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Abstract

Fog forms in high-elevation complex terrain as frequently as it does over bodies of water but is less

understood and harder to predict. Forecasting winter cold fog over complex terrain is particularly

difficult due to the complex interactions between land, water, snow cover, and atmospheric condi-

tions in the process of fog formation. Traditional physical and numerical models have a limited

ability to represent various conditions associated with fog formation; thus, fog prediction remains a

challenge in weather prediction. This study aims to evaluate the effectiveness of machine learning

methods in predicting winter fog over complex terrain, specifically the city of Heber in northern

Utah. We utilize 10 years of surface meteorological observations. Emphasis will be placed on

examining various baseline methods for their effectiveness in machine learning to help produce

meaningful forecasts.
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ABSTRACT 
 
 
 
 

Fog forms in high-elevation complex terrain as frequently as it does over bodies of water 

but is less understood and harder to predict. Forecasting winter cold fog over complex 

terrain is particularly difficult due to the complex interactions between land, water, snow 

cover, and atmospheric conditions in the process of fog formation. Traditional physical and 

numerical models have a limited ability to represent various conditions associated with fog 

formation; thus, fog prediction remains a challenge in weather prediction. This study aims 

to evaluate the effectiveness of machine learning methods in predicting winter fog over 

complex terrain, specifically the city of Heber in northern Utah. We will utilize 10 years 

of surface meteorological observations. Emphasis will be placed on examining various 

baseline methods for their effectiveness in machine learning to help produce meaningful 

forecasts.  
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INTRODUCTION 
 

 
Fog is defined by low visibility (less than 1 km according to the glossary of the 

American Meteorological Society) and can significantly impact the safety of aviation and 

other outdoor traffic1. The formation of fog is a complex process and involves interactions 

ranging from microphysical to planetary-scale2,3. Due to the complicated factors that 

contribute to the formation of fog, it is difficult to forecast fog accurately4. 

Fog forecasting remains a challenge in weather prediction because traditional 

physical and numerical models have a limited ability to represent various conditions 

associated with fog formation. Various machine learning methods have been applied to 

visibility prediction such as decision tree induction5, tree-based machine learning 

methods6, random forest and K-nearest neighbor methods7. Deep learning methods in 

particular have shown to be promising for fog prediction8. 

The framing of the prediction problem has implications for the explainability of 

models, the most appropriate data pre-processing, and specific algorithms used. Physics-

informed machine learning can result in more robust models9, but experiments ranging 

from a deep hybrid model10 to explicable forecasting approaches that could be integrated 

into deep learning techniques11 have produced reasonable results. The prediction problem 

can be framed as regression or classification, which influences what pre-processing is most 

effective12. Deep learning ensembles can outperform individual models as investigated in 

this survey of deep learning ensembles13.  

As for forecasting and understanding fog, new efforts have been made to utilize 

deep learning to predict fog14–16 and other meteorological variables17–19 in addition to 

ongoing efforts to understand the physical science of fog2,20. Previous work has applied 
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deep learning to specific types of fog such as coastal fog21 and sea fog22–24. However, few 

studies have been done on fog that forms below 0°C over complex terrain, especially 

mountainous cold fog. 

Meteorological data records are commonly time series data. Recurrent neural 

networks (RNNs) and long short-term memory (LSTM) models are particularly well-suited 

to time series data. LSTMs have been used to predict COVID-19 cases25,26. Further variants 

of RNNs have been used for visibility prediction such as transductive LSTMs27 and 

autoregressive RNNs28. Although LSTMs have not been applied to MesoWest data for 

visibility prediction, they have been used to predict other variables29–31. For our methods, 

we also focus on winter fog at stations with complex terrain in Utah as studied by the Cold 

Fog Amongst Complex Terrain campaign32. 

This thesis work aims to apply modern machine learning techniques to surface 

meteorological observations from MesoWest to gain familiarity with the data, various 

techniques for time series analysis, and a variety of machine learning methods. We present 

the results of baseline testing used for nowcasting to examine how well surface 

meteorological data can be used to identify the occurrence of fog.  



3 

 

 
 

METHODS AND DATA 
 

 
The goal of this project is to apply a variety of machine learning techniques to 

surface meteorological observations from MesoWest for the nowcasting of fog, revealing 

the meteorological processes important to the formation of mountainous cold fog and the 

variables most crucial to accurate detection of such fog. Model options include linear 

classifiers, probabilistic methods, decision tree-based methods, and neural networks. Naive 

forecasts are used as a baseline model to compare more complex models against. 

