xxxx000, + 16 xX...xxxx000, + 24

0...110011110, stencil
vector
mask = length 2

element 0 element 1

Figure 2. Examples of 64-bit value references

vector—as needed by the garbage collector or for bounds
checking—is the number of bits set in the mask.

Given that the secondary tag 011110 uses six bits, a stencil
vector’s mask is limited to 26 bits on a 32-bit platform and 58
bits on a 64-bit platform. The stencil-vector implementation
does not care how those bits are used for HAMT nodes, but
our HAMT implementation will distribute most of the re-
maining bits equally among three groups: subtree slots, key
slots, and value slots. As a result, our HAMT implementa-
tion is limited to a branching factor of 8 on a 32-bit platform
and 16 on a 64-bit platform; happily, those branching factors
perform well, and they leave at least one bit/slot available
(outside the three groups) for additional HAMT-node meta-
data. It’s also significant that the number of bits in a mask
is no more than the number of bits available in a fixnum,
which means all mask operations can be performed with fast
fixnum arithmetic.

Many dynamic-language implementations use a two-level
tagging regime similar to Chez Scheme’s. We expect that our
strategy for stencil vectors in Chez Scheme would carry over
to most such implementations. In particular, our encoding
does not change the primary layer of tagging, where bit com-
binations are an especially limited resource; some implemen-
tations use only one bit to distinguish immediate integers
from other kinds of values, and some implementations use
“NaN boxing” to distinguish immediate floating-point values
from other kinds of values—but stencil vectors fall into the
“other” category. Our approach affects only the second encod-
ing layer, as stored in an object’s header, which is typically
more flexible. The details of a second-level encoding affect
how many bits can be made available for a stencil-vector
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mask, and if 26 or 58 bits were not enough to implement
HAMT nodes, we might have shuffled other encodings in
Chez Scheme so that fewer than 6 bits could distinguish
a stencil vector from other values; in a different language
implementation, a shuffling like that might be necessary.

7 Benchmarks

Figure 3 shows a comparison of the stencil-vector HAMT
implementation in Racket, the CHAMP implementation in
Java, and the from Clojure. The bench-
marks, which we describe in more detail in section 7.3.1, are
the ones from Steindorfer and Vinju [12]. Since the Java and
Clojure implementations have a branching factor of 32 and
run on a different virtual machine than the Racket imple-
mentation, and since those virtual machines use different
implementation techniques (JIT versus ahead-of-time compi-
lation), the value of this performance comparison is limited.
Still, the comparison suggests that Racket HAMTs perform in
the same neighborhood as state-of-the-art and widely used
HAMT implementations, so our detailed measurements for
HAMTs and stencil vectors within Racket address a mean-
ingful point on the performance spectrum.

7.1 Persistent Maps in Racket

Our Racket-specific measurements compare three different
implementations of persistent maps that reflect historical
implementations over Racket’s evolution:

e The Patricia trie implementation (lines of code: 383)
is based on the one first implemented by Morrison [9]
and then used by Okasaki and Gill [10] to represent
a finite map with integer keys. The implementation
of a Patricia trie is much simpler than HAMT imple-
mentations, and it performs especially well for small
maps. A Patricia trie tends to be less compact than
other alternatives; although it has less metadata, it has
a branching factor of only two.

e The vector HAMT implementation (lines of code:
785) uses a plain Scheme vector for keys and subtrees
within a node, plus a separate vector for values. A
wrapper object for each node combines those vectors
with separate mask bitmaps for keys and subtrees, so
it is not necessary to distinguish subtree values from
other kinds of values in the key/subtree vector—which
means, in turn, that subtrees and HAMT values (which
could be keys in other HAMTS) can be represented in
the same way. Unlike in CHAMP, keys and subtrees are
interleaved in the key/subtree vector. The branching
factor for nodes is 16.

e The stencil-vector HAMT implementation (lines of
code: 1075) uses stencil vectors directly. We take ad-
vantage of the fact that stencil vectors are used only
for HAMTs in Racket, so a stencil-vector value can
be used directly as a HAMT or subtree representation
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and remain distinct from all other kinds of run-time
values. Each node in the stencil-vector implementa-
tion uses CHAMP-style layout that groups subtree and
key entries separately, and values are kept in a third
contiguous portion of the vector. The branching factor
for nodes is 16 on a 64-bit platform.

