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Abstract— Simulation has been the dominant research method-
ology in wireless and sensor networking. When mobility is
added, real-world experimentation is especially rare. However,
it is becoming clear that simulation models do not sufficiently
capture radio and sensor irregularity in a complex, real-world
environment, especially indoors. Unfortunately, the high labor
and equipment costs of truly mobile experimental infrastructure
present high barriers to such experimentation.

We describe our experience in creating a testbed to lower those
barriers. We have extended the Emulab network testbed software
to provide the first remotely-accessible mobile wireless and sensor
testbed. Robots carry motes and single board computers through
a fixed indoor field of sensor-equipped motes, all running the
user’s selected software. In real-time, interactively or driven by
a script, remote users can position the robots, control all the
computers and network interfaces, run arbitrary programs, and
log data. Our mobile testbed provides simple path planning, a
vision-based tracking system accurate to 1 cm, live maps, and
webcams. Precise positioning and automation allow quick and
painless evaluation of location and mobility effects on wireless
protocols, location algorithms, and sensor-driven applications.
The system is robust enough that it is deployed for public use.

We present the design and implementation of our mobile
testbed, evaluate key aspects of its performance, and describe
a few experiments demonstrating its generality and power.

I. INTRODUCTION

Experiments involving mobile wireless devices are inher-
ently complex and typically time-consuming to set up and
execute. Such experiments are also extremely difficult to
repeat. People who might want to duplicate published results
from another laboratory, for example, must devote substantial
resources to setting up and running such a laboratory—and
even then, the environmental conditions are likely to be
substantially different. Duplicating one’s own work is similarly
difficult, due to the need to position and move mobile devices
exactly as one did previously.

For these reasons, simulation has been a primary method-
ology for researchers in the wireless and sensor network
domains. Simulations are easier to set up than physical ex-
periments, are easy to repeat and modify, and are highly
portable. It is becoming clear, however, that current simulators
are unable to model many essential characteristics of the
“real world” [2], [13], [20], [26], [27], [28]. The simplifying
assumptions in current wireless simulators may result in
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differences between the behavior of the system in simulation
and the behavior of the realized system in the real world.

Therefore, many mobile wireless systems should be studied
and evaluated through experiments on actual mobile devices.
As we also argued earlier [22], for such experiments to be
commonplace, the capital costs and human effort required to
perform such experiments must be substantially reduced—by
an order of magnitude or more. A testbed for mobile wireless
research should contain actual mobile devices, provide means
for programming the devices, ensure that motion is performed
accurately, and ease the collection of experimental data. To
be economical, a single testbed must be shareable: in fact, it
should be available online, and usable by researchers at sites
far from the testbed itself. Finally, to provide diverse physical
environments, the community needs several such testbeds.
It is therefore important to reduce the cost of building and
maintaining such a wireless testbed.

The mobile testbed we have developed has a clear role
in evaluating new mobility-related network protocols, appli-
cations, and systems. Researchers may also use mobility to
quickly construct and evaluate many different static network
topologies. In addition, our testbed’s high degree of automa-
tion combined with its accurate and precise antenna position-
ing provide new ways to develop and validate wireless simu-
lation models, at all radio and network levels. Developers of
such models can first test a simple model in a simple physical
testbed environment, iteratively adding model sophistication
until its results match the physical world. Environmental and
model complexity can then be gradually added to improve
the model’s accuracy. The testbed’s automation, as shown in
Section VI-A, would make this long process practical.

In this paper we describe our experience in creating a
production-quality testbed for mobile wireless and sensor
network research. Our system, based on a major extension
to the Emulab network testbed software [23], is designed
to show that such testbeds can be built: they can provide
accurate positioning and monitoring, can enable automated
experiments by both on-site and off-site users, and can be
built and maintained at relatively low cost using open-source
software and commercial off-the-shelf (COTS) equipment.
We believe that our testbed is an efficient and cost-effective
solution, and is therefore an attractive (and often superior)
alternative to simulation for experiments that involve mobile
wireless devices.



Our initial deployment uses a small office space, robots that
move at modest speed, and supports only sensor motes as
wireless devices under test, typically with their radios set at
low power. Thus our current testbed is limited in the physical
environments that it can emulate fully accurately. However,
we are quite certain that it is a valuable complement to
simulation for exploring many wireless and sensor protocols
and applications.

Moreover, the system is scalable and both the software and
hardware are general. The software applies without change to
802.11, and the current robots could accommodate a second
(attenuated) 802.11 interface on their iPaq-like computers run-
ning Linux, to act as an additional object of experimentation.
In addition, we believe that both our overall design and its
major software components could be ported to some non-
Emulab-based wireless testbeds with only modest effort.

The contributions of this paper are as follows. First, we
present our mobile testbed. To our knowledge, our additions
to Emulab have created the first remotely accessible testbed
for mobile wireless and sensor network research. It has been
deployed for public production use since February 2005.
Second, we show that our testbed model is economical, since
it demonstrates that useful mobile testbeds can be built at
modest cost, using COTS hardware and open source software.
Third, we detail the algorithms that we developed as part
of building our testbed from COTS parts. In particular, we
describe how our mobile testbed ensures accurate robot posi-
tioning using medium-cost video camera equipment. Finally,
we present results from initial experiments that were carried
out in our mobile testbed. These results highlight the testbed’s
automation capabilities.

The rest of this paper is structured as follows. Following a
review of related work in Section II, we present the testbed
architecture in Section III. We then detail two issues that are
essential for reliable mobile experimentation: accurate location
of mobile devices (Section IV), and motion control (Sec-
tion V), including validation and microbenchmark results. In
the last parts of the paper, we describe initial examples of ex-
perimentation on our testbed (Section VI), discuss open issues
and future work (Section VII), and conclude in Section VIII.