2.1. Data 

Meteorological data was obtained from the MesoWest station at the Heber Valley 

Airport (KHCR) with the aim of studying fog over complex terrain. The data was 

downloaded through Synoptic data (https://download.synopticdata.com/). 10 years of data 

ranging from 2012-2023 were downloaded then filtered to winter seasons by only using 

data from December-February, resulting in ten winter seasons. This resulted in a total of 

63,517 rows of data measured at roughly 20-minute intervals for the Heber station. 

After determining what variables were usable, the data was pre-processed by fixing 

formatting inconsistencies and sea level pressure data that was erroneously swapped with 

pressure data. We attempted to use data from the Community Collaborative Rain, Hail and 

Snow (CoCoRaHS) Network to provide precipitation data at the Heber Valley site as 

precipitation can be a useful variable to consider when forecasting fog, but the data became 

very sparse when matched spatially with the MesoWest data, so we ran the baseline tests 

without precipitation data. Having precipitation data available also would have enabled the 

exclusion of precipitation fog, which forms via different mechanisms from radiation fog, 

one of the primary types of fog studied by CFACT. 
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Various normalization methods were applied to normalize the data into equally 

important features. Results are presented for no normalization, Gaussian standardization, 

and min-max scaling. For the experiments presented, four variables were used to make 

predictions: air temperature, relative humidity, pressure, and wind speed. This set of 

variables is commonly used in operational forecasting and represents a robust set of 

features that describe the state of the atmosphere. 

2.2. Nowcasting Methodology 

All models will classify sequences of data as “foggy” or “not foggy” at various time 

intervals into the future. Nowcasts (predicting the label at the end of the sequence) in 

addition to 1-, 6-, and 24-hour forecasts can be predicted; results for nowcasting are 

presented. For these results, each model uses sequences with a length of 1, meaning the 

models predict whether there was fog present or not for one row of data, which are spaced 

roughly 20 minutes apart. Deep learning results are not presented, but models designed for 

sequential data such as RNNs and LSTMs can easily use longer sequence lengths in order 

to better learn from the temporal patterns in time series data. The results will be evaluated 

against either standard National Weather Service definitions of fog or relaxed thresholds 

to address imbalances in the data. 

For our most comprehensive baseline tests, a “near fog” subset of the data is used. 

Near fog is classified when the visibility is below 5 kilometers and relative humidity 

exceeds 70%. Fog is then classified by visibility below 3 kilometers and relative humidity 

exceeding 80%. This can be viewed as a realistic forecasting situation where 

meteorologists might only create forecasts when conditions look promising for fog. This 

classification of data results in 3066 “near fog” and 2966 “fog” data points, nearly a 50:50 
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ratio, and can potentially reveal what meteorological conditions lead to fog. The near fog 

subset of the data was split into training and validation splits of roughly equal size. 

2.3. Evaluation 

Model performance should not be evaluated purely on prediction accuracy, 

especially when the data is unbalanced. The majority of the data does not detect fog, so 

predicting the most common or baseline label will yield a high accuracy. As an alternative, 

the accuracy could be calculated only for time steps labeled as foggy. This accuracy is 

called the true positive (TP) or hit rate. 

In a confusion matrix, the predictions for each time step are grouped based on the 

actual and predicted label. Many forecasting metrics are derived from this basic display of 

results. False alarm ratio (FAR, FP/(FP+TN)), probability of detection (POD, 

TP/(TP+FN)), and critical success index (CSI, TP/(TP+FN+FP)) are often used in 

forecasting and provide more information than accuracy alone. For regression methods that 

output an actual visibility prediction that is thresholded to result in a predicted label, root 

mean square error (RMSE), mean absolute error (MAE), and coefficient of determination 

(R2) can be calculated. 

 

Fig. 1. Confusion matrix. 
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Finally, we also use Area Under the Receiver Operating Characteristic Curve (ROC 

AUC) to evaluate the experiments. ROC AUC is the area under the Receiver Operating 

Characteristics curve, which plots the TP rate against FP rate. A score of 1 corresponds to 

perfectly correct performance, 0 perfectly incorrect, and 0.5 a model with no discriminative 

power between the positive and negative class. We will take a score between 0.5 and 0.7 

to be poor, 0.7 and 0.8 acceptable, 0.8 and 0.9 excellent, and 0.9 and 1.0 outstanding. Mean 

average precision (mAP) is a related metric that is less sensitive to extremely imbalanced 

data. mAP values can also range from 0 to 1, with 1 being a perfect score. 

