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Abstract

Given a logical sentence (or formula) from propositional calculus, the Satisfiability Problem (SAT)
is to determine if there is a truth assignment to the logical variables that makes the sentence true. If
so, the sentence is called satisfiable; if not, then it is unsatisfiable. The best known algorithm to solve
this problem is NP-complete (requires polynomial time on a nondeterminisitic Turing machine).
Recently, Henderson et al. proposed a geometric approach, called Chop-SAT, for solving SAT. The
method produces a convex polytope feasible region, and the goals here are to explore properties of
the feasible region, including:

• projected points found by using linear programming to obtain extreme points,

• properties of the projected points, and

• nueural net models of the feasible region.

In order to determine the success of this approach, we will:

1. Attempt to distinguish satisfiable from unsatisfiable sentences based on the maximum dis-
tance of any projected point,

2. Study the mean value of the projected points and points in the feasible region to see if there
is a relation to the logical variable probabilities, and

3. Determine if a neural network approximation to a characteristic function for the feasible re-
gion is useful.
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ABSTRACT

Given a logical sentence (or formula) from propositional calculus, the Satisfiability
Problem (SAT) is to determine if there is a truth assignment to the logical variables that
makes the sentence true. If so, the sentence is called satisfiable; if not, then it is unsatisfiable.
The best known algorithm to solve this problem is NP-complete (requires polynomial
time on a nondeterminisitic Turing machine) [8]. Recently, Henderson et al. proposed a
geometric approach, called Chop-SAT, for solving SAT (see [5]). The method produces a
convex polytope feasible region, and the goals here are to explore properties of the feasible
region, including:

• projected points found by using linear programming to obtain extreme points,

• properties of the projected points, and

• neural net models of the feasible region.

In order to determine the success of this approach, we will:

1. Attempt to distinguish satisfiable from unsatisfiable sentences based on the maximum
distance of any projected point,

2. Study the mean value of the projected points and points in the feasible region to see if
there is a relation to the logical variable probabilities, and

3. Determine if a neural network approximation to a characteristic function for the
feasible region is useful.
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CHAPTER 1

INTRODUCTION

The satisfiability problem (SAT), is an NP-complete problem that represents both theoret-

ical and practical importance in the field of computer science. From a theoretical perspective,

studying a NP-complete problem may result in demonstrating that P is unequal to NP. From

a practical perspective, showing P is unequal to NP would result in less time searching for

more efficient algorithms to NP-complete problems that do not exist [8].

In the geometric approach to SAT, the n-dimensional hypercube, Hn, represents the solu-

tion space for a SAT problem. Parts of Hn are removed based on a geometric interpretation

of the logical sentence. This results in a convex feasible region, F , and a solution to the

SAT problem is sought in F . This formulation is being studied to determine if it offers an

efficient SAT solution or good heuristics for solving SAT.

The thesis of this work is that certain properties of F allow better insight into the

existence of a SAT solution. Moreover, due to the continuous nature of Hn, it may also be

possible to estimate atom probabilities over all solutions.

We begin with an overview of the visualization tools we created for feasible region

analysis. These tools act as a simple guide for ensuring the correctness of a solution. They

allow visualization of the solution using projections into 3D space.

We then explore linear programming solutions which minimize or maximize the pro-

jection of the feasible region onto selected vectors. This method aims to provide insight to

whether projections can accurately determine satisfiability of a given set of logical sentences.

Next, we examine properties of the feasible region. Atom probabilities may provide the

ability to determine model probabilities. We test this idea through the use of projections and

geometric centers. We explore the accuracy of using the mean of projected points as atom

probability estimates. We next calculate the analytic centers of different feasible regions on
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a variety of knowledge bases. We compare these results to known atom probabilities. We

also calculate the P-center on these feasible regions and compare these results to our known

atom probabilities. We examine which method most closely approximates the known atom

probabilities and whether these methods assist in providing solutions for probabilistic

satisfiability (PSAT).