II. RELATED WORK

One major way in which we differ from all of the related
projects below is our integration with Emulab. By building
on this popular and robust software platform for running
network testbeds, which operates more than a dozen sites
with thousands of users, we inherit many features useful to
users and administrators. For example, Emulab was designed
from the ground up to be a multi-user testbed environment,
so that its resources can be shared by a large number of
projects, and it supports a hierarchy of projects, groups, and
users. Emulab also provides a rich environment for controlling
experiments, including a scriptable “distributed event system,”
which various parts of the system can generate or react to—
in Section VI, we run an experiment that makes use of this
feature. Emulab supports over a dozen device types, including

generic PCs, PlanetLab slivers, emulated widearea network
links, real 802.11 links, and the simulated resources of ns.
This feature is useful for experimenting with systems involving
such a mixture, for example, hierarchical wireless sensor
systems [12], including those incorporating nodes across the
Internet, such as the “Hourglass” data collection architec-
ture [16]. Emulab is Web-based and script or GUI-driven, but
also exports an XML-RPC interface so that all interaction
can be programmatic. Finally, Emulab can reliably handle
experiments of very large scale, a major challenge [14].

MiNT [10] is a miniaturized 802.11 testbed. Its focus is
on reducing the area required for a multihop 802.11 testbed,
and on integrating ns simulation with emulation. It achieves
mobility through the use of antennas mounted on Lego Mind-
Storm robots, tethered to a PC running the applications. To
avoid antenna tangle, each robot is limited to moving within
its designated square. In contrast, in this paper our focus is
on the mobility of the robots, while our example hardware
environment is a wireless sensor network, although our soft-
ware can also control 802.11 networks. We have untethered
robots, so that mobility is not hampered by cables, and provide
accurate movement and “ground truth” location of the robots,
whereas MiNT does not address positioning accuracy.

The ORBIT testbed [18] provides a remotely-accessible
64-node (planned 400) indoor grid with 1 m spacing, that
can emulate mobility. User code is run on PCs, which are
dynamically bound to radios. By changing the binding of a
PC to a radio, the PC appears to move in discrete hops. In
contrast, we focus on true mobility, and target sensor networks
as well as 802.11. The ORBIT project plans to add an outdoor
component with constrained mobility, although perhaps not
with external access. It will use 3G and 802.11 radios carried
by campus buses on fixed routes.

MoteLab [21] and EmStar [11], [12] both support fixed sen-
sor network testbeds. MoteLab is a Web-accessible software
system for general-purpose sensor network experimentation,
and has been installed at several sites. Like many testbeds,
including Emulab, it assumes a separate “control network”
over which it provides a number of useful features. As do
we, these include mass programming of the motes, logging all
transmitted packets, and the ability to connect directly to the
motes. MoteLab uses a reservation-based scheduling system
with quotas, whereas we currently use Emulab’s dual model
of a batch queue and interactive first-come first-served use.

The EmStar “ceiling array” testbed is used primarily for
the development of the EmStar software, which focuses on
the integration of “microserver” nodes, which have more
processing power than a typical sensor network node, into
sensor networks. A clever aspect of the EmStar software is
that applications emulating the sensor nodes can be run on
a single PC, yet optionally be coupled to real, distributed
wireless devices for communication.

The Mirage testbed [4] is complementary to all of the
other testbeds in that it uses resource allocation in a sensor
net testbed as a target to explore new models of resource
allocation, e.g., market-based models.
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Fig. 1. Mobile Emulab software architecture.

The WHYNET [24] project eventually intends to integrate
a large number of types of wireless devices, although it is
not clear they will ever provide remote access. The ExScal
project at Ohio State is investigating fixed sensor networks up
to thousands of nodes, but remote access is also not a priority.
The SCADDS project at USC/ISI has a fixed testbed of 30
PCs with 418MHz radios deployed in an office building.

III. SYSTEM OVERVIEW AND DESIGN

Emulab is designed to provide unified access to a variety
of experimental environments. It provides a Web-based front
end, through which users create and manage experiments, a
core which manages the physical resources within a testbed,
and numerous back ends which interface to various hardware
resources. The core consists of a database and a wide variety
of programs that allocate, configure, and operate testbed
equipment. Back ends include interfaces to locally-managed
clusters of nodes, virtual and simulated “nodes,” and a Planet-
Lab interface. Emulab users create “experiments,” which are
essentially collections of resources that are allocated to a user
by the testbed management software, and act as a container
for control operations by the user and system.

We extended the existing Emulab framework for our testbed,
which includes both robot-based mobile wireless devices and
new software for managing those devices within the testbed.
The software architecture of our mobile testbed, and its
relationship to Emulab, are shown in Figure 1.

A. Software Architecture

Our testbed software provides experimenters the capability
to dynamically position robots and use them to conduct
experiments. To this end, we have provided new user control
and data interfaces. We have also written a backend which
directly interfaces with both Emulab and the new components
of our robot control system called visiond, robotd, and pilot.

This allows users to track robot location changes in real-time
and ensures that robots reach their destinations.

Component structure and dataflow is shown in Figure 1 and
described below. When an experimenter requests that a robot
be moved to a new position, the request is passed through Em-
ulab to the backend. The backend performs bounds-checking
on the requested position, and passes it down to the robot
control component, called robotd. robotd queries the backend
to ensure that it has the latest location data for the robot in
question, then breaks up the position request into a series of
primitive movements for the pilot daemon on the robot. After
each primitive move is completed, feedback from the vision
system is used to correct any positioning errors. This process
is repeated until the robot reaches a position within a fixed
distance from the requested position or a retry threshold has
been reached.

