
Singleton Elimination: A Geometric
Approach to Boolean Satisfiability

Ishaan Rajan
University of Utah

UUCS-23-001

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

12 April 2023

Abstract

This study investigates methods of reducing the complexity of solving the Boolean satisfiability
problem (SAT) from the geometrical representation of SAT as an n-D hypercube Hn. Recently,
a geometric representation of solving SAT called CHOP-SAT was proposed, in which a convex
polytope feasible region F is produced by separating (chopping) unsatisfiable models from Hn with
a hyperplane. Such a feasible region represents the solution space for a knowledge base (KB) in
conjunctive normal form (CNF). The goal of this study is to identify and eliminate singleton points
in the feasible region and explore the effectiveness of reducing the possible solution space. Volume
of F, inscribed and circum- scribed ellipsoids in and about F, containment of F in a no-solution
polytope, and detection of singleton points in a sub-hypercube Hk ⊂ Hn used to determine the ef-
ficiency of singleton elimination in distinguishing satisfiable and unsatisfiable logic sentences. The
results suggest that singleton elimination and maximum volume inscribed ellipsoids are efficient
methods for determining the satisfiability of KBs.

1

2

SINGLETON ELIMINATION: A GEOMETRIC APPROACH

TO BOOLEAN SATISFIABILITY

by

Ishaan Rajan

A Senior Thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Computer Science

The University of Utah

Thomas Henderson
Thesis Faculty Supervisor

Mary Hall
Director, School of Computing

H. James de St. Germain
Director of Undergraduate Studies

ABSTRACT

This study investigates methods of reducing the complexity of solving the Boolean

satisfiability problem (SAT) from the geometrical representation of SAT as an n-D hypercube

Hn. Recently, a geometric representation of solving SAT called CHOP-SAT was proposed,

in which a convex polytope feasible region F is produced by separating (chopping) un-

satisfiable models from Hn with a hyperplane [10]. Such a feasible region represents the

solution space for a knowledge base (KB) in conjunctive normal form (CNF). The goal of

this study is to identify and eliminate singleton points in the feasible region and explore the

effectiveness of reducing the possible solution space. Volume of F , inscribed and circum-

scribed ellipsoids in and aboutF , containment ofF in a no-solution polytope, and detection

of singleton points in a sub-hypercube Hk ⊂ Hn are used to determine the efficiency of

singleton elimination in distinguishing satisfiable and unsatisfiable logic sentences. The

results suggest that singleton elimination and maximum volume inscribed ellipsoids are

efficient methods for determining the satisfiability of KBs.

For family, friends, and faculty that have supported me along my way.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . v

LIST OF TABLES . vi

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK . 4
2.1 Boolean Satisfiabilty . 4
2.2 Probabilistic SAT . 6
2.3 ChopSAT . 8

3 SINGLETON ELIMINATION . 12
3.1 Singleton Detection . 12
3.2 Singleton Elimination . 14
3.3 Unsatisfiable CNFs and Geometry . 15

4 MAXIMUM VOLUME ELLIPSOID . 22
4.1 Maximum Volume Ellipsoid . 22

5 CONCLUSIONS AND FUTURE WORK . 27

REFERENCES . 29

LIST OF FIGURES

2.1 DPLL algorithm execution on an example Boolean formula input. 5

2.2 I3: H3 with all corners (solutions) chopped off individually. 10

3.1 The chopped polyhedron. It has corners: . 14

3.2 Singleton elimination shows evidence of polynomial time complexity. 17

3.3 Monitoring change in feasible region volume under Singleton Elimination Algo-
rithm, I3 to I8. 19

3.4 Monitoring change in feasible region volume under Singleton Elimination Algo-
rithm, I9 to I13. 20

4.1 The MVE method indicating the direction of a solution in 2-D. 23

4.2 Moving the hypercube constraints such that the H2 has a side length of 5. The
volume of the ellipse increases. 24

4.3 Calculated MVE with different offsets in H3. There are only two solutions: [0,0,0]
and [1,1,1]. 25

LIST OF TABLES

3.1 Iterations to satisfiability . 16

3.2 1 Degree Polynomial Fit . 16

3.3 7 Degree Polynomial Fit . 17

4.1 Average number of directions looked along projection vector until a solution
is indicated for 100 random KB’s with independent variables (Set1) and 100
random KB’s with no variable independence constraints (Set2). 26

CHAPTER 1

INTRODUCTION

Given a Boolean logic formula (or logical sentence from propositional calculus), the

Boolean Satisfiability Problem (SAT) is the method of determining whether there exists an

assignment of truth values to the logical variables such that the formula evaluates to true.

