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Abstract

Language Models (LMs) have revolutionized natural language processing, excelling in language

translation, sentiment analysis, and text generation. Researchers have proposed using LMs to learn

generalizable features from DNA, aiming to fine-tune these models for diverse prediction tasks.

While several LMs trained on DNA sequences now exist, they vary in tokenization methods, the

types and amounts of data used for training, and the specific tasks they are fine-tuned for. Existing

benchmark reports often lack comprehensive coverage and consistency in reported metrics. To ad-

dress this gap and explore the impact of different encoding schemes for DNA, this study conducts

benchmarking tests on standard tasks to assess and compare existing models’ performance capa-

bilities. Additionally, we construct our own fine-tuning task to perform preliminary investigations

on whether an LM can accurately identify the locations of prophage sequences integrated into the

bacterial genome. Our findings suggest that model accuracy varies depending on the task, with no

single model performing best across all tasks. We observed that tasks exhibit different levels of

difficulty, and there is a wide distribution of variation in performance even with the same model.
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INTRODUCTION

Language Models (LMs) have revolutionized natural language processing, excelling in

language translation, sentiment analysis, and text generation. Their capacity for self-supervised

learning enables their application across various domains, including biology and genetics. Early

applications in biology involved training LMs on protein sequences to predict masked amino

acids [1, 2]. Fine-tuning these models on a variety of protein tasks, they achieved comparable or

superior results to previous methods [3, 4], even with limited data [5].

DNA, the complex molecule containing genetic instructions for all living organisms, is

crucial for understanding trait inheritance and genomic processes [6]. Learning genetic concepts

through the language of DNA aims to address challenges in genetic engineering and precision

medicine, including disease risk and pharmacogenomics, among other applications [7]. Despite

ongoing efforts, predicting genetic elements solely from DNA remains difficult due to limited

annotated data. To address this challenge, researchers have proposed using LMs to learn

generalizable features from DNA, aiming to fine-tune these models for diverse prediction tasks

[8, 9, 10, 11].

While several LMs trained on DNA sequences now exist, they vary in tokenization

methods, the types and amounts of data used for training, and the specific tasks they are

fine-tuned for. The choice of tokenization significantly affects model performance and

generalization to genomic tasks, making it crucial to compare these methods. However, existing

benchmark reports often lack comprehensive coverage and consistency in reported metrics.

There is currently no unified platform for comparing all genomic models across all existing

benchmarks. To address this gap and explore the impact of different encoding schemes for DNA,

https://www.zotero.org/google-docs/?Ksluwr
https://www.zotero.org/google-docs/?hCXR4c
https://www.zotero.org/google-docs/?AxBcmH
https://www.zotero.org/google-docs/?IIS4e3
https://www.zotero.org/google-docs/?11xTmM
https://www.zotero.org/google-docs/?tFF8tT


2

this study conducts benchmarking tests on standard tasks to assess and compare existing models’

performance capabilities.

Additionally, we fine-tuned these models on the binary classification task of identifying a

sequence as phage or bacteria. Bacteriophages, or phages, are viruses that infect and replicate

within bacteria. Phages play a key role in bacterial population dynamics, nutrient cycling, and

even human health through their impact on the microbiome. They are also of interest in

biotechnology and medicine for their potential use in phage therapy to combat bacterial

infections [12]. By fine-tuning existing LMs on bacterial and phage genomic sequences, we aim

to perform preliminary investigations on whether a LM can accurately identify the locations of

prophage sequences integrated into the bacterial genome.

BACKGROUND

Tokenization is the process of breaking text into smaller units called tokens, which can

range from individual characters to complete words. This process aids machines in analyzing and

understanding text by identifying patterns and contextual cues. While tokenizing natural

language text is typically straightforward, often relying on white spaces or characters, the

process becomes considerably more challenging when applied to DNA sequences. This

complexity arises due to their unique four-letter alphabet (A, C, G, T) and extensive lengths,

which can make traditional tokenization methods computationally demanding.

Several LMs have been trained using DNA as input, including the Nucleotide

Transformer [8], DNABERT [7, 9], and HyenaDNA [10]. In addition to tokenization, these

models all vary in their parameters, architectures, training and evaluation methods. A summary is

shown in Table 1. As a baseline, we include the English language model GPT-2 [13].

https://www.zotero.org/google-docs/?I34hWO
https://www.zotero.org/google-docs/?8Ega97
https://www.zotero.org/google-docs/?vMkEJx
https://www.zotero.org/google-docs/?QeXMoR
https://www.zotero.org/google-docs/?qcj1JZ
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Table 1. Tested Language Models.
Pre-training time is indicated for the smallest model size where relevant.