Robot Localization. Tracking and identification of the
robots is handled by a vision-based tracking system called
visiond, using ceiling-mounted video cameras aimed directly
down. As described later in Section IV, we improved an open
source object tracking software package to transform the over-
head camera video into x, y coordinates and orientation for
detected objects. Individual camera tracks are then aggregated
by visiond into a single set of canonical tracks that can be
used by the other components. These tracks are reported at 30
frames per second to the backend since queries from robotd
require high precision. The backend in turn reports snapshots
of the data (one frame per second) to the Emulab database,
for use by the user interfaces. This reduction in data rate is an
engineering tradeoff to reduce the communication bandwidth
with, and resulting database load on, the Emulab core.

Robot Control. The robotd daemon centrally plots paths
so that robots reach their user-specified positions safely and
efficiently. It also maneuvers robots around any dynamic
obstacles encountered during motion. Individual motion com-
mands are sent to the pilot daemon, which runs on each
robot and provides a simple motion control interface for each
robot. pilot currently uses the low-level motion commands
and data structures present in the API provided for Acroname
Garcia [1] robots. The Acroname API exposes additional
robot data and functionality, such as battery levels, monitoring
sensor values, adjusting sensor sensitivities and thresholds, and
adjusting general robot parameters. Path planning is described
in Section V.

B. User Interaction

The hardware in the mobile testbed is allocated and con-
figured much like the ordinary PCs that are already a part
of Emulab. The user creates an “experiment” through a web
interface and submits ns code that specifies the topology.
Besides operations like setting the TinyOS kernel to upload
to a mote, in the ns file a user can schedule events that
control robot movement, program start and stop, etc., using
Tcl and our event constructs. For example, Figure 2 shows
an excerpt of the code used in one of our experiments to
walk a robot around an area in half meter increments and
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set walker [$ns node]
set ltor 1
for {set y 0} {$y <= $HEIGHT} {set y [expr $y + $YINCR]} {

set row($rowcount) [$ns event-sequence {}]
for {set x 0} {$x <= $WIDTH} {set x [expr $x + $XINCR]} {

if {$ltor} {
set newx [expr $XSTART + $x]
set newy [expr [$walker set Y_] + $y]

} else {
set newx [expr $XSTART + $WIDTH - $x]
set newy [expr [$walker set Y_] + $y]

}

if {[$topo checkdest $walker $newx $newy]} {
$row($rowcount) append \

"$walker setdest $newx $newy 0.2"
$row($rowcount) append \

"$logger run -tag $newx-$newy"
}

}
$rowwalk append "$row($rowcount) run"
incr rowcount
set ltor [expr !$ltor]

}

Fig. 2. Extended NS code used to walk a robot around an area and log
output from the onboard mote.

Fig. 3. The robot mapping and positioning GUI lets users track robot
movement and control it with click and drag operations. Large filled circles are
robots; empty circles show goal destinations; smaller filled dots are fixed mote
locations; obstacles are in grey. This composite superimposes one webcam’s
view of part of the robot arena onto the GUI view.

log data received on the mote. For more interactive use, we
have developed several new user interfaces, including Java
applets to dynamically position robots via a drag-and-drop
interface and view telemetry data in real-time. Live images of
the robot testbed are provided via webcams. Figure 3 shows
the positioning applet with a superimposed webcam image.

C. Hardware Resources

Space. As shown in Figure 3 the mobile testbed is currently
deployed in an L-shaped area of 60 m2, 2.5 m high, with
six robots that can be positioned anywhere in that area.

Fig. 4. Acroname Garcia robot with Stargate computer, WiFi card, Mica2
mote, extended platform with tracking fiducial, and base of antenna wand.
The coaxial cable loop on the right goes to the antenna. Note that the antenna
is centered over the axle, coincident with the origin of the robot coordinate
system, avoiding antenna translation when pivoting.

Overlooking this area are six1 cameras used by the robot
tracking system and three webcams that provide live feedback
to testbed users.

The area in which we are currently operating is a mix of
“cube” and regular office space on the top floor of a four story
steel-structure building. The space is carpeted, flat, and clear
of obstructions, except for a single steel support beam in the
middle of the room. The area is “live,” with people moving
near and across the area during the day. This aspect of the
space adds a certain amount of unpredictability and realism
to experiments. Removing this aspect of the space could be
done by running the robots during off-hours. To do that, we
need rechargers for the robot’s batteries that need no human
intervention; Acroname is building them.

Robots. We currently use Acroname Garcia robots, which
we chose for their reasonable size (19x28x10 cm), cost
($1100), ease of use, and performance characteristics. The
use of differentially steered two-wheeled robots simplifies
the kinematics and control model requirements. Using a
commercial platform avoided the overhead of addressing the
many engineering issues inherent in in-house robot design
and construction. Because our testbed is based on a readily
available commercial robot platform, other teams can replicate
the testbed with modest effort.

The robots operate completely wirelessly using 802.11b
and a battery that provides at least two to three hours of
use to drive the robot and power the onboard computer and
mote. Motion and steering come from two drive wheels that
have a rated maximum of two meters-per-second. Six infrared

1The number of cameras required is unrelated to the number of robots; that
they are equal today is a coincidence.
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proximity sensors on all sides of the robot automatically detect
obstructions in its path and cause it to stop. These sensors are
a key component in making it possible to run the robots in a
“live” space, since the readings provide a means to detect and
navigate around previously unknown obstacles.

The factory configures the Garcia robots to carry an XScale-
based Stargate [9] small computer running Linux, to which we
attach a 900MHz Mica2 [8] mote. To the Stargate we attach
an 802.11b card that acts as a separate “control network,”
connecting the robot to the main testbed and the Internet.
The Stargate serves as a gateway for both Emulab and the
experimenter to control and interact with the mote, and for the
user to run arbitrary code. Users can login to the Stargate, and
will find their Emulab home directory NFS-mounted. Figure 4
shows a fully-outfitted robot. For the experiments reported in
this paper the mote’s antenna location was standard, directly
attached to it, right on the Stargate board. We have recently
raised the antennas to waist level using carbon-fiber wands
and coaxial cable. The antenna location now more closely
approximates human-carried nodes, and avoids RF ground
effects and interference from the robot body.