Recently, a geometric approach called CHOP-SAT[10] was proposed for solving SAT. This

method produces a convex polytope feasible region whose properties may expose solutions

to SAT or PSAT. This thesis explores the efficacy of such a geometric interpretation of SAT,

with a focus on dimensionality reduction.

The standard representation for a Boolean formula to facilitate analysis is conjunctive

normal form (CNF). A CNF sentence is a conjunction of disjunctions of literals, where

each conjunct is called a clause. In the geometric view, a clause allows the removal of a

subset of models that do not satisfy the sentence. This is realized as the intersection of the

corresponding half space with Hn. A feasible region F is the intersection of Hn with all

half spaces associated with the clauses. The feasible region is a convex polytope contained

within Hn.

A singleton point is defined as a point in the feasible region that is not a corner of Hn and

is the only point in some sub-hypercube Hk ⊂ Hn. Given such a geometric representation

of SAT, the goal is to identify singleton points in some Hk to qualify the removal of that Hk

from the feasible region. This results in a lower volume feasible region.

Singleton detection is achieved using linear programming to solve:

1. The identification and validation of a singleton point candidate

min f ′x subject to Ax < b

2

where x is a point in the feasible region, f is an n-tuple, and the system Ax < b defines

the half-space cuts. If the resulting point x contains all {0,1} elements, then x is a

solution to the CNF and not a singleton point. If x contains all fractional elements

outside an error ε, more formally {x ∈ Rn | 0 + ε < xi < 1− ε}, then the sentence is

unsatisfiable. When the resulting point x has a mixture of 0, 1, and fractional elements,

it is a singleton point candidate.

2. The existence of a sub-hypercube Hk ⊂ Hn | k > 0 containing the singleton point that

can be removed.

The SAT problem is of significant importance in the field of theoretical computer science

and artificial intelligence as it is the first problem proven to be NP-complete[4]. This means

that no efficient algorithm is known for solving SAT in all cases, and it is likely that none

exists. However, SAT can be solved in specific cases using specialized algorithms such as

the DPLL algorithm and its variants. Understanding the complexity of SAT and the limits

of efficient algorithms is important for understanding the limits of computation in general.

Additionally, SAT has practical applications: SAT solvers are widely used in many fields,

such as software verification, circuit design, and automated theorem proving. SAT solvers

are used to solve real-world problems in various fields, including scheduling, planning, and

resource allocation. For example, a SAT solver can be used to find a schedule that satisfies a

set of constraints, such as the availability of resources and the precedence relations between

tasks. Many other problems in computer science can be reduced to SAT, meaning that

solving SAT efficiently can be a useful step in solving other problems efficiently. One such

problem is Probabilistic Boolean Satisfiability (PSAT), an extension of the SAT problem that

takes into account the probability of its variables. PSAT has a wide variaty of applications

in probabilistic reasoning, probabilistic planning, probabilistic inference, and probabilistic

learning.

This thesis explores how the identification and elimination of singleton points con-

tributes to the efficiency and effectiveness of SAT solving. At a high level, singleton

elimination supports the search for a solution as follows:

3

• First, a knowledge base (KB) is defined as a CNF sentence, where each conjunct is

assigned a probability. In the case of solving SAT (as opposed to PSAT), each conjuct

will have a probability of 1.

• Next, a hyperplane representation of the KB is used to produce a feasible region

determined by the intersection of the non-negative half-spaces of the hyperplanes.

Such a feasible region is a convex polytope contained in Hn.

• Next, sub-hypercubes containing singleton points are removed and the number of

iterations to find a solution is observed. The volume of the feasible region in each

iteration is also monitored.