These implementations of persistent maps change many
design parameters at once. They’re comparable in the sense
that each one starts with a premise (implementing Patricia
tries, using plain vectors, or using stencil vectors), and other
design parameters have been tuned to make that premise
perform well.

To help tease out the specific benefits of stencil vectors,
we run benchmarks on two additional implementations:

e The implementa-
tion is the same as the stencil-vector HAMT imple-
mentation, but the object’s type tag holds the vector
length (like a plain vector) and the mask is kept as an
additional word after the tag word. This variant ex-
poses the trade-off between using extra space to store
a vector length versus having to perform a popcount
operation to determine its length.

e The write-barrier stencil-vector HAMT implemen-
tation is the same as the stencil-vector HAMT imple-
mentation, but operations to initialize a stencil vector
use the same write-barrier implementation that updat-
ing a plain vector would use.” This implementation
nevertheless refrains from first filling a stencil vector
with temporary values, because allocation and initial-
ization are atomic.

For all of the HAMT implementations, keys and values get
separate mask bits within a node in much the same way that
CHAMP gives subtrees and key—-value pairs separate mask
bits. That separation is useful in Racket, because sets are an
especially common use of persistent maps in the macro ex-
pander, and a set has no need of a value with each key. Hash
codes are sometimes stored alongside the key in Racket’s
HAMTs, depending on the table’s equality predicate; eq?-
based (pointer equality) table and eqv?-based (number equal-
ity) tables do not store the hash code, because those equiva-
lence predicates are always fast, while equal?-based (struc-
tural equality) tables store the hash code by grouping it with

"Chez Scheme’s write-barrier implementation uses a combination of a
sequential store buffer (SSB) and card marking. The end of the current
nursery allocation area is used as the SSB. SSB writes are filtered inline
when the written value is a fixnum. When the SSB fills up (i.e., when
the backward-moving SSB pointer meets the meets the forward-moving
allocation pointer), when a new nursery allocation area is created, or when
a garbage collection starts, the SSB is flushed by marking cards. Flushing
filters writes where the current value does not refer to a newer generation
than the written address. Cards with marks are chained in a linked list, and
each card also has summary generation information [11] so that the linked
lists can be generation-specific; the garbage collector checks only cards
relevant to generations being collected.



DLS 21, October 19, 2021, Chicago, IL, USA

Insert not-contained key

CHAMP (Java) x
PersistentHashMap (Clojure)
stencil-vector HAMT (Racket)

3000—-|

run time (milliseconds)

PR T S S S S T S
—t—t—t—
2 e 20 22 28

|
I —
24 2 gm g gm gm g 2

9
w4
[CH

= 24 28 28 27 20 o
number of elements
Remove not-contained key
CHAMP (Java) x
PersistentHashMap (Clojure)
stencil-vector HAMT (Racket) o
600

Z
£
£ 400
E
2
E
=
2
200
0 1 1
2022 2 g4 g5 gs 97 g8 99 g 21 22 28 g g5 g o g gl ge 22 22 23
number of elements
Lookup not-contained key
500-L| CHAMP Gava) x
| PersistentHashMap (Clojure)
stencil-vector HAMT (Racket)
Z 600+
35
g
% 400
£
=
200+
o+—t—ttrtr———————————1
202 2B g4 g5 ge 97 g8 99 g 21 22 2B 5w 55 g6 o g g gw 2 22 2%

number of elements

Sona Torosyan, Jon Zeppieri, and Matthew Flatt

Insert contained key

2000+

CHAMP (Java) x
PersistentHashMap (Clojure)
stencil-vector HAMT (Racket) &

1500

1000+

500+

o ey
—t t —t
2 ge 20 22

T T
3 g1 i gl i e

1
20 oo 2 22 B
number of elements

Remove contained key
3000

CHAMP (Java)
PersistentHashMap (Clojure)
stencil-vector HAMT (Racket)