We selected 900MHz radios for their multihop capability
in the constrained space of our initial testbed. Testing several
different radios (Mica2 900/433, Telos 802.15.4) at all power
levels showed that only 900MHz was able to provide an
“interesting” transmission distance of a few feet.

Fixed Motes. The stationary motes, currently numbering
25 in our modest prototype, are arranged on the ceiling in a
roughly 2-meter grid and on the walls near the floor. All of
the fixed motes are attached to MIB500CA serial programming
boards [6] to allow for programming and communication. The
10 near-floor motes also feature an MTS310 full multi-sensor
board [7] with magnetometers that can be used to detect the
robot as it approaches. These motes are completely integrated
with the Emulab software, making it trivial to load new kernels
onto motes, remotely interact with running mote kernels via
their serial interfaces, or access serial logs from experiments.

Finally, most Emulab testbeds, including ours, provide
dozens or hundreds of PC nodes. Experimenters can leverage
these nodes as processing stations for WSN experiments, or
can use them together with mobile wireless and sensor nodes
to create diverse computer networks.

IV. ROBOT LOCALIZATION: visiond

For accurate and repeatable experiments, our mobile testbed
must guarantee that all mobile antennae and RF devices are at
their specified positions and orientations. Accurate localization
is also important for robot motion as described in Section V.
Robot localization must scale to cover an area sufficiently large
to enable interesting multi-hop wireless experiments. Finally,
a localization solution must be of reasonable cost in terms of
setup, maintenance, and hardware.

As is typically the case in robotic systems, our robots’ on-
board odometry could not localize the robots with sufficient
accuracy. We therefore developed a computer vision-based lo-
calization system to track devices throughout our experimental

area. Our vision algorithms process image data from video
cameras mounted above the plane of robot motion. These
algorithms recognize markers with specific patterns of colors
and shapes, called fiducials, on each robot, and then extract
position and orientation data.

To obtain high-precision data while limiting hardware costs,
we made a number of engineering tradeoffs. First, we mount
video cameras above the plane of robot movement looking
down, instead of installing one on each robot. This solution
is economical: not only does it remove requirements from the
robots (power, CPU time, etc.), but overhead cameras can track
many robots at once. Second, our video cameras are pointed
straight down, perpendicular to the plane of robot movement.
As described below, this simplifies the required camera ge-
ometry models and increases precision. Third, all robots are
marked with the same, simple fiducial. This simplifies the
object recognition algorithms and lowers processing time per
image. Finally, we use relatively low-cost cameras [15] ($460)
with even cheaper ultra-wide angle lenses ($60). This gives
us a modest cost per camera and requires fewer of them.
Surprisingly, we found that relatively simple image processing
algorithms compensate for the resulting image distortion.

A. Localization Software

We use Mezzanine [17], an open-source system that recog-
nizes colored fiducials on objects and extracts position and
orientation data for each recognized fiducial. Each fiducial
consists of two 2.7 inch circles that are widely separated in
color space, placed next to each other on top of a robot. Mez-
zanine’s key functionality includes a video image processing
phase, a “dewarping” phase, and an object identification phase.

During the image processing phase, Mezzanine reads an
image from the frame grabber and classifies each matching
pixel into user-specified color classes. To operate in an envi-
ronment with non-uniform and/or variable lighting conditions,
the user must specify a wider range of colors to match a single
circle on a fiducial. This obviously limits the total number of
colors that can be recognized, and consequently, we cannot
uniquely identify robots through different fiducials. Instead, we
finesse this area’s hard problem by exploiting whole-system
capabilities. We obtain unique identification by commanding
and detecting movement patterns for each robot (the “wiggle”
algorithm), and thereafter maintain an association between a
robot’s identification and its current location as observed by
the camera network. Mezzanine then combines adjacent pixels,
all of which are in the same color class, into color blobs.
Finally, each blob’s centroid is computed in image coordinates
for later processing (i.e., object identification).

B. Dewarping Problems

The original Mezzanine detected blobs quickly and effec-
tively, but the supplied dewarping transform did not provide
nearly enough precision to position robots as exactly as we
needed. The supplied dewarping algorithm is a global function
approximation.
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We observed two important problems. First, the function
was a poor fit for lens distortion, so it was necessary to
add more control points to improve the fit. Second, the grid
shape by the approximation function would tilt and bend
globally when any control point was moved, so it never
provided high precision anywhere, and was extremely sensitive
to small movements of the control points. This produced
high variability in position data returned by Mezzanine. We
observed that moving a fiducial 1–2 cm in the motion plane
resulted in a 10–20 cm jump in the fiducial’s reported position.

C. An Improved Dewarping Algorithm

To avoid these problems, we replaced the dewarping algo-
rithm with a geometric transformation that accounts for ob-
served mathematical properties of wide-angle lens distortion,
and included interpolative error correction to further reduce
our error. We obtain an accuracy of 1 cm worst-case absolute
error, and 0.34 cm RMS absolute error.

Our dewarping algorithm is based on correcting cosine
radial lens distortion as a function of the angle from the optical
axis of the lens. Figure 5 describes the algorithm. A single
parameter (the warp factor) adjusts the period of the cosine,
and two parameters adjust the linear scale factors in X and
Y to calibrate the image-to-world coordinate transformation,
based on center, edge and corner point locations surveyed to
1-2 mm accuracy. Other parameters include the height of the
camera’s focal point above the plane of robot motion and the
position of the optical axis in the image. We use Mezzanine
to accurately locate the optical axis as the pixel point where
the coordinates of a fiducial remain stationary as the lens is
zoomed in and out.