Finally, we determine if a neural net model can be trained to accurately determine

satisfiability of a sentence. We test whether a neural net model can be used effectively to

aid in finding a solution for SAT.

We perform these analyses on a variety of knowledge bases to examine the robustness

of our results. A thorough data analysis of our results is provided in order to determine the

accuracy of the findings.
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CHAPTER 2

BACKGROUND

2.0.1 NP-Completeness

For an algorithm V, a verifier for a language A is defined as:

A = w | V accepts w, c for some string c

We measure the time of a verifier only in terms of the length of w, so a polynomial time

verifier runs in polynomial time in the length of w. NP problems have polynomial time

verifiers. NP-completeness refers to the discovery by Stephen Cook and Leonid Levin

where certain problems in NP have an individual complexity related to that of the entire

class. This means, if there exists a polynomial time algorithm for any of these problems,

all problems in NP would be polynomial time solvable. This set of problems is called

NP-complete [8].

2.0.2 SAT

Given a logical sentence (or formula) from propositional calculus, the Satisfiability

Problem (SAT) is to determine if there is a truth assignment to the logical variables that

makes the sentence true. If so, the sentence is called satisfiable; if not, then it is unsatisfiable.

The best known algorithm to solve this problem is NP-complete (requires polynomial time

on a nondeterminisitic Turing machine) [8].

2.0.3 PSAT

Given n logical variables (or atoms) a model (or complete conjunction) is an assignment

of 0 (false) or 1 (true) to each atom. There are 2n models. These models can be represented

as n-tuples in n-dimensional space, and correspond to the corners of Hn, the n-D hypercube.
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The meaning of this is that the ith axis corresponds to the values which can be assigned to

the ith variable.

Given any point in Hn, that point can be considered as a set of probabilities for the atoms.

This allows consideration of a probabilistic version of SAT called Probabilistic SAT (PSAT)

(see [3] [7] for a detailed introduction and analysis of the complexity of the problem). PSAT

is defined as follows; given a logical sentence in Conjunctive Normal Form (CNF), and a

probability, pi, associated with each conjunct, Ci, find a function, π : Ω→ [0, 1], where Ω is

the set of all complete conjunctions, and all of the following are true:

0 ≤ π(ωk) ≤ 1

2n−1

∑
i=0

π(ωi) = 1

pi = ∑
ωk |=Ci

π(ωk)

2.0.4 Chop-SAT

Chop-SAT is the proposed method for solving SAT (see [5]), and it produces a feasible

region as follows:

• First, a knowledge base (KB) is defined as a CNF sentence, and each conjunct is given

a probability (for a SAT problem, this will be 1 for each conjunct).

• Next, the Chop-SAT method is used to produce a set of hyperplanes such that the

intersection of their non-negative half-spaces determines the feasible region.

The method follows from the observation that every conjunct is a disjunction, and the

disjunction is made false by assigning a falsifying truth value to each of its literals. Then

the set of models which do not satisfy this conjunct has those assignments and all possible

10



assignments to the literals not appearing in the conjunct. This turns out to be a sub-

hypercube which can be separated (chopped) from Hn by a hyperplane.

The feasible region represents the solution space for the KB. If any of the original

hypercube corners are contained in the feasible region, the KB is satisfiable. Figure 2.1

displays a satisfiable KB, KBS3. KB3 consists of the clauses [-1 -2 -3], [-1 -2 3], [-1 2 -3], [-1 2 3],

[ 1 -2 -3], and [ 1 -2 3]. Each conjunct is represented by the index of the atom and a negative

value if the atom is negated. If no original corners remain, the problem is unsatisfiable.

Figure 2.2 displays the maximal feasible region of unsatisfiable KB.

Another important observation to make is that every corner of Hn is
√

n/2 distant from

the center of Hn. In fact, every satisfiable sentence results in a feasible region which contains

an Hn corner; thus, some point in the feasible region is
√

n/2 distant from the center of Hn,

and it can be determined that the sentence is satisfiable.