• The utility of maximum volume inscribed ellipsoids within the feasible region and

minimum volume circumscribed ellipsoids about the feasible region are explored in

determining where a solution may be found.

This approach is based on the fact that the feasible region represents the solution space

for the KB. If any of the original hypercube corners remain present in the feasible region,

the knowledge base is satisfiable, otherwise it is unsatisfiable. The following chapters of

this thesis will provide a comprehensive explanation and critical evaluation of this method

and its effectiveness.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Boolean Satisfiabilty
The SAT problem poses the following question: given a Boolean logic formula, does

there exist an assignment of truth values to its variables such that the formula evaluates

to true? A Boolean logic formula φ is composed n variables {xi}n
i=1 that take on values

{false, true} and is defined over the operators {∧,∨,¬}. An assignment of {false, true}
to all the xi is called a model or complete conjunction. A Boolean formula is said to be

satisfiable if there exists at least one model that makes the formula true, and unsatisfiable if

no such model exists. The Boolean satisfiability problem was proved to be NP-complete by

Stephen Cook in 1971[4]. This essentially proved that any claimed satisfiable assignment

of Boolean values can be verified in polynomial time by a deterministic Turing machine

and every NP problem can be reduced to an instance of a SAT problem in polynomial

time. NP-completeness can be defined as a complexity class of decision problems for which

certificates (solutions) can be checked for correctness, by an algorithm whose run time is

polynomial in the size of the input. No other NP problem is more than a polynomial factor

harder than another NP problem. A significant outcome of this theorem is that if there exists

a deterministic polynomial-time algorithm for solving the Boolean satisfiability problem,

then every NP problem can be solved by a deterministic polynomial-time algorithm.

A SAT solver is an algorithm for establishing satisfiability. A solver takes a Boolean

formula f in CNF as input and returns SAT if it finds an assignment of variables that can

satisfy f or UNSAT if it can demonstrate that no such assignment exists. Most modern SAT

solvers use some form of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm as a

basis of execution. At its core, the DPLL algorithm is a method that combines both search

5

and deduction to determine satisfiability of CNF formulae.

The DPLL algorithm is outlined below:

1. If possible, “choose” a variable from the input formula that has not already been

chosen

2. Find all unit clauses created from the previous assignment and assign the needed

value

3. Iteratively do step 2 until there is no change – in other words, found a transitive

closure

4. If the current assignment cannot yield true for all clauses, backtrack and retry a

different assignment

5. Go to 1

The DPLL algorithm terminates when either:

1. The algorithm is unable to backtrack and change a variable assignment; return no

solution

2. All clauses are satisfied and a solution is found; return

Operation Assignment Formula
(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1

choose x1 x1 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1
choose ¬x2 x1,¬x2 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1
choose x3 x1,¬x2, x3 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1
choose x4 x1,¬x2, x3, x4 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 0

Inconsistency Found
backtrack x3 x1,¬x2 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1
choose ¬x3 x1,¬x2,¬x3 (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4), 1

Solution found

Figure 2.1: DPLL algorithm execution on an example Boolean formula input.

6

2.2 Probabilistic SAT
Probabilistic Boolean Satisfiability (PSAT) is a variation of SAT in which the input is a

Boolean logic formula in CNF with a probability associated with each conjunct. The goal

here is to find a pi, a probability distribution over the models such that the probability

of each conjunct Ci is equal to the sum of the probabilities of the models that satisfy the

conjunct. Much like the SAT problem, PSAT is NP-hard, meaning that it is computationally

difficult to solve exactly in all cases, but can be approached using approximate methods

such as Monte Carlo sampling, Markov Chain Monte Carlo, and Belief Propagation.

Given any point p ∈ Hn (the n-dimensional hypercube), p can be considered as a

probability assignment for the atoms. PSAT is defined as follows: given a logical sentence in

CNF and a pi associated with each conjunct Ci, find a function π : Ω −→ [0, 1], where Ω is

the set of all complete conjunctive sentences such that 0 ≤ π(ωi) ≤ 1 and pi = ∑ωi |=Ci
π(wi).

A matrix A represents solutions to clauses in the input KB, meaning that the ith row of A

shows which complete conjunctions make the ith clause in the KB true. The probability

of the ith clause is the sum of the probabilities of the models that make it true, which

corresponds to multiplying A by the column of model probabilities. Consider the following

example:

Let π : Ω −→ [0, 1] be a valid probability distribution, that is

0 ≤ πi ≤ 1 and
2n

∑
i=1

πi = 1

KB = P ∨Q [0.8]

Given Aπ = p −→ [0 1 1 1]

P(ω1)

P(ω2)

P(ω3)

P(ω4)

= 0.8

In this example, the KB contains only one clause, so matrix A contains only one row. Models

2, 3 and 4 make P ∨ Q true, so row elements 2, 3 and 4 of A are set to 1. Some solutions

7

include:

π = [0 .8 0 0]T

π = [0 .4 .4 0]T

π = [0 .2 .2 .4]T

Consider Modus Ponens in the context of PSAT where logical variable independence is

assumed:

C1 : P [p1 = 0.7]

C2 : ¬P ∨Q [p2 = 0.7]

0.7 = Pr(P)

0.7 = Pr(¬P ∨Q) = Pr(¬P) + Pr(Q)− Pr(¬P)Pr(Q)

= (1− Pr(P)) + Pr(Q)− (1− Pr(P))Pr(Q)

= 0.3 + Pr(Q)− 0.3Pr(Q)

−→ Pr(Q) = (0.7− 0.3)/(0.7) = 0.571

Note that this Modus Ponens example does not require search and is not exponential com-

plexity.

The geometrical view of Probabilistic Boolean Satisfiability (PSAT) provides a math-

ematical framework for understanding the problem by mapping it to a geometric space.

Consider a PSAT formula with n variables and m clauses. Let X = {x1, x2, ..., xn} be the

set of variables and let F = {C1, C2, ..., Cm} be the set of clauses in the PSAT formula. Each

clause Ci is assigned a probability value pi ∈ [0, 1]; from these, we would like to determine

a set of reasonable probabilities for the atoms. The set of all possible probability assign-

ments for the variables can be represented as an n-dimensional unit hypercube, denoted

by Hn = {p ∈ Rn : 0 ≤ pi ≤ 1, i = 1, 2, ..., n}. Each clause Cj in the CNF formula defines a

n− 1 dimensional hyperplane which separates solutions of the clause from non-solutions.

8

A half-space can be mathematically represented as a set of points lying on one side of

the hyperplane, i.e., a linear inequality of the form:

a1 p1 + a2 p2 + ... + an pn ≥ b

where ai ∈ R, i = 1, 2, ..., n and b ∈ R are coefficients[15]. Assume the solutions to the

clause lie on the non-negative side of the hyperplane that satisfy the inequality. The feasible

region for the PSAT formula is defined as the intersection of all these half-spaces, denoted

by

P = ∩m
j=1 p ∈ Hn : aj,1 p1 + aj,2 p2 + ... + aj,n pn ≥ bj.

The geometrical view of PSAT provides a rich mathematical structure for the problem,

and enables the use of tools from linear programming, convex optimization, and geometric

algorithms to design efficient algorithms and heuristics for solving PSAT instances. It also

highlights the connections between PSAT and other areas of optimization and machine

learning, such as linear programming, neural networks, and support vector machines.

2.3 ChopSAT
Gomory [7] introduced the cutting plane method as an extension to Dantzig’s linear

programming approach to solving discrete variable extremum problems [5]. Gomory

provided a method so that when the objective function was maximized (e.g., using the

simplex method), if the result was a non-integral solution, then a new constraint plane was

found algorithmically to separate (cut) the non-integer solution from the integer solutions.

Chvatal [2], [3] developed this method further, proved supporting theorems for bounded

polytopes, and applied the results to solve combinatorial problems. Note that integer

programming is in NP [14].

In terms of solving SAT, Cook et al. [4] examined the complexity of cutting plane proofs,

and in particular, those for the unsatisfiability of formulae in propositional calculus. This

was done in terms of resolution theorem proving using the cutting planes method. Note

that it is straightforward to produce an equation from a disjunction; e.g., consider (a ∨ b)

which results in the equation a + b ≥ 1. Each conjunct gives rise to an equation, and the

9

set forms an integer programming problem where a and b take on {0, 1} values. Note

that linear programming relaxation can be used to allow the a and b to take on values in

the interval [0, 1] – i.e., relaxing the {0, 1} requirement. Hooker [12] provided a way to

handle generalized resolution by observing that the resolvent of two clauses corresponds

to a certain cutting plane in integer programming. Buss et al. [1] describe an extension to

Cook’s cutting plane refutation approach that applies to threshold logic analysis. For some

recent work using cutting planes, see Devriendt et al. [6] who use the method to improve

state-of-the-art pseudo-Boolean optimization. All these methods still yield exponential time

complexity for finding SAT solutions.

The Boolean Satisfiability problem can be interpreted geometrically. Given a set of n

variables, and a CNF with a set of m conjuncts {Ci}m
i=1, each conjunct can be represented

as a hyperplane of dimension n− 1. This hyperplane separates satisfactory models from

unsatisfactory models (corners of Hn). Each conjunct Ci has at least one variable assignment

that evaluates it to false. Furthermore, if there are k literals in the conjunct, there are

2n−k assignments that make it false. A hyperplane can be produced for each conjunct

that separates solutions from non-solutions. The intersection of the solution side of the

hyperplane with the hypercube Hn (representing the untouched original feasible region)

produces a convex feasible region. Applying this method to each conjunct results in a

convex feasible region that may or may not contain a corner of the original hypercube.

Given n logical variables, there are 2n models. These models are represented as n-tuples

in n-dimensional space, where satisfying models are the corners of Hn. This essentially

means that the ith axis corresponds to the values that can be assigned to the ith variable, and

these values are in [0, 1] for i = 1, 2, ..., n. Constructing the hyperplanes this way makes it

possible to separate a subset S of vertices of Hn from vertices that are not a solution. This

idea stems from the fact that every conjunct is itself a disjunction, and a disjunction is made

false by assigning a falsifying model. The set of models which do not satisfy this conjunct

includes both the falsifying models as well as all the possible assignments to the literals not

appearing in that conjunct. This turns out to be a sub-hypercube which can be separated, or

chopped, from the Hn by a hyperplane. The feasible region represents the solution space for

the KB. In the context of SAT solving, the key indicator is the existence of any of the original

10

hypercube corners in the feasible region: if there are any corners of Hn in the feasible region,

then the KB is satisfiable, otherwise it is unsatisfiable. In, a special convex polytope, is

defined as the largest feasible region for any unsatisfiable sentence. Moreover, every feasible

region produced by an unsatisfiable sentence is contained in In.

Figure 2.2: I3: H3 with all corners (solutions) chopped off individually.

The geometric approach to SAT developed some properties of In and showed that no

H0 or H1 components remained within such a feasible region[10]. Previous approaches of

converting clauses to systems of linear and non-linear equations resulted in a fundamental

problem: the need to add constraints between variables, resulting in exponential complex-

ity[9]. However, an important observation to make is that every corner of Hn is
√

n
2

distant

from the center of Hn. In fact, every satisfiable sentence results in a feasible region which

contains an Hn corner. This means that there exists some point in the feasible region that

is
√

n
2

distant from the center of Hn, and this fact enables the determination of sentence

11

satisfiability. The question arises as to what the maximal distance is of any feasible point

after the cuts are applied to a CNF with no solution. This thesis maintains the assertion that

the maximal possible distance occurs if the feasible region of an unsatisfiable CNF sentence

contains the center of a 2-D hypercube (a square) which is at distance
√

n− 2
2

. In summary,

if it can be determined that no point in the feasible region is
√

n
2

distant from the center of

Hn, then the CNF is not satisfiable.

CHAPTER 3

SINGLETON ELIMINATION

3.1 Singleton Detection
The detection of singleton points in the sub-hypercube Hk contained within Hn may help

gain insight into the existence of a SAT solution. Any vertex of a feasible region F which has

a non-integer coordinate may be a singleton point. A singleton point is defined as a point in

the feasible region that is not a corner of Hn and is the only point in some sub-hypercube Hk

of Hn. Formally, given a CNF sentence, S, over n variables, each geometric chop (see [10])

removes some sub-hypercube of Hn. The resulting feasible region, F ⊆ Hn, is a convex set,

and if bounded, is a convex polytope. F can be defined as a set of vertexes, V such that:

V = VB ∪VF where

VB = {v̄ | v̄ is a vertex of Hn}

VF = {v̄ | v̄ ∈ F but v̄ is not a vertex of Hn}

If there exists a sub-hypercube Hk ⊂ Hn such that:

(i) v̄ ∈ VF

(ii) v̄ ∈ Hk

(iii) x̄ ∈ Hk ∩ F =⇒ x̄ = v̄

then v̄ is a singleton point.

To verify candidate singleton points, it is necessary to examine the sub-hypercube Hk that

contains the singleton point. Determining Hk is straightforward: say we are presented with a

candidate singleton point p̄s = [b, f2, b, b, f5, b, f7] where b ∈ {0, 1} and fi ∈ {x | 0 < x < 1}.
In this case, Hk would be an H3 defined by the fractional coordinates f2, f5, and f7. After

13

determining the sub-hypercube Hk, a cut is added to Hn such that only Hk is kept. If the

projection onto each axis of Hn results in p̄s, then p̄s is the only point in Hk, and thus must

be a singleton point. Algorithm SDA for detecting singleton points is given below, as well

as an example.

Algorithm 1 Singleton Detection Algorithm (SDA)
On input: hp: a hyperplane representation of the KB; x̄: a candidate singleton point
On output: s: a Boolean indicating if x̄ is a singleton point; h: the subspace that contains x̄
Find fraction axes: iterate over x̄ and note which indices are not ∈ {0, 1}
Chop non sub-hypercube: fix the 0/1 dimensions so that when linear programming is
used it only considers the dimensions with fractional values.
Project: Project all fractional axes onto that normal hyperplane; if any solution point of the
linear program problem is not x̄, then x̄ is not a singleton point

Suppose we are given the following KB and corresponding hyperplane representation

where unsatisfiable solutions are shown as black dots.

KB =[1, 2, 3]

[−1, 2, 3]

[1, 2,−3]

[−1, 2,−3]

Chopping off the unsatisfiable solutions individually results in a singleton point contained

in an H2 sub-hypercube (specifically, the square where a2 = 0). The output of Algorithm

SDA run on the above KB with the projection vector [0, 1, 0] is shown below:

s = 1 h = 0 1.000 0

confirming that a singleton point exists in the H2 sub-hypercube.

14

Figure 3.1: The chopped polyhedron. It has corners:
[0.5,0,0.5; 0,0.5,0.5; 0.5,0.5,0; 1,0.5,0.5; 0.5,0.5,1; 1,1,1; 0,1,1; 0,1,0; 1,1,0]. The rightmost point

in the figure is a singleton point.

3.2 Singleton Elimination
If both a singleton point and the corresponding containing Hk can be identified, then

the Hk can be eliminated from Hn, reducing the feasible region. This is done by adding Hk

as a constraint to the hyperplane representation of the KB. The question examined here

is whether the removal of singleton points iteratively leads to an effective determination

of the (un)satisfiability of the input CNF sentence S. In this chapter, key metrics used to

monitor the performance of singleton elimination include number of iterations until no

singleton point is found, and volume of the feasible region F per iteration. Algorithm SEA

for eliminating singleton points is given below.

15

Algorithm 2 Singleton Elimination Algorithm (SEA)

Input: hp: hyperplane representation of KB
Output: hp′: hyperplane representation of KB with singleton points removed

sol: 1 if solution found; else 0
x̄: solution (if one is found)
count: number of iterations of algorithm

hp′ ← hp
sol ← 0
count← 0
done← False
P← set of projection vectors
while ¬ done do

count← count + 1
done← 1
for k = 1 : |P| do

p̄← kth vector in P
x̄ ← linprog solution for hp′ and p̄
if x̄ is ∅ then . the feasible region is empty

hp′ ← ∅
return

else if x̄ is solution then
sol ← 1
return

else if x̄ is singleton point in Hk then
update hp′ by removing Hk
done← 0

end if
end for

end while

3.3 Unsatisfiable CNFs and Geometry
An unsatisfiable Boolean formula in CNF produces a convex region F ⊂ Hn such that

no point in F is at a distance greater than
√

n−2
2 from the center of Hn. The center of any

Hk ⊆ Hn is at distance
√

n−k
2 from the center of Hn. For example, consider H3, a cube; in

order of largest to smallest distance from the center of H3, we find: corners of H3, edge

centers, 2-D face centers, and finally the center of the 3-D hypercube itself. If every point in

F is less than or equal to
√

n−2
2 distant from the center of Hn, then the Boolean formula is

not satisfiable. It is conjectured that if F is the feasible region of an unsatisfiable sentence,

then for every rotation of F about the center of Hn, all points of the rotated set are contained

16

in Hn. If a point in the rotated feasible region is not contained in Hn, then a solution must

exist.

If a Boolean formula S is inconsistent, then Is ⊆ In. Because there are no corners of Hn

in an inconsistent feasible region, projected points via linear programming that are not

completely composed of {0,1} elements are searched for and marked as candidate singleton

points.

SEA was run on feasible regions In, n = 3 to 13 to observe the performance of SEA in

reducing the feasible region. Performance is measured in terms of iterations of SEA, and

the results are provided in Table 3.1.

Table 3.1: Iterations to satisfiability

n 3 4 5 6 7 8 9 10 11 12 13
count 3 5 12 20 43 67 100 585 1149 1995 3770

Having established the performance of SEA in reducing the feasible region, we now seek to

determine its complexity as a function of n. The hope here is that a non-exponential model

with a reasonably low mean squared error (MSE) can be fit. Fitting the data to a general

linear model f (x) = ax1 + b resulted in the coefficients and MSE shown in Table 3.2.

Table 3.2: 1 Degree Polynomial Fit

a b MSE
285.39 -1578.67 567.07

Fitting the data to a general 7 degree polynomial model f (x) = ax + bx2 + cx3 + dx4 +

ex5 + f x6 + gx7 + h resulted in the coefficients and MSE shown in Table 3.3.

Fitting the data to a general exponential model f (x) = ae(bx) resulted in the following 95%

17

Table 3.3: 7 Degree Polynomial Fit

a b c d e f g h MSE
0.05 -2.47 55.22 -658.55 4518.84 -17802.26 37226.92 -31840.00 18.49

confidence interval for the coefficients and MSE:

a = 0.86 [0.25, 1.46]

b = 0.65 [0.59, 0.70]

MSE = 47.22

These functions are shown in Figure 3.2.

Figure 3.2: Singleton elimination shows evidence of polynomial time complexity.

18

In addition to measuring the performance of SEA in reducing the feasible region, we

also consider the rate of change in the volume of F , denoted by v f , as an important metric

for evaluating its effectiveness. The goal is to determine whether, as SEA iterates, v f steadily

decreases with the removal of more and more singleton points and their corresponding Hk.

The volume of the feasible region was approximated every iteration through the hit-or-miss

method. The hit-or-miss method is a Monte Carlo algorithm for volume estimation in

high-dimensional polytopes. It works by generating uniformly sampled random points

within a Hn and counting the number of points that fall inside the feasible region. The

algorithm is based on the fact that the ratio of the volume of the hypercube to the volume

of the feasible region is equal to the ratio of the number of points that fall inside the feasible

region to the total number of points generated. By repeating this process multiple times and

averaging the results, an estimate of the volume of the feasible region with a desired level

of accuracy can be obtained. The hit-and-miss method is often useful for high-dimensional

polytopes of adequate volume as other methods of volume calculation and approximation

are computationally infeasible.

In every iteration of SEA, the volume of each In reduction is monitored to analyze the

efficacy of the algorithm. For each In, the number of volume observations is equivalent to

the number of iterations in SEA except for I13, which resulted in fewer volume observations

compared to SEA iterations for I13. This is illustrated in Figure 3.3 and Figure 3.4, where

the volume per iteration for each In is shown. The observed behavior of the volume of the

feasible region approaching 0 for each In is an indication that the algorithm is effective in

identifying singleton points and removing the containing sub-hypercubes. This systematic

reduction in volume reinforces the efficacy of SEA. For In where n > 5, the number of

generated points needed to be adjusted for the larger dimensions, as using a fixed number

of generated points for every In resulted in inaccurate volume estimations. If the number

of generated points is too low, then the hit-or-miss method may fail to capture important

regions of the polytope, resulting in an inaccurate estimate of its volume.

19

Figure 3.3: Monitoring change in feasible region volume under Singleton Elimination
Algorithm, I3 to I8.

20

Figure 3.4: Monitoring change in feasible region volume under Singleton Elimination
Algorithm, I9 to I13.

21

Due to the exponential model having a larger MSE than a 7 degree polynomial model,

we can conclude that for dimensions d ≤ 13, SEA results in polynomial time SAT solving.

Regarding the rate of change in the volume of the feasible region during the application

of SEA, the data shows that the polytope volume decreases rapidly at the beginning of

the algorithm and then levels off as the algorithm removes most of the singleton points.

In every experiment, the volume of the feasible region approaches zero. Overall, these

results provide insight into the properties of unsatisfiable Boolean formulas in CNF and the

effectiveness of SEA in reducing the feasible region. The data and analysis suggest that SEA

is a promising method for reducing the feasible region of unsatisfiable Boolean formulas,

particularly for low-dimensional problems.

CHAPTER 4

MAXIMUM VOLUME ELLIPSOID

4.1 Maximum Volume Ellipsoid
The maximum volume inscribed ellipsoid (MVE) contained in the convex feasible region

F may be instrumental in determining if a solution to SAT exists. An ellipse is a set of the

form

E = {x ∈ Rn|(x− c)T A(x− c) ≤ 1}

where A is a n× n symmetric positive definite matrix and c ∈ Rn is a point called the center

of the ellipsoid. A semi-axis of an ellipsoid is defined as the line segment from the center of

the ellipsoid to the point where the axes intersect with the surface. For every bounded full

dimensional convex body Ω ⊂ Rn, there exists both a unique ellipsoid E(Ω) of maximal

volume contained within Ω and a unique ellipsoid E(Ω) of minimal volume containing

Ω[15]. An inscribed ellipsoid in a convex region can be be mapped to a circumscribed

(but not necessarily minimal volume) ellipsoid by enlarging it from its center by a factor n.

Similarly, a circumscribed ellipsoid about a convex region can be mapped to a inscribed

(but not necessarily maximal volume) ellipsoid by shrinking it from its center by a factor

of 1/n. Computing the minimum volume circumscribed ellipsoid is NP-hard, however

computing the maximum volume inscribed ellipsoid is not[8], [13]. If a minimum volume

circumscribing ellipsoid could be calculated in polynomial time, it may be possible to

determine satisfiability by checking if the maximum semi-axis is less than
√

n−2
2 .

We take advantage of the fact that methods exist to calculate the MVE of a bounded full

dimension convex body in polynomial time[16]. This allows us to explore properties of

the feasible region in the hope that it will aid in the identification of solutions. Computing

the MVE of the feasible region provides a tight ellipsoidal approximation of the region by

inscribing the ellipsoid within the region in such a way that it has the maximum possible

23

volume. Once the ellipsoid is obtained, it can be used to efficiently check the satisfiability

of a new set of constraints. In general, this ellipsoid will have one of its major semi-axis

aligned with the most anisotropic part of the feasible region F [11]. This essentially gives a

direction in which to look for a solution. Figure 4.1 shows some points sampled from the

ellipse, with a major semi-axis aligned with solution [1, 1]. It is crucial that the volume of

the MVE is detectable. In order to increase the volume, it is possible to move the hypercube

face constraints outward to allow a larger volume for the ellipsoid. Figure 4.2 shows some

points sampled from the ellipse moved outward such that the H2 has a side length of 5,

with a major semi-axis aligned with solution [1, 1].

Figure 4.1: The MVE method indicating the direction of a solution in 2-D.

24

Figure 4.2: Moving the hypercube constraints such that the H2 has a side length of 5. The
volume of the ellipse increases.

Changing the offset at which unsatisfiable solutions are chopped