Cosine dewarping linearizes the geometric field (straight-
ening out the barrel distortion into a flat grid.) We zero
out the residual error left after cosine dewarping at these
calibration points, and interpolate the error correction over
blending triangles that span the space between the measured
points by way of barycentric coordinates [5], [25].

The surprise is that even with cheap lenses, we didn’t need
to consider any distortion except radial. We were prepared to
continue modeling and correcting asymmetries radiating from
the optical axis, or moving circularly around it, as textbooks
suggest. However, these $60 lenses conform closely to the
simple cosine model.

Only nine calibration points per camera are used in this
scheme, which is a small enough number to be handled

Algorithm
Metric original cosine dewarp + error interp

Max error 11.36 cm 2.40 cm 1.02 cm
RMS error 4.65 cm 1.03 cm 0.34 cm
Mean error 5.17 cm 0.93 cm 0.28 cm

Std dev 2.27 cm 0.44 cm 0.32 cm

TABLE I

LOCATION ERROR MEASUREMENTS

automatically from multiple fiducials by the Mezzanine cali-
bration program. It also leaves the remainder of the measured
grid points (25 to 44 per camera in our irregular space)
to measure the performance of this approach. We evaluated
several triangle patterns and selected this one for its accuracy
and simplicity of algorithm.

Figure 6 graphically compares location errors at grid points
before and after applying the error interpolation algorithm.
Figure 6(a) shows measurements of the cosine dewarped grid
points and remaining error vectors across all cameras. The
circles are the grid points, and the error vectors magnified
by a factor of 50 are shown as “tails.” Since the half-meter
grid points are 50 cm apart, a tail one grid-point distance long
represents a 1 cm error vector. Points with two tails are in the
overlap zones covered by two cameras.

Figure 6(b) shows the location errors after applying the error
correction and interpolation algorithm. Figure 6(c) superim-
poses the blend triangles. Camera locations are apparent at
the centers of triangle patterns. Notice the lack of tails at the
triangle vertices, where the error was zeroed out.

D. Validation

To obtain as much precision as possible, before modifying
Mezzanine’s dewarping algorithm, we measured out a half-
meter grid over our experimental area. This allowed us to
calibrate our new algorithm and measure its effectiveness
with high precision. Using hardware-store measuring tools and
surveying techniques, we set up a grid that is accurate to 2mm.

In Table I are the results of applying these algorithms to
a fiducial located by a pin at each of the 211 measured
grid points and comparing to the surveyed world coordinates
of these points. (Points in the overlap between cameras are
gathered twice.) The original column contains statistics from
the original approximate dewarping function, gathered from
only one camera. Data for the cosine dewarping, and cosine
dewarping + error interpolation columns were gathered from
all six cameras.

V. ROBOT CONTROL: robotd

robotd is responsible for directing robots to their user-
specified locations. Users may dispatch robots to any attainable
position and orientation within the workspace, and are not
required to plan for every obstacle, waypoint, or path intersec-
tion. Once new destinations are received via the Emulab event
system, the daemon creates a feasible path and guides the
robots to their destinations using periodic feedback from the
vision system. For simplicity, the paths created by the daemon
are comprised of a series or waypoints, connected by line
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Fig. 6. Comparison of dewarping before and after error interpolation, with error vectors magnified 50 times.
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segments. Approach to goal points is repeatedly refined based
on “ground truth” localization from the vision system; i.e.,
when the robot’s initial (long) move is complete, a maximum
of two additional (small) refining moves are made.

A. Robot Motion

Robot motion control is handled by a daemon running on
the Stargate called pilot. Pilot listens for motion commands
from the central path planner and then splits them into a series
of actions to be executed by the built-in microcontroller on
each robot. These actions are handled by the Garcia’s built-in
motion commands, called primitives. These primitives require
only a distance or angular displacement argument, and move
the robot using dead reckoning until the goal position has been
achieved, or an unexpected obstacle has been detected with the
on-board proximity sensors. In either case the robot stops all
motion, and alerts the pilot application via a callback.

B. Forward Path Planning

Since numerous obstacles exist within the robot workspace,
we developed a simple path planner loosely based on estab-
lished visibility graph methods [3]. Unlike common visibility
graph methods, our method does not create a tree of all

possible waypoint nodes in the workspace. We use an iterative
forward planning algorithm, which simplifies robotd.

Robotd reviews all known obstacles to detect any obstacle
intersections with the ideal path. Corner points are defined as
the vertexes of the nearest obstacle exclusion zone that the
ideal path line intersects. We select an intermediate waypoint
by computing the angle at which the path intersects the side
of the obstacle and choosing the corner point yielding the
shallowest angle. For example, in figure 7, angle α is smaller
than β. In this case, our planner would select the corner point
on the α side of the ideal path.

If the ideal path to the goal is unobstructed by the current
obstacle after the robot reaches an intermediate waypoint, the
robot will proceed to the goal. Otherwise, we iterate: another
intermediate waypoint is generated coincident with the next
corner point closest to the goal point.

Robot goal positions are checked for conflicts with known
obstacles and workspace boundaries. Longer paths are split
into multiple segments of 1500 mm to reduce the possibility of
accumulated position errors. The path planner uses an iterative
reactive approach, which avoids the need for replanning if the
workspace changes over time.

C. Reactive Path Planning

Our robots are capable of detecting obstructions in their path
using proximity sensors. In our testbed environment, this can
occur due to the temporary presence of a person, another robot,
or office debris. When a path is interrupted, the affected robot
calls robotd, which will supply a new path to negotiate around
the obstacle. If the detected obstacle is not found within the
list of known static obstacles, a temporary rectangular obstacle
similar in size to another robot is created. The robot will
then back up a short distance to ensure enough clearance for
rotation and then execute the above path planning algorithm.
If the robot encounters another unknown obstacle close to a
previously discovered one, they are assumed to be the same

7



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Movement Distance (meters)

D
is

ta
nc

e 
E

rr
or

 (
m

et
er

s)

Allowable Distance Error

max tries: 2
max tries: 3
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Fig. 9. Robot motion elapsed time for various length movements.

and the two estimates will be merged. This effectively allows
robotd to determine the actual size of the obstacle and properly
plot a path around it.