2000

1000

£
z
g
&
Py
£
=
2

1
g 21 21 Qw9 g® 7 om

24 25 g8 97 28 99 28 gl oo 220 22 2B
number of elements
Lookup contained key
1000 rEHAMP (Java) x
PersistentHashMap (Clojure) B
stencil-vector HAMT (Racket) *
750+

500

250+

t t t —
20 10

— 1 L T L
222 2B 5 g5 gl g g g g

—
2 gz om

number of elements

Figure 3. Run-time performance of Racket HAMTs, CHAMP, and Clojure’s PersistentHashMap; lower is better

the value in a cons cell. To focus on HAMT-representation
performance and not hash-function performance, we con-
sider only eq?-based tables with keys mapped to values.

In absolute terms, our benchmarks will show that the five
persistent-map implementations for Racket all perform simi-
larly, at least for small maps. For large maps, Patricia tries
tend to be slower due to their less-compact representation.
Stencil-vector HAMTs are the most compact. Stencil-vector
maps end up with run-time performance about on par with
other approaches while being the most compact; that combi-
nation has made them the best choice for Racket overall.

7.2 Memory Usage

Figure 4 (a) shows how the different layout strategies affect
memory use for maps. The reported sizes are for 1000 maps,
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each with a different set of 200 random keys. All keys and val-
ues are fixnums, so the total payload size is 1000X200x2x8
bytes, which is 3.05 MB; the unshaded portion of each plot
shows that payload size (the same across implementations),
while the shaded portion shows overhead beyond that pay-
load size. The stencil-vector HAMT implementation uses
70% less space than the Patricia trie implementation and
25% less space than the vector HAMT implementation. Us-
ing a mask in place of a separate vector length saves 7%
compared to .

Figure 4 (b) and (c) show different ways of measuring how
the implementation choice for maps affects overall memory
use in applications. In (b), we measured the peak memory use
encountered while loading the standard Racket library from
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Figure 4. Memory-use benachmark and application results; each plot is on a different scale, and lower is better

source,® where roughly 40% of the time is macro expansion,
and macro expansion involves many maps used to represent
scope sets [4]. Figure 4 (c) shows the initial memory foot-
print of DrRacket,” which is the development environment
for Racket that is itself implemented in Racket. DrRacket
uses maps for many purposes, including representing syntax
objects in macros loaded from the standard library. Overall,
the differences in memory use within (b) and (c) are smaller
than in (a), because they measure overall application memory
use that includes data not related to maps, but the difference
is still measurable and significant.

For loading the Racket library (b), avoiding an extra tag
word in stencil-vector HAMT nodes matters more compared
to other cases, because macro expansion tends to create
and retain many 1- and 2-key maps. The memory use of
the stencil-vector HAMT implementaiton is almost 10%
lower than the version,
while being 25% lower than the Patricia trie version. A 10%
savings in peak memory use becomes even more significant
when scaling up to building a full Racket distribution, where
complex macros and layers of languages push overall peak
memory use to around 1GB.

For DrRacket (c), the Patricia trie implementation uses
about 45MB more memory than stencil-vector HAMT, and
vector HAMT uses about 35MB more memory. The Patri-
cia trie and vector HAMT memory uses are more similar to
each other than stencil-vector HAMT because, again, most
maps in DrRacket are small, but there are enough small maps
to have a significant effect on DrRacket’s overall memory
use. Using a mask in place of a separate vector length saves
about 5MB compared to

8racket -W debug@GC:major -cl racket, where -W debug@GC:major
reports peak and total allocation on exit, and -c1 loads the library named
after the flag from source.