Figure 2.1: The Feasible Region for a Satisfiable Sentence in 3D.
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Figure 2.2: The Feasible Region for I3, the Unsatisfiable Sentence in 3D with maximal
volume.

Consider the unsatisfiable KB over n atoms defined as the conjunction of all disjunctions

with n literals. This geometrically corresponds to chopping off each corner individually.

The feasible region for this has a special geometry whose vertexes are the centers of all H2

sub-hypercubes contained in Hn. The 3-D instance has an octahedron as the feasible region

(see Figure 2.2). We refer to the feasible region of the n-D version of this as In. Also, every

feasible region arising from an unsatisfiable sentence in n-D is contained in In.
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CHAPTER 3

PROJECTIONS

Certain properties of the convex feasible region produced in ChopSAT,F , may provide a

more effective method for determining a SAT solution. The feasible region contains extreme

points that, when found, could prove useful in determining the satisfiability of a sentence.

This chapter examines the usefulness of projection points in determining the satisfiability

of a knowledge base. Projection points are calculated using:

This corresponds to finding the point in the feasible region which projects to the minimal

value on axis f Tx. The point x is a linprog solution.

We begin this method by calculating the projection points on fixed axes. Using the

basis vectors as the fixed axes. We then calculate the linprog solution for axes in random

directions. For this method, a random n-D direction vector is generated, and the linprog

solution is found.

These linprog solutions are determined for both general and independent knowledge

bases containing from 10 to 20 atoms. In independent knowledge bases, atoms are guaran-

teed to be independent. That is, for two atoms, a1 and a2, P(a1) ∗ P(a2) = P(a1 ∧ a2). In a

general knowledge base, this equation is not guaranteed to be true.

To determine the usefulness of the projection point method, we examine how many

linprog solutions must be found before the knowledge base can be declared satisfiable. We

declare a knowledge base satisfiable when a linprog solution is found for which the distance

from the center of a hypercube to this point is greater than a pre-determined threshold. In
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the maximal feasible region in an unsatisfiable KB, no point is farther than
√

n− 2/2 from

the center of Hn. This means, if a point with a distance greater than
√

n− 2/2 is discovered,

the sentence is satisfiable.

We test the projection point method on KBs with a small number of atoms (10 to 20

atoms) and KBs with a medium number of atoms (50 atoms). However, the method was

found too slow to use on KBs with a large number of atoms (> 50 atoms).

Figure 3.1: Plot of the average number of projections on set axes on general KBs, from 10 to
20 atoms.
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Figure 3.2: Plot of the average number of projections on set axes on independent KBs, from
10 to 20 atoms.

Figure 3.3: Plot of the average number of projections on random axes on general KBs, from
10 to 20 atoms.
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Figure 3.4: Plot of the average number of projections on random axes on independent KBs,
from 10 to 20 atoms.

Figure 3.5: Graph of the projection point method on KBs where no solution was found vs
KBs where a solution was found for 50 atom KBs on fixed axes.
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Figure 3.6: Graph of the projection point method on KBs where no solution was found vs
KBs where a solution was found for 50 atom KBs on random axes.

This method worked well on knowledge bases with a small number of atoms. As shown

in Figures 3.1, and 3.2, the fixed axes projection method performed very well, usually

needing one or two projections to declare the knowledge base satisfiable. Figures 3.3 and

3.4 show similar results for the random axes projection method.

However, when tested on medium sized KBs, this method performed very poorly

and was slow. As shown in Figures 3.5 and 3.6, the projection method was only able to

successfully analyze 2 and 8, respectively, of the 100 knowledge bases.
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CHAPTER 4

CENTERS

The continuous nature of Hn may allow for the atom probabilities over all solutions

to be accurately estimated. In a KB with the clauses: ((a1 ∨ a2 ∨ a3 ∨ a4) ∧ (¬a1 ∨ ¬a2) ∧
(¬a1 ∨¬a3)∧ (¬a1 ∨¬a4)∧ (¬a2 ∨¬a3)∧ (¬a2 ∨¬a4)∧ (¬a3 ∨¬a4)), the solutions are: [0,

0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]. Each atom is true in 1/4 of the solutions, giving

each atom a probability of 0.25. When this KB is analyzed to find atom probabilities, the

result is [0.2500 0.2500 0.2500 0.2500].