The combination of the simple per-robot “optimistic” plan-
ner with the simple reactive planner has worked well in our
environment. However, multi-robot planning will clearly be
needed to support a future continuous motion model, when
timing is more critical, and a more dense robot deployment.

D. Microbenchmarks

As shown in Figure 8, the final distance error decreases
as the number of refinements increases. The default value of
maximum tries for each waypoint is set at three. At this setting,
we consistently achieve robot positioning within the allowable
distance error threshold. With only two tries allowed, robots
can still attain final positions within acceptable tolerances,
especially when movement lengths are less than one meter.

Figure 9 depicts the total elapsed time for movements of

varying lengths. With either one or two waypoint position
refinements allowed, a robot can achieve a posture within the
allowable distance error, and requires minimal extra time as
movement length increases. The elapsed movement time is
expected to increase linearly as distance increases, and the
bottom plot illustrates that this holds true. Furthermore, the
slope of the plots for greater numbers of retries is less, indi-
cating that relative overhead of position refinements decreases
as movement length increases.

VI. EXPERIMENTS

In this section, we describe the results of three experiments
using our mobile testbed. These are examples of the testbed’s
usefulness and also serve as macrobenchmarks of some key
metrics of the testbed’s performance. The first experiment also
demonstrates the network-level irregularity of real life physical
environments.

A. Radio Irregularity Map

It is well known that the transmission characteristics of real
radios differ substantially from simulation models [2], [13],
[20], [28]. Indeed, irregularity of real-world radio transmis-
sion is one of the main motivators for our testbed. In this
experiment, we generated a map of the radio irregularity in
our testbed space as manifested at the network (packet) level.
Such a map is useful to our experimenters, and could be used
to develop and/or validate more realistic models for simulation.

In parallel, three robots traversed non-overlapping regions
of our space, stopping at points on a half-meter grid. At each
point, the robot stopped and oriented itself in a reference di-
rection. The attached mote listened for packets for ten seconds.
One of the wall-mounted motes, with an antenna at the same
height as the robots’ antennas (approximately 13cm at that
time), transmitted ten packets per second using a modified
version of the standard TinyOS CntToLedsAndRfm kernel.
The receiver logged packets using a modified version of
TinyOS’s TransparentBase. The radios were tuned to
916.4 MHz, and the receiver’s power was turned down to
approximately -18 dBm (corresponding to a PA POW setting
of 0x03 on the mote’s ChipCon CC1000 radio). The entire
mapping took 20 minutes to complete.

Figure 10 shows a graphical representation of this data. As
can be seen in the data, there is much variation in packet
reception rate throughout the area. As expected, reception rate
does not decrease as a simple (i.e., linear or quadratic) function
of distance. However, we also see that reception rate is not a
monotonic function of distance; there are areas in the map in
which if one travels in a straight line, on a radial away from
the sender, reception gets worse, then better, then worse again.
There are islands of connectivity in otherwise dead areas,
such as around x=8, y=10, and the inverse, such as around
x=9.5, y=5.5. Furthermore, in some areas (such as between
x=10 and x=12), reception falls off gradually, and in others
(such as around y=9), it reaches a steep cliff. This surprising
behavior is a fact of life for sensor network deployments.
We argue that while running algorithms and protocols under
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Fig. 10. Packet reception rates over our testbed area, first run.
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Fig. 11. Packet reception rates over our testbed area, second run.

simulation models, which makes them easy to reason about,
has its place, it is necessary to run them in real environments
to understand how they will perform in deployment. Indeed,
Zhou et al [28] show that a specific type of radio asymmetry,
radial asymmetry, can have a substantial effect on routing
algorithms. It is far beyond the state of the art for a model
to fully capture the effects of building construction, furniture,
interferers, etc., in a complicated indoor environment.

We repeated this experiment immediately after the first
run had completed, in order to assess how repeatable our
findings were. As shown in Figure 11, while the results are
not identical, they are close—the contours of the areas of good
and poor reception are similar. The overall similarity suggests
our methodology is good, while the differences reflect the fact
that temporal effects matter. The second run took 18 minutes.

Figure 12 shows the received signal strength indication
(RSSI) for packets received in the first run. The RSSI is
measured using the CC1000’s RSSI line, and is sampled every
time a packet is successfully received. We can now relate the
signal strength to the packet reception rate of earlier figures.
Interestingly, we see little correlation. In the topmost area of
the figure we see good RSSI (indeed, some of the highest),
even though the packet reception rate is low. In contrast, near
the lower right corner, we see overall low RSSI values, even
though the overall packet reception rate is better.

Emulab’s programmability was key to performing this ex-
periment. Since its input language is based on ns, which is in
turn based on Tcl, it includes familiar programming constructs.
Thus, we were able to construct the set of points for each
robot’s data collection using loops. Emulab’s event system co-
ordinated the experiment for us—when a robot reached a data
collection point, an event was generated. We used this event to
start the 10-second data collection process; thus, we were able
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Fig. 12. Received signal strength in dBm for packets over our testbed area,
first run. Higher numbers (less negative) indicate stronger signal.

to ensure that the robot was stationary during data collection.
The event system allows for synchronization between robot
movement, the vision system, and user programs.

One of the advantages of taking these measurements with
a programmable robot is that it is easy to examine different
areas at different levels of detail. At a different time than the
figures made above, we mapped a smaller portion of our area,
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again using a half-meter grid (Figure 13). Here, we see more
temporal variation than in the two back-to-back runs: this map
does not exactly match the corresponding areas of the previous
maps. We then picked an interesting area of the small map,
shown outlined with a dotted line, and ran a “zoomed in”
experiment over one square meter of it, taking measurements
every 10 centimeters over a period of 36 minutes (Figure 14).