2.4. Methods 

The prediction problem can be formulated as regression or classification. An 

overview of methods is provided below. 

2.4.1. Linear Regression 

 Ordinary least squares linear regression is one of the simplest models with 

straightforward calculations and interpretable results. Multiple linear regression creates a 

linear model for one target variable with multiple input variables. Linear methods should 

be used as a baseline to determine whether there are simple linear relationships in the data 

before moving onto more complex models. 

 

Fig. 2. Example of a linear regression model. 
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2.4.2. Gaussian Processes 

 Gaussian process regression and classification are both probabilistic methods. 

Gaussian process classification directly produces a class label for the data and produces 

slightly different results from Gaussian process regression. 

 

Fig. 3. Visualization of Gaussian process regression. 

2.4.3. Logistic Regression 

Logistic regression can be used for binary classification when labels are desired 

instead of regressed values. Instead of ordinary least squares, logistic regression uses 

maximum likelihood estimation to predict the likelihood of each label. 

 

Fig. 4. Example of logistic regression applied to the same data as Fig. 2. 
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2.4.4. Tree-Based Methods 

A decision tree represents a decision-making process, with each node representing 

a test of the data until a decision or label is reached. While individual decision trees have 

limited capabilities and are prone to overfitting, ensemble methods like random forests 

greatly reduce the likelihood of overfitting and produce robust models. XGBoost is a highly 

optimized tree-based library that can handle large amounts of data. 

 

Fig. 5. Visualization of a random forest classifier, which consists of an ensemble of 

decision trees. 

2.4.5. Deep Learning 

RNNs are used to detect patterns in sequential or time series data. LSTMs and gated 

recurrent unit (GRU) models have architectures better suited to learning long-term 

relationships33 such as the physical laws that govern the atmosphere. Basic feedforward 

networks can be used to test whether recurrent networks are able to learn temporal patterns 

from the data better than more basic models. 
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Fig. 6. Visualization of RNN architecture.   
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RESULTS 
 

 
The validation results for ten models will be presented: a baseline model that 

predicts the majority label, linear regression, Gaussian process regression (GPR), GPR 

without normalizing the target variable, Gaussian process classification (GPC), logistic 

regression, random forest classifier with an optimized max depth, XGBoost with default 

parameters, XGBoost with parameters found in the “Get Started” guide 

(https://xgboost.readthedocs.io/en/stable/get_started.html), and XGBoost with 

hyperparameters optimized by the Bayesian Optimization package in Python. 

Presented in the tables below are confusion matrix entries (true negatives, false 

positives, false negatives, true positives), validation accuracy, probability of detection, 

false alarm ratio, critical success index, and ROC AUC for each model. 

 
TABLE I 

BASELINE RESULTS: NO NORMALIZATION 

 TN FP FN TP VA PoD FAR CSI ROC 
AUC 

Majority 1646 0 1362 0 0.547 0 0 0 0.5 

linr 870 776 356 1006 0.624 0.739 0.471 0.471 - 

gpr 832 814 310 1052 0.626 0.772 0.495 0.483 - 

gpr_nonorm 716 930 179 1183 0.631 0.869 0.565 0.516 - 

gpc 964 682 615 747 0.569 0.548 0.414 0.365 0.555 

lr 0 1646 0 1362 0.453 1.000 1.000 0.453 0.493 

rfc_7 754 892 156 1206 0.652 0.885 0.542 0.535 0.714 

xgboost_def 1081 565 639 723 0.600 0.531 0.343 0.375 0.695 

xgboost_getstarted 688 958 105 1257 0.647 0.923 0.582 0.542 0.711 

xgboost_opt 683 963 94 1268 0.649 0.931 0.585 0.545 0.712 
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TABLE II 