Atom probabilities may be useful in a decision making process. If we assume atom

independence, then the probabilities of the complete conjunctions can be determined. For

example, in a KB with 3 atoms with the projection point probabilities of [0.3, 0.2, 0.7], then

the probability for the most likely truth assignment, [0, 0, 1] is (1-0.3) * (1-0.2) * 0.7 = .392.

This means that all the other truth assignments combined have an approximate probability

of .608. If we look at the least likely truth assignment, [1, 1, 0], it has an estimated probability

of 0.3 * 0.2 * (1 - 0.7) = 0.018. When performing probabilistic decision making, it may suffice

to assign non-zero probabilities to only a small number of the most probable models. In

this way, a good approximation may be found for any logical sentence of n variables.

Next, we examine methods for approximating atom probabilities. We will calculate

different centers of the feasible region to determine if these centers are adequate approxi-

mations of the atom probabilities. We use three different atom probability approximation

calculations in our approach.

First, we use the mean of linprog solutions as atom probability estimates. As discussed in

depth in Chapter 3, linprog solutions are extreme positions in the feasible region, determined

by selected axis. We use the mean value of these points and compare this value to the actual
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atom probabilities. In the second method, we calculate the analytic center of the feasible

region and compare this point to the true atom probability vector.

The analytic center of the feasible region is defined as:

y = maxy ∏ aiy

where y ∈ F , ai is the ith hyperplane coefficient vector, and y is y with a final homogeneous

coefficient of 1 [4].

Finally, we calculate the p-center of the feasible region and determine if this center can

accurately approximate the atom probabilities of the given KB. The p-center of the feasible

region is defined as follows: for each hyperplane in the set of linear inequalities, find a

point, p, that minimizes the distance to each hyperplane from that point.

Each method was tested on one hundred satisfiable knowledge bases with twenty atoms,

each with known atom probabilities. The results of each method are then compared to the

known probabilities to determine if correlations or accurate approximations exist. These

experiments are then repeated on one hundred satisfiable knowledge bases with fifty atoms

each.

Euclidean distance is a standard measurement used to compare the closeness of two

vectors, which made it an appropriate measure for determining the adequacy of a center

estimation. Figures 4.1 and 4.4 show the Euclidean distance between the atom probability

vectors and the linprog solution vectors. Figures 4.2 and 4.5 display the Euclidean distance

between the atom probability vectors and the analytic center vectors. Figures 4.3 and

4.6 display the Euclidean distance between the atom probability vectors and the p-center

vectors.
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Figure 4.1: Plot of the Euclidean distance between the atom probabilities and the mean of
the projection points on satisfiable, 20 atom KBs.

Figure 4.2: Plot of the Euclidean distance between the atom probabilities and the P-centers
on satisfiable, 20 atom KBs.
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Figure 4.3: Plot of the Euclidean distance between the atom probabilities and the analytic
centers on satisfiable, 20 atom KBs.

Figure 4.4: Plot of the Euclidean distance between the atom probabilities and the mean of
the projection points on satisfiable, 50 atom KBs.
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Figure 4.5: Plot of the Euclidean distance between the atom probabilities and the P-centers
on satisfiable, 50 atom KBs.

Figure 4.6: Plot of the Euclidean distance between the atom probabilities and the analytic
centers on satisfiable, 50 atom KBs.

As shown in the above figures, the analytic center method generates results nearest to

the true atom probabilities. In Table 4.1 below, the mean Euclidean distances for knowledge

bases with 20 and 50 atoms, respectively, are given. The analytic center presents the closest
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estimate for atom probabilities, with P-center and projection points too inaccurate to provide

a helpful heuristic.