We can see from this figure that even small differences in
location can make large differences in radio connectivity, and
that the topology is far from simple. (The patchwork reception
pattern is likely due to RF “ground effect,” since during these
experiments the mote’s antenna was only 10 cm above the
floor.) From these results, we can conclude that repeatability
is not achievable without precise localization of the robots; in
our environment, given its real-world characteristics, clearly
repeatability will suffer even with precise localization. But,
even if we were to construct a space in which there were
no external interferers or movable objects, so that we could
work on a highly-detailed indoor radio propagation model, we
would not be able to get repeatable results, let alone accurate
ones, without precise localization.

Figure 15 shows the breakdown of the time it took to
execute the experiment. At the base is the time taken to
sample the radio for ten seconds at each grid point. The “long
moves” are the half meter traversals from one point to the next.
The remaining times are those needed to refine the position
to within 1.5cm of the intended destination and reorient the
robot. As one can see, from 50% to 60% of the motion-related
time is spent in refining the position, which mainly consists
of large rotations and small movements. However, position
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Fig. 15. Breakdown of time spent executing the walk pictured in Figure 11.

refinement only accounts for 12% to 18% of the overall time,
and this additional cost is well-worth the increased positioning
precision. In the future, we hope to decrease this time by using
a continuous motion model that constantly refines the position,
requiring fewer changes in orientation.

B. Sensor-based Acoustic Ranging

A mobile wireless testbed such as ours invites study of
sensor-based ranging and localization. Since our testbed pro-
vides the “ground truth” positions of both the mobile and
fixed motes, an experimenter can easily verify the quality
of a localization system. Coupled with Emulab’s automation
facilities and real-world (indoor) RF and audio effects, much
more complete evaluation is possible than with simulation or
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manual testing.
We evaluated an acoustic ranging sensor network applica-

tion from Vanderbilt University [19], available in TinyOS.
It uses the standard “time difference of arrival” (TDOA)
technique, in which radio and audio signals are simultaneously
emitted. Receiving nodes can measure the propagation time
of the slow-moving audio signal simply by computing the
difference in arrival times of the RF and audio signals.
Vanderbilt’s software is more advanced than this; complex
synchronization and audio frequency filtering are employed
to reduce range estimation error. Each mote is loaded with the
TinyOS application. Listening motes receive radio packets and
hear a succession of chirps from the single sending mote, and
can then compute range. Vanderbilt’s software uses the same
standard Mica sensor boards [7] that we have, with a 4kHz
buzzer and a microphone capable of sensing frequencies up to
18kHz. However, it is important to note that this application
was specifically meant for outdoor use because of problematic
audio echoes in contained indoor settings.

We ran the acoustic ranging application on our fixed mote
testbed. Each mote is approximately 20 cm above the floor,
and is attached to a wall (sheetrock or standard cubical
walls). Since exact positions of the fixed motes are stored
in a database, we can easily compare the real ranges with
application-estimated ranges. Each of the nine motes with
MTS310 sensorboards was loaded with the acoustic ranging
application using Emulab’s programming facilities. However,
the ranging results from all nine motes often exhibited highly
erroneous estimates. This was apparently because several of
the motes were separated by an L-shaped corner, strengthening
the resulting acoustic echoes. Consequently, we re-ran the
application on only the 6 motes that were in an area with
no obstructing walls that could affect the acoustic and RF
transmissions. We ran numerous trials and found a minimum
ranging error of 10.9 cm and a median error of 89.0 cm.
The median error is approximately a factor of 12 greater
than discovered by Vanderbilt [19]. We expect that the vastly
increased error is due to indoor audio echo effects.

In summary, our automated and mobile testbed is a valuable
platform on which to easily test ranging and localization
applications in an indoor environment. When mobility is cou-
pled with evaluation of a ranging or localization application,
researchers can quickly test such applications under different
wireless conditions by simply moving the robots to areas with
different RF conditions.

C. Multihop Sensor Networks

To confirm that we can create interesting multihop networks
in our space, we ran a popular TinyOS application on our
testbed, TinyDB. TinyDB presents a database-like interface
to sensor readings, and thus can make use of the sensor boards
on our nodes. We lowered the power output on the transmitters
to force the network into multiple hops. Figure 16 shows the
topology created by TinyDB for a 16-node network. The thick
lines indicate current links between nodes, and the thin dotted
lines represent nodes that have re-parented themselves.

Fig. 16. Multihop network topology created by TinyDB.

TinyDB, Surge, and many other TinyOS applications
require that each mote be programmed with a unique ID for
routing purposes, so that data can be associated with the mote
that collected it. Emulab aids in this process, automatically
programming a unique ID into each mote. The user can also
supply a desired ID, so that certain nodes can be designated
as base stations, etc.

VII. LIMITATIONS, OPEN ISSUES, AND FUTURE WORK

A. Software System and Algorithm Issues

As we discussed earlier in Section V, we expect to replace
the current waypoint-based motion model with a more general
continuous motion model, allowing more classes of experi-
ments. Our overall software architecture and the localization
system’s precision and update rate should make this a fairly
straightforward, though significant, task.

We plan to provide a way for an experimenter to trans-
parently inject simulated sensor data into the “environment.”
The user will specify or select a time-varying simulated sensor
data “flux field,” and our testbed will inject that into the user’s
application via TinyOS component “shims” we will provide.

When physical testbeds are large, space sharing among
multiple experimenters becomes possible and valuable. Em-
ulab already supports space sharing, but provides little help in
separating experimenters’ RF transmissions or mobile robots.
We will pursue an evolutionary path in adding such support.