BASELINE RESULTS: GAUSSIAN STANDARDIZATION 

 TN FP FN TP VA PoD FAR CSI ROC 
AUC 

Majority 1646 0 1362 0 0.547 0 0 0 0.5 

linr 870 776 356 1006 0.624 0.739 0.471 0.471 - 

gpr 1024 622 569 793 0.604 0.582 0.378 0.400 - 

gpr_nonorm 1024 622 569 793 0.604 0.582 0.378 0.400 - 

gpc 1098 548 560 802 0.632 0.589 0.333 0.420 0.709 

lr 1118 528 564 798 0.637 0.586 0.321 0.422 0.670 

rfc_7 755 891 159 1203 0.651 0.883 0.541 0.534 0.714 

xgboost_def 1081 565 639 723 0.600 0.531 0.343 0.375 0.695 

xgboost_getstarted 688 958 105 1257 0.647 0.923 0.582 0.542 0.711 

xgboost_opt 683 963 94 1268 0.649 0.931 0.585 0.545 0.712 

 
TABLE III 

BASELINE RESULTS: MIN-MAX SCALING 

 TN FP FN TP VA PoD FAR CSI ROC 
AUC 

Majority 1646 0 1362 0 0.547 0 0 0 0.5 

linr 870 776 356 1006 0.624 0.739 0.471 0.471 - 

gpr 970 676 469 893 0.619 0.656 0.411 0.438 - 

gpr_nonorm 971 675 473 889 0.618 0.653 0.410 0.436 - 

gpc 1049 597 436 926 0.657 0.680 0.363 0.473 0.705 

lr 1121 525 565 797 0.638 0.585 0.319 0.422 0.669 

rfc_7 756 890 158 1204 0.652 0.884 0.541 0.535 0.714 

xgboost_def 1081 565 639 723 0.600 0.531 0.343 0.375 0.695 

xgboost_getstarted 688 958 105 1257 0.647 0.923 0.582 0.542 0.711 

xgboost_opt 683 963 94 1268 0.649 0.931 0.585 0.545 0.712 
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DISCUSSION 
 

 
4.1. Linear Regression 

For linear regression, the data can be visually inspected for linear correlations 

between the predictors and response variables. The correlations for individual predictors 

are weak, as fog formation does not depend strongly on any one variable. 

 

 

Fig. 7. Visibility plotted against the four feature variables. No standardization was used. 

 
TABLE IV 

MULTIPLE LINEAR REGRESSION COEFFICIENTS 

Pressure Air temp RH Wind speed 

-0.0000773 0.0954 -0.0370 -0.0442 
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Fig. 8. Observed vs. predicted visibility for linear regression model. The first five winter 

seasons were used for training and next five for validation. 



14 

 

 
 

Additionally, the visibility predictions from the regression models can be visually 

compared against the true observed visibility. As expected, the performance and 

coefficients of linear regression do not change based on the normalization used due to the 

scale invariance of linear regression. 

4.2. Gaussian Process Regression 

 Unlike linear regression, both Gaussian processes are sensitive to the normalization 

used. GPR yielded the highest CSI and validation accuracy with no normalization and 

without setting the method to standardize the predicted variable. With this configuration, 

the model predicted several erroneously low visibility values for the validation features. 

The visibility in the original MesoWest dataset contained negative values that we used as 

is, so scaling the data to have a minimum of 0 and the same maximum could have 

potentially reduced this specific error. 
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Fig. 9. Observed vs. predicted visibility for GPR. 



16 

 

 
 

Because they do not provide probability estimates for each class, only predicted 

values for visibility that are then thresholded to produce class labels, the regression models 

do not receive ROC AUC scores. However, other metrics such as Pearson correlation, 

MSE, and MAE can be calculated. 

 
TABLE V 

REGRESSION METRICS FOR VALIDATION PREDICTIONS 

 
Pearson correlation MSE MAE 

Linear regression 0.290 2.18 1.27 

GPR 0.0186 7.03 2.20 

 

 

Fig. 10. Regression metrics calculated by season. 
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 As seen in Fig. 10, GPR overfits to the training data and, as a result, performs 

more poorly than linear regression on the validation data. However, GPR has a higher 

accuracy after the predicted values are used to classify fog. These two regression models 

have different strengths, whether predicting more realistic visibility values or 

discriminative power between fog and near fog. To improve on the basic GPR model 

tested here, stricter penalties or ensembles could be used to reduce overfitting. 

4.3. Gaussian Process Classification 

GPC results in the more accurate classification when the data is normalized, with 

higher probability of detection and CSI but also slightly higher false alarm ratio under 

min-max scaling. The ROC AUC score is comparable to that of the decision tree-based 

methods, which have the highest scores. 

4.4. Logistic Regression 

 Logistic regression is also sensitive to the normalization scheme due to the default 

L2 regularization used. Without normalization, the penalty causes the model to classify 

all examples as foggy. This model receives a low CSI but outperforms logistic regression 

with normalization, highlighting a bias toward positive classifications. The results of 

logistic regression are very similar for the two normalization types used. 