Table 4.1: Table of the mean Euclidean distance between the atom probabilities and each
approximation method on satisfiable 20 and 50 atom KBs.
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CHAPTER 5

NEURAL NET MODELS

Neural nets can be used to represent a function. Sets of inputs and outputs are used to

train these nets. Linear regression assigns weights to connections to capture the function

the neural net represents. This chapter examines if the structure of a neural net is itself

indicative of the function it represents.

A neural net consists of layers, nodes in each layer, and connecting weights. By creating

an image of these connections, the structure of the neural net can be examined in more

detail. This chapter examines if this image of a neural net can be correlated to the function

it represents.

We trained three sets of neural nets. The first set was trained using satisfiable knowledge

bases. These neural nets represented functions to identify points as inside or outside of

the feasible region for a satisfiable KB. Then, a neural net was trained using unsatisfiable

KBs. The function these neural nets represented also determined whether a point in the

hypercube was inside or outside of the feasible region.

To train the nets, inputs and outputs from the feasible point classifier function were

gathered. A vector of the points tested was the input representation for the neural net. A

vector of ones and zeros, one if the point was in the feasible region and zero if the point

was not, was the associated output for the neural net. These inputs and outputs were

gathered for both satisfiable and unsatisfiable knowledge bases, and then used to train their

respective neural net.

An image was created of these neural nets based off of the connecting weight vectors.

Figure 5.1 displays the image of a neural net representing the feasible point function for a

satisfiable KB, while Figure 5.2 is that of a neural net representing the feasible point function

for an unsatisfiable KB.
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Figure 5.1: Image of Neural Net Trained With Satisfiable KB

Figure 5.2: Image of Neural Net Trained With Unsatisfiable KB

These images of the first two sets of neural nets were used to train the third, and final,

set of neural nets. For the input neural net images, if the neural net was trained to represent
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the feasible point function for a satisfiable KB, the associated input was a 1. Otherwise, the

associated input was a 0.

The final neural net model trained with the neural net images classified 100 50 atom KBs

as satisfiable or unsatisfiable. 0.5051 of the classifications were correct. This percentage is

virtually equivalent to guessing the satisfiability of a knowledge base. Therefore, an image

of the weights of a neural net modelled to represent the feasible point function for a KB

does not indicate the satisfiability of the KB.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Methods using the convex feasible region from the method ChopSAT were analyzed to

see if an efficient SAT solution or useful heuristics for solving SAT could be determined. We

proposed that certain properties of F could provide better insight into the satisfiability of a

sentence. The thesis also suggested that, due to the continuous nature of Hn, accurate atom

probabilities over all solutions could be estimated.

We explored linear programming solutions. These solutions minimized or maximized

the projection of the feasible region onto axes in various directions. The goal of this method

was to provide insight on the satisfiability of a sentence using these linear programming

projection points. Although this method performed well on KBs with 20 atoms or less, it

was proven ineffective for KBs with more than a small number of atoms.

We then examined methods for estimating atom probability over all solutions. This

thesis explored the accuracy of using the mean of projected points as atom probability

estimates. The thesis also calculated the analytic centers of feasible regions and compared

those results to the atom probabilities. Finally, the P-center was calculated on these feasible

regions and once again compared to the atom probabilities. We determined that the analytic

center method most closely approximated the atom probabilities.

Finally, we examined the structure of neural nets to determine if the structure was in-

dicative of sentence satisfiability. We proposed that neural nets trained from satisfiable KBs

could have different image structures than those trained from unsatisfiable KBs. However,

the structure of the neural net was not shown to be indicative of a SAT solution.

Many of the properties of the feasible region examined in this thesis were not proven

to be effective tools for solving SAT. However, the analytic center performed well as an
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estimate for atom probabilities. Further study would include using the analytic center in

agent decision making situations to compare its effectiveness with other methods.
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