MoteLab has several useful features we do not, such as
a per-experiment MySQL database and a simple reservation
system. We may include MoteLab itself into our testbed, as a
separate subsystem, but we will at least adopt those features.
Similarly, EmStar and Mirage have strengths complementary
to ours, and probably can be included without undue disruption
to either codebase.

B. Physical Infrastructure

Based on our experience, we plan or contemplate a number
of improvements and changes to our testbed physical infras-
tructure. We will be adding a second 802.11 card on our nodes,
so that they can be used for WiFi experiments. In order to
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provide interesting multi-hop topologies in our space, we will
use attenuators. Unlike the experience of the MiNT developers,
we have been able to disconnect the internal antenna on
PCMCIA wireless cards, making attenuation possible via an
external connection. Unfortunately, the 802.11 chipset most
popular for wireless research, Atheros, is not available in the
form factors provided by the Stargate: PCMCIA and CF.

We may greatly expand the area and scale of our current
testbed, by using a much larger, isolated space (90’ x 90’) we
have available, and/or by extending throughout our building’s
hallways. Should we do the latter, we will need to develop
or adopt a different localization system, for it is not practical
to install downward-looking video cameras throughout such a
large and sparse area. In fact, with an appropriate localization
system, our system could be deployed on an outdoor testbed.

We have designed and prototyped a low-cost ($35) power
measurement circuit, installed it on a single mote in our fixed
testbed, integrated it into the Emulab control and monitoring
software, but have not yet fully evaluated it. We plan to
add power circuits to all fixed nodes, and investigate options
for putting them onto robot nodes. We also intend to look
into modifications to the vision system to make it work in
lower light, so that the testbed can be used for light-sensor
experiments. The most promising options seem to be LEDs or
black-and-white fiducials.

VIII. CONCLUSIONS

We have described the design and implementation of a
robotic-based mobile wireless and sensor network testbed.
Designing and building this testbed required us to solve a
number of hard problems, particularly with respect to robot
localization and movement. Our experience so far shows it to
be a promising testbed, valuable for a range of experiments in
mobile and wireless networking. Since it is remotely accessi-
ble, it can provide the mobile and wireless sensor networking
community with a practical complement to simulation.

ACKNOWLEDGMENTS

We owe great thanks to Kirk Webb for much help in engineering,
management, and operations. We are grateful to Mark Minor for his
contributions in a variety of areas relating to robotics. Bill Thompson
and Tom Henderson gave us guidance in the computer vision area. As
always, Mike Hibler helped in a variety of ways; of special note is the
entire day he spent gathering validation data using a cardboard robot
body. We are grateful to Eric Eide for feedback on earlier drafts and
his editing help, to Dan Gebhardt and Kirk for their ongoing work
on the power measurement circuit, to Grant Ayers for contributing
substantially to the fixed mote installation, and to Jon Duerig and
Kevin Atkinson for helping with editing and the bibliography.

REFERENCES

[1] Acroname Corp. Garcia robot.
http://www.acroname.com/garcia/garcia.html.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level
Measurements from an 802.11b Mesh Network. In Proceedings of
SIGCOMM, Aug. 2004.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[4] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes,
J. Shneidman, A. C. Snoeren, and A. Vahdat. Mirage: A
Microeconomic Resource Allocation System for SensorNet Testbeds.
In Proceedings of the 2nd IEEE Workshop on Embedded Networked
Sensors, Sydney, Australia, May 2005.

[5] H. S. M. Coxeter. Introduction to Geometry. John Wiley & Sons, Inc.,
1969.

[6] Crossbow Corp. MIB510 Serial Gateway.
http://www.xbow.com/Products/productsdetails.aspx?sid=79.

[7] Crossbow Corp. Mica2 multi-sensor module MTS310.
http://www.xbow.com/Products/productsdetails.aspx?sid=7.

[8] Crossbow Corp. Mica2 Series mote.
http://www.xbow.com/Products/productsdetails.aspx?sid=72.

[9] Crossbow Corp. Stargate Gateway.
http://www.xbow.com/Products/productsdetails.aspx?sid=85.

[10] P. De, A. Raniwala, S. Sharma, and T. Chiueh. MiNT: A Miniaturized
Network Testbed for Mobile Wireless Research. In Proceedings of
IEEE INFOCOM, Mar. 2005.

[11] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. EmStar: a Software Environment for Developing and
Deploying Wireless Sensor Networks. In Proceedings of the 2004
USENIX Technical Conference, Boston, MA, June 2004.

[12] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer. A System for Simulation,
Emulation, and Deployment of Heterogeneous Sensor Networks. In
ACM SenSys, Nov. 2004.

[13] J. Heidemann, N. Bulusu, and J. Elson. Effects of Detail in Wireless
Network Simulation. In Proceedings of the SCS Multiconference on
Distributed Simulation, Jan. 2001.

[14] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Feedback-directed Virtualization Techniques
for Scalable Network Experimentation. Flux Group Technical Note
FTN–2004–02, University of Utah, May 2004.
http://www.cs.utah.edu/flux/papers/virt-ftn2004-02.pdf.

[15] Hitachi KP-D20A Camera.
http://www.hdal.com/Apps/hitachidenshi/content.jsp?-
page=microscope medical/1 CCD color/details/KPD20A.html&-
path=jsp/hitachidenshi/products/industrial video systems/.

[16] J. Ledlie, J. Shneidman, M. Welsh, M. Roussopoulos, and M. Seltzer.
Open Problems in Data Collection Networks. In Proceedings of the
11th ACM SIGOPS European Workshop, Leuven, Belgium, 2004.

[17] Mezzanine: An Overhead Visual Object Tracker.
http://playerstage.sourceforge.net/mezzanine/mezzanine.html.

[18] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh. Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation
Wireless Network Protocols. In Proceedings of the IEEE Wireless
Communications and Networking Conference, Mar. 2005.
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