9As reported by (dump-memory-stats) in the interactions window after
starting DrRacket with racket/base as the default language, pausing long
enough for the documentation link to appear before hitting Enter.
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7.3 Run-Time Performance

To check the run-time performance of different persistent-
map implementations, we use benchmarks that measure
individual operations plus the Racket macro expander and a
compiler pass as applications.

7.3.1 Benchmark Programs. The benchmark programs
measure the run-time performance for insertion, deletion,
and lookup operations on maps of sizes 2%, x € {1, ..., 23}.
The setup step for each benchmark includes filling the map
with randomly generated numbers as keys, then invoking
each operation with 8 random keys. All keys are constrained
to Racket’s fixnum range, and each key is mapped to itself
as a value. All maps use pointer equality as the comparison
function. (Racket’s hashing function for eq? treats a fixnum
as its own hash code.) Two kinds of arguments are considered
and measured separately: keys that are contained in the map
(already with the same value, in the case of insertion), and
keys that are not in the map.

We repeat each operation 2 million times on each of 8 argu-
ments for a single benchmark run. We perform each run 20
times and report the average of the measurements; the plots
include bars to show the standard error, but usually the error
bars are much smaller than the shape used to represent a
measurement. On Racket, we prefix each run with a garbage
collection, use the time form around the run, and report real
time. For Java and Clojure, we use the Java Microbenchmark-
ing Harness (JMH) configured to run 5 warm-up iterations
and 20 measurement iterations in “Average Time” mode, and
we also configure it to run the garbage collector before each
invocation. We measured performance using Racket v8.0.0.3
and macOS Big Sur (version 11.2.3) on a 2.4GHz 8-Core Intel
Core i9 processor with 32GB RAM. Popcount operations use
the processor’s POPCNT instruction.

7.3.2 Benchmark Results. Figure 5 shows benchmark
results for Racket map implementations. The Patricia trie
results are sometimes truncated to avoid scaling the plot so
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that the other results collapse together. Generally, perfor-
mance is similar across all implementations for small maps.
However, other applications take advantage of larger maps,
and even the macro expander can create large scope sets in
certain unusual programs. Thus, the overall best result for
Racket is to minimize memory use as long as performance
does not suffer, and the stencil-vector HAMT implemen-
tation achieves that overall goal.

The Patricia trie implementation performs well when
inserting a new key or removing an existing key from a
map. Lookup is slower for large trees, primarily because a
small branching factor compared to HAMTs makes the tree
deeper. Inserting an already contained key and removing a
not-contained key is slower for the same reason: the tree
must be explored to more depth to discover that no change is
needed, and then the absence of change must be detected on
each step as recursion unwinds back through the explored
spine.!’

The vector HAMT implementation performs well for
operations that do not change the map, including lookup,
attempting to insert a key that is already in the map, or
attempting to remove a key that is not in the map. The im-
plementation is around 30% slower than the stencil-vector
HAMT implementation (which takes advantage of atomic
update to avoid a write barrier), while it performs similarly
to the write-barrier stencil-vector HAMT implementa-
tion. For larger maps, the vector HAMT implementation
performs better than write-barrier stencil-vector HAMT
by avoiding some popcount steps and other bitwise opera-
tions. Similarly, the vector HAMT implementation is the
fastest for lookup by a small margin, likely again by avoiding
a small amount of arithmetic.

The stencil-vector HAMT implementation finds a happy
medium. Whether for operations that modify the map or
leave it unchanged, performance is very close to the fastest
implementation, although it is rarely the fastest. This perfor-
mance, combined with the fact that stencil-vector HAMT
maps are the most compact, justifies the choice to use this
implementation in the current version of Racket.

The implementation
results show that stencil-vector HAMT pays a price for
compactness. The imple-
mentation is faster by about 5%, particularly for operations
that change the tree. The faster performance is related to the
fact that fewer popcount operations are needed for allocating
new nodes and for garbage-collecting live nodes. Even for
operations that do not change the map, the mask field of a
node in the variant can
be accessed without bitwise arithmetic to extract the mask

For the purposes of benchmarking, we adjusted the original Patricia
trie implementation in Racket to avoid reallocating spine nodes when an
operation does not change a tree. That adjustment makes insertion and
deletion operations that change the tree around 15% slower, while it make
operations that do not change a tree faster by 25-30%.
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from a tag word, which is why lookup performance is also
faster.