Model Authors Parameters Tokenization Benchmark
Context
Window

PreTraining
Data

PreTraining
Time

PreTraining
Hardware

GPT-2 Radford et al 124M-1.5B BPE 1024 WebText 4 days 256 Tesla P100

DNABERT-1 Zhou et al 117M kmer GUE 512
Human
Genome 25 days 8 Nvidia 2080Ti

DNABERT-2 Zhou et al 117M BPE GUE 1000

Human
Genome +
135 Other
Species 14 days 8 Nvidia 2080Ti

HyenaDNA Ngyuen et al 0.5M-6.6M Nucleotide
Genomic
Benchmark 1000-1M

Human
Genome 80 min 1 Nvidia A100

Nucleotide
Transformer

Dalla-Torre et
al

500M-2.5B kmer
Nucleotide
Transformer

1000

3202 Human
Genomes +
850 Other
Species

14 days
128 Nvidia
A100

Nucleotide Transformer (NT) and DNABERT-1 tokenize DNA sequences into

overlapping -mers, capturing contextual information by combining each deoxynucleotide base𝑘

with its subsequent bases. The NT models all use 6-mer tokenization, where . The𝑘 𝑘 = 6

DNABERT team released models experimenting with different -mers, the 6-mer model𝑘

performing the best overall [9]. While -mer tokenization preserves local sequence patterns, it𝑘

involves repeated information and demands high computational requirements.

In contrast, DNABERT-2 employs Byte Pair Encoding (BPE) tokenization. This method

compresses data, replacing the most frequent pair of consecutive bytes in a data stream with a

single byte value [14]. This allows DNABERT-2 to handle longer sequences within the same

context window as DNABERT-1. It achieved better results than its predecessor and comparable

results to NT models while having fewer parameters and less GPU time for pre-training [11].

However, its improvements cannot solely be attributed to BPE; in addition to efficiency

enhancements like flash attention and Low-Rank adaptation, DNABERT-2 was trained on a

much larger multi-species dataset.

https://www.zotero.org/google-docs/?RA5FdV
https://www.zotero.org/google-docs/?cFlqVr
https://www.zotero.org/google-docs/?MYe5y2
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HyenaDNA, based on the Hyena [15] model, uses a convolutional neural network instead

of attention layers, significantly reducing computational complexity. It uses a nucleotide

tokenization approach, treating each DNA base as an individual token. HyenaDNA is a

long-range genomic foundation model, with context length of up to 1 million tokens at a single

nucleotide resolution. It reportedly achieved state of the art results on 19 downstream tasks while

using magnitudes of less parameters, training data, and pre-training time

Figure 1. DNA Tokenization Methods.

Figure 1 illustrates all of the described DNA tokenization methods. Certain protein

language models like GenSLM [16] employ codon tokenization, where a codon represents the

three-nucleotide sequences that encode specific amino acids during protein synthesis. However,

as our investigation focuses on finding regulatory sequences that occur outside of the coding

region, we do not include a model for codon tokenization in our experiments.

Different tokenization methods impact the total information captured in a context window

and each models’ performance, efficiency, and generalization to genomic tasks. This

performance can be measured through fine-tuning. Several benchmarks for genomic tasks have

been introduced: the Nucleotide Transformer [8] benchmark, the Genomic Understanding

Evaluation or GUE benchmark [11], and the Genomic Benchmark [17]. In Table 2, we categorize

the tasks of these respective datasets. For more details, refer to Appendix A1.

Table 2. Task Category Summary for Tested Benchmarks.
Publication
Introduced In Benchmark Species Task Category

Number of
Tasks

Number of
Classes Sequence Length

https://www.zotero.org/google-docs/?wiKITo
https://www.zotero.org/google-docs/?mKikOy
https://www.zotero.org/google-docs/?JeHCLt
https://www.zotero.org/google-docs/?Lcq9nD
https://www.zotero.org/google-docs/?BFjiKu
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Nucleotide
Transformer

Nucleotide
Transformer

Human
Regulatory Elements 5 2-3 200-300

Splice Site Detection 3 2-3 400-600

Yeast
Epigenetic Marks
Prediction 10 2 500

DNABERT2 GUE

Human

Regulatory Elements 6 2 70-300

Splice Site Detection 1 3 400

Transcription Factor
Prediction 5 2 100

Mouse
Transcription Factor
Prediction 5 2 100

Yeast
Epigenetic Marks
Prediction 10 2 500

Virus Covid Variant Classification 1 9 1000

HyenaDNA
Genomic
Benchmark

Human

Regulatory Elements 4 2-3 251-500

OCR 1 2 315

Coding vs. Intergenomic 1 2 200

Multi-Species Human vs. Worm 1 2 200

Mouse Regulatory Elements 1 2 2381

While some models have been benchmarked against one another, these reports generally

do not cover all models on all tasks and are inconsistent in the metrics chosen to report. The NT

and DNABERT teams report their performance across different fine-tuning tasks using the

Matthew correlation coefficient (MCC). The HyenaDNA team reports MCC for some tasks but

uses accuracy and F1 score for others. F1 score is widely used in machine learning applications

as it considers both precision and recall, being particularly useful when there is an uneven

distribution between the positive and negative classes. However, research has shown that MCC

provides a more robust performance measure in evaluating binary classifications than accuracy

and F1 score as it balances true positives, true negatives, false positives, and false negatives [18].

Equation 1. Matthew Correlation Coefficient.

𝑀𝐶𝐶 =  𝑇𝑃 * 𝑇𝑁 − 𝐹𝑃 * 𝐹𝑁
(𝑇𝑃 + 𝐹𝑃) * (𝑇𝑃 + 𝐹𝑁) * (𝑇𝑁 + 𝐹𝑃) * (𝑇𝑁 + 𝐹𝑁)

https://www.zotero.org/google-docs/?HiSdrC
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To maintain consistency with previous publications, our results are collected over

accuracy, F1 score, and MCC, with a primary focus on reporting MCC.

METHODS

We evaluated several models by running each on a set of tasks 10 times. We selected

DNABERT-1 (6-mer), DNABERT-2, HyenaDNA (1kb context length), Nucleotide Transformer

(500M 1000G), and GPT-2 small as a baseline. All models were retrieved using the

HuggingFace ‘Transformers’ package in Python. Fine-tuning datasets were retrieved via

HuggingFace and GitHub, preprocessed, and split into training, development, and test sets in an

8:1:1 ratio for consistency.

Additionally, we fine-tuned all models to classify sequences as phage or bacteria using a

dataset of 33,238 bacterial assemblies and 22,026 phage genomes from NCBI and INPHRED,

respectively. We also trained a BPE tokenizer on bacterial DNA sequences for the purposes of

analyzing its output vocabulary.

All models were fine-tuned with the same technique and parameters provided by the

authors, running on 1 NVIDIA Tesla V100 GPU on the Pittsburgh Supercomputing Center’s

Bridges-2. Further information is provided in Table 3.

Table 3. Model Fine-Tuning Configurations.

DNABERT-1 DNABERT-2 GPT2 HyenaDNA
Nucleotide
Transformer

Layers 12 24 12 256 16

Width 768 768 768 1024 512

Parameters 117M 117M 500M 1000 500M

Epochs 3-5 3-5 3-5 100 3-5

Batch size 16-32 16-32 16-32 128-256 16-32

Learning Rate 3.00E-05 3.00E-05 3.00E-05 6.00E-04 1.00E-04
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RESULTS

Benchmark Evaluation

In Figure 2, we present each model’s mean MCC across 10 replications for every task

category, with error bars depicting one standard deviation. An MCC of +1 indicates perfect

classification, –1 a complete misclassification, and an MCC of 0 suggests the model’s

predictions are no better than random.

Figure 2. Model Performance Across Task Categories.

We observed a large variation across different categories, suggesting that task difficulty

varies. This is particularly notable in the Epigenetic Mark Prediction tasks for yeast DNA

(Figure 3). DNABERT-2 achieves an MCC of 0.81±0.008 predicting H4 histone marks, but

0.31±0.03 for H3k4me3.

Figure 3. Model Performance Across Epigenetic Mark Prediction Tasks.
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We also observed a wide distribution across replications, which varied by task. Using the

H3k4me3 task as an example, DNABERT-2 observed the largest variation and HyenaDNA saw

none (Figure 4). Across all tasks, HyenaDNA saw the least variation overall (Figure 5).

Figure 4. Model Variability in MCC for the H3k4me3 Task

Figure 5. Model Variability in MCC for All Tasks.

No single model outperformed all others across all benchmarks. However, when

considering task sequence length, certain models showed better performance on tasks with

shorter or longer sequences (Figure 6).
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Figure 6. Model Performance by Task Sequence Length.

Phage Results

In Figure 7, we report the results of the selected genomic models on our phage

identification task. DNABERT-2 reported the best performance, with a mean MCC of 0.96.

Figure 7. Model Performance on Phage Identification Task.

None of the pre-training data for the selected models included sequences from bacteria or

phages. Trained on large corpora of text to select tokens according to the defined method,

tokenizers compile these selected tokens in their vocabulary. To explore the differences in

vocabulary between bacteria and mammalian DNA, we trained a BPE tokenizer on 33,238

bacterial genomes and compared its vocabulary with DNABERT-2’s multi-species vocabulary.

Only 38.4% of the tokens in our bacterial BPE tokenizer overlapped with DNABERT-2 (Figure

8), indicating significant vocabulary differences.
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Figure 8. Vocabulary Comparison of Bacterial and DNABERT-2 BPE Tokenizers.

The vocabularies do not share many “words,” suggesting that bacterial and mammalian
DNA might have unique language patterns.

DISCUSSION

In this study, we investigated the impact of different encoding schemes for DNA

sequences on the performance of genomic models across various tasks. We reviewed models

with k-mer (DNABERT-1, Nucleotide Transformer), Byte Pair Encoding (DNABERT-2), and

nucleotide (HyenaDNA) tokenization methods. Our findings suggest that model accuracy varies

depending on the task, with no single model performing best across all tasks. We observed that

tasks exhibit different levels of difficulty, and there is a wide distribution of variation in

performance even with the same model. Specifically, DNABERT-2 and HyenaDNA

demonstrated strong performance on tasks with longer input sequences, while DNABERT-1 and

Nucleotide Transformer (NT) performed well on tasks with shorter input sequences. These

results highlight the importance of considering task-specific characteristics when selecting a

genomic model.

The variation in model performance across tasks suggests that more research is needed to

understand why certain models excel in specific tasks. Future studies could explore training a

HyenaDNA model using BPE tokenization to determine if this improves accuracy. Additionally,
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training DNABERT-2 solely on the human genome could inform the extent to which its

performance on different tasks is influenced by tokenization versus multi-species data.

DNABERT-2 performed best overall for the phage identification task, possibly due to its

multi-species training dataset and BPE tokenization. Despite challenges in reproducing

HyenaDNA results in our benchmark evaluation, it also showed promising performance on the

phage identification task. Potential improvements in methodology for running the HyenaDNA

model and reframing the phage identification task should be explored.

Language models trained on DNA assume a shared linguistic structure across different

species, implying that fundamental aspects of DNA can be captured and utilized for various

genomic tasks. Achieving a foundational model that generalizes to any genomic task and species

is theoretically possible with sufficient data and appropriate encoding schemes. Current models

demonstrate impressive results, however, the variability observed across replication for specific

models and tasks raise concerns about reliability. Consistency in LMs is essential for ensuring

predictable and reliable behavior across diverse contexts. Without consistent models, trust in

their outputs diminishes, particularly in critical applications such as genetic research. Recent

research indicates that smaller, task-specific models may outperform large, general-purpose

models in specialized tasks [19], emphasizing the need to balance model size, training data, and

task specificity in AI models for genomics. Smaller language models also offer faster results

crucial for real-time applications, a reduced carbon footprint, and lower privacy risks associated

with large-scale sensitive data processing. As we advance the development of genomic language

models, addressing these considerations will be crucial for their successful and ethical

integration into genomic research and applications.

https://www.zotero.org/google-docs/?EfzuWI
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APPENDIX

All code and data relevant to this project can be found at

github.com/anihab/dnaTokenization

Model Details

We selected the following models: nucleotide-transformer-500m-1000g,

nucleotide-transformer-2.5b-multi-species, DNA_bert_6, DNABERT-2-117M, and

hyendna-1k-tiny.

The Nucleotide Transformer models are pretrained on 3202 genetically diverse human

genomes originating from 27 geographically structured populations of African, American, East

Asian, and European ancestry taken from the 1000G project. They use 6-mer tokenization for

DNA sequences, a vocabulary size of 4105, and standard BERT-style 15% Masked Language

Modeling (MLM) for training. The team’s approach to tokenization involves generating all

possible -mers for nucleotides in time and then splitting sequences into these k-mers,𝑘 𝑂(4𝑘)

along with special tokens, which is done in linear time.

DNA_bert_6 is another encoder-only model based on the standard BERT architecture

with 12 layers and 117 million parameters. It was pretrained on the human reference genome

Hg38 taken from NCBI, comprising 2.75 billion nucleotides. It also uses 6-mer tokenization and

has a vocabulary size of 4101. However, the DNABERT generates -mers by iterating over the𝑘

entire length input sequence and extracting substrings of length , which gives a computational𝑛 𝑘

complexity of .𝑂(𝑛 × 𝑘)

DNABERT-2-117M extends their implementation from MosaicBERT [20], another

BERT-style encoder model that includes FlashAttention, Attention with Linear Biases (ALiBi),

Gated Linear Units (GLU), a module to dynamically remove padded tokens, low precision

https://www.zotero.org/google-docs/?RhF123
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LayerNorm into the classic transformer encoder block, and a 30% masking ratio for the Masked

Language Modeling (MLM) objective. DNABERT-2-117M uses BPE tokenization for DNA

sequences with a vocabulary size of 4096. BPE tokenization has a complexity of

, where is the number of merge operations and is the size of the𝑂(𝑘 × 𝑣 × 𝑙𝑜𝑔𝑉) 𝑘 𝑉

vocabulary. In practice, BPE tokenization is efficient and scales well to large vocabularies.

Additionally, DNABERT-2 was pretrained on the same human genome used in DNABERT, as

well as a multi-species dataset encompassing genomes from 135 species. In total, this dataset

includes 32.49 billion nucleotide bases, nearly 12 times the volume of the human genome

dataset.

HyenaDNA uses a stack of Hyena operators, a subquadratic drop-in replacement for

attention in Transformers. Where attention layers have complexity, hyena layers have𝑂(𝑁2)

complexity. The Hyena operator matches quality in language modeling by using𝑂(𝑁𝑙𝑜𝑔𝑁)

modified input projections, implicit convolutions and gating, all subquadratic operations. Thus,

HyenaDNA “can reach context lengths of up to 500× longer than previous genomic Transformer

models using dense attention, and train 160× faster at sequence length 1M (compared to Flash

Attention)” [10]. It was pretrained on the human reference genome Hg38 using next token

(nucleotide) prediction, with a vocabulary of 12— 4 nucleotides plus 8 special tokens. The

complexity of nucleotide tokenization is linear, , with respect to the length of the input𝑂(𝑛)

sequence.

Dataset Details

The GUE benchmark included train, test, and development sets for every task. While

some NT tasks shared the exact same data with GUE tasks, the splits were different.

Additionally, the NT benchmark and Genomic Benchmark only provided train and test sets. To

https://www.zotero.org/google-docs/?NO1V4c
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ensure consistency for comparison and ease of use with the HuggingFace library, all data was

preprocessed with an 8:1:1 training, development, test split.

Table A.1: Task Summary for Tested Benchmarks

Publication
Introduced In Benchmark Species Task Number of Classes Sequence Length

Nucleotide
Transformer

Nucleotide
Transformer
Benchmark

Human

Enhancer 2 200

Enhancer Types 3 200

Promoter All 2 300

Promoter non-TATA 2 300

Promoter TATA 2 300

Splice All 3 400

Splice Acceptor 2 600

Splice Donor 2 600

Yeast

H3 2 500

H3K4me1 2 500

H3K4me2 2 500

H3K4me3 2 500

H3K9ac 2 500

H3K14ac 2 500

H3K36me3 2 500

H3K79me3 2 500

H4 2 500

H4ac 2 500

DNABERT2 GUE Benchmark

Human

Promoter All 2 300

Promoter non-TATA 2 300

Promoter TATA 2 300

Core Promoter All 2 70

Core Promoter
non-TATA 2 70

Core Promoter TATA 2 70

Splice Reconstruct 3 400

Transcription Factor
Prediction 0-4 (5
total) 2 100

Mouse
Transcription Factor
Prediction 0-4 (5
total) 2 100

Virus
Covid Variant
Classification 9 1000

Yeast

H3 2 500

H3K14ac 2 500
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H3K36me3 2 500

H3K4me1 2 500

H3K4me2 2 500

H3K4me3 2 500

H3K79me3 2 500

H3K9ac 2 500

H4 2 500

H4ac 2 500

HyenaDNA Genomic Benchmark

Human

Enhancers Cohn 2 500

Enhancers Ensembl 2 269

Ensembl Regulatory 3 401

Promoter non-TATA 2 251

OCR Ensembl 2 315

Coding vs.
Intergenomic 2 200

Multi-Species Human vs. Worm 2 200

Mouse Enhancers 2 2381

Figure A.1. Sequence Lengths of Tasks in Each Task Category
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Full Results

Figure A.2. Mean MCC Across Each Benchmark.

Depicts the mean MCC across each benchmark for 10 replications. From left to right: Nucleotide
Transformer, GUE, Genomic Benchmark.

Figure A.3. Mean MCC Across Every Task

Presents the mean MCC across each task for 10 replications, with error bars depicting 1 standard
deviation.
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