4.5. Random Forest Classification 

 The results for a single random forest classifier are presented for each type of data 

normalization. These three classifiers had nearly identical results with differences likely 

due to small numerical instabilities, as the random state was set to be the same for each 

normalization experiment. The default number of trees of 100 was used, and the max 

depth was tuned for each type of normalization. This hyperparameter search can be 
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visualized using validation curves like the following. All three validation curves were 

nearly identical due to scale invariance and result in the max depth set to 7 nodes. 

 

Fig. 11. Validation curve for RFC with no normalization. 

 The following figure shows validation curves for the unbalanced, unfiltered data, 

where 6.78% of the data had visibility below 3km and RH above 70%. The most relaxed 

visibility threshold of 10km resulted in a more archetypal validation curve where 

increasing the expressivity is beneficial at lower max depths but overfitting takes over at 

some point in the search. The best max depth falls at around 4 nodes. 

 

Fig. 12. Validation curves for various thresholds over the full dataset. 

 To examine the difference between a max depth of 3 and 4, their ROC curves and 

AUC scores can be visualized, with logistic regression shown for comparison. A perfect 
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ROC curve would form a 90° angle at the top-left corner, resulting in an area under the 

curve of 1. 

 

Fig. 13. ROC curves for 3 classifiers over the full dataset. 

4.6. XGBoost 

 XGBoost utilizes gradient boosted decision trees and can be used to obtain a 

powerful baseline for any dataset due to its efficiency and relative ease of use. The 

models xgboost_def and xgboost_getstarted were trained using all default parameters and 

parameters used in the tutorial on the XGBoost website, “Get Started with XGBoost,” 

respectively. They are provided as a comparison to the third model xgboost_opt, which 

was trained using the hyperparameters selected by Bayesian Optimization. 

For this model, the number of estimators, max depth, learning rate, and 

min_split_loss (minimum loss required to create a split in the tree) were tuned by an 

optimizer with the number of random initial points set to 5 and further steps of 

optimization to 25. As the same random seed was set for the three types of normalization, 

the same hyperparameters were used for essentially identical results. Interestingly, the 

CSI and ROC AUC for the optimized XGBoost model were barely higher than the model 

based on the quickstart tutorial. 
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TABLE VI 

PARAMETERS USED FOR XGBOOST MODELS 

 n_estimators max_depth learning_rate min_split_loss 

xgboost_def 1 6 0.3 0 

xgboost_getstarted 2 2 1 0 

xgboost_opt 762 2 0.01 5.0 
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CONCLUSIONS 
 

 
Fog formation is rooted in both microphysics and large-scale atmospheric 

dynamics, making it difficult to forecast by any currently used methods, including machine 

learning. However, the nonlinear expressiveness of machine learning may be able to better 

capture the chaotic behavior of fog and the atmosphere than current rule-based or numerical 

approaches and result in better atmospheric modeling. 

In this study, 10 models were evaluated on a “near fog” subset of winter data at the 

Heber Valley Airport. Overall, the tree-based methods performed the best with the highest 

ROC AUC and CSI, and all models were able to improve on the unskilled ROC AUC of 

0.5 of the baseline model. The best values of ROC AUC obtained fall into the low end of  

0.7 and 0.8, which we take to be acceptable classification. The 10 models were also tested 

with longer sequence lengths and on forecasting into the future, but ROC AUC fell below 

acceptable values. The models would need to be separately tuned for this prediction 

problem in order to detect fog at the same acceptable levels, and this could result in more 

operationally useful models for the forecasting of cold fog. Finally, this study only uses 

surface-based meteorological observations. Future work should also explore the use of 

other meteorological data, such as atmospheric soundings, satellite observations, and NWP 

model outputs, as data sources. 

In addition to a basic set of machine learning baselines, we explored various deep 

learning models. We used a basic feedforward network, vanilla RNN, and simple LSTM 

in addition to more extensive experimentation with LSTMs, all of which struggled to 

capture the imbalanced dataset. Future steps to improve on these models could include 

reformulating them for the filtered data with balanced classes. In computer science 
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research, different metrics might be used, and the deep learning models would likely be 

run on a GPU to be able to run experiments more quickly and use longer sequence lengths 

to determine the ideal value. The models could be greatly expanded in size and 

expressiveness after carefully designing an architecture for the problem data and goals. 

Moreover, more sophisticated architectures like attention-based transformers could 

be used. The PyTorch transformer module was prohibitively complex to use in this 

overview, but it would likely produce better results than the baseline models here or 

improved LSTM models. The data can also be processed using dimensionality reduction 

methods like PCA, methods to handle unbalanced data such as undersampling and 

oversampling, or artificial augmentation using generative adversarial network (GAN) 

models for more robust models.   
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