The write-barrier stencil-vector HAMT implementa-
tion demonstrates the benefit of specializing atomic, func-
tional updates to avoid write-barrier machinery, as it per-
forms substantially worse than stencil-vector HAMT for
operations that change the map. Avoiding a write barrier in
the latter implementation improves run-time performance
by about 30%. For operations that do not change the map, the
implementations are the same, and they perform the same.

7.3.3 Application Results. Figure 6 shows how the dif-
ferent persistent-map implementations affect different parts
of Racket’s performance (i.e., treating Racket’s implementa-
tion as an application of persistent maps). Each plot shows
the average of five runs, and the shaded portion at the left
of each bar shows how much of the time can be attributed
to garbage collection.

One of the most performance-sensitive uses of persistent
maps within Racket is the macro expander, which uses maps
to represent scope sets for hygienic expansion. Figure 6 (a)
shows the time required to load Racket’s large standard li-
brary from source—the same task as Figure 4 (b), where
roughly 40% of the time to load involves macro expansion.
Loading from source performs about 16 million insert opera-
tions on persistent maps, 3.4 million remove operations, and
53 million lookup operations, mostly as part of the macro
expander. (Loading the same library in its compiled form
performs only 64 thousand, 600, and 178 thousand opera-
tions, respectively.) Persistent maps are used for various
purposes in the expander and compiler, but the vast majority
of persistent-map operations while loading from source are
applied to small scope sets.

The stencil-vector HAMT implementation performs the
best overall for macro expansion. The variation in times
for different persistent-map implementations is about 1.5
seconds, which is in line with the variation in benchmark
performance for individual operations in figure 5: the bench-
mark variation for small tables tends to be around 0.2-0.5
seconds, and the application involves 4.5 times as many
operations as one benchmark run. The garbage-collection
time for macro expansion increases with compact stencil-
vector HAMTs compared to other implementations, which
is counter-intutive; it turns out that maintaining a smaller
memory footprint triggers an extra major collection—5 major
collections instead of 4 for the other implementations—but
each per-collection time is smaller.

Figure 6 (b) shows the time required for a “schemify”
step in the Racket compiler, which converts from Racket’s
core language to Chez Scheme. For this measurement, the
schemify step is repeated 100 times on the (already expanded)
implementation of the Racket macro expander itself. Schemify
uses a persistent map to represent the lexical binding envi-
ronment, which is a mapping from symbols to compile-time
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information that is extended as the compiler descends into
subexpressions that bind variables. Schemify also uses a
persistent map for a table describing about 1000 primitive

Figure 5. Run-time performance of Racket map implementations on 8x2 million operations; lower is better

number of insertions combined with the garbage-collection
differences still gives stencil-vector HAMT an edge over
vector HAMT in this application.

functions (although there is no particular advantage to per-
sistence in that case, since the set of primitive functions does
not change). Running schemify 100 times on the expander

implementation performs about 1.5 million insert operations
and 67 million lookup operations on persistent maps (with
no remove operations).

best overall for schemify. Compared to the expander, schemify
performs many more lookup than insert operations. The re-
sults in figure 5 suggest that vector HAMT should therefore
perform well, while Patricia trie will be slower, and that
is indeed the result shown in Figure 6 (b). Nevertheless, the

8 Conclusion

Our experiments with persistent-map implementations for
Racket confirm previous work in favor of using HAMTs. Fur-
thermore, we have shown that stencil vectors are a useful
primitive construct to improve the memory and run-time
performance of HAMTs through a modest and maintain-
able investment at the level of the compiler and runtime
system. Our measurements are specific to Racket, but other
dynamic-language implementations use a similar strategy

The stencil-vector HAMT implementation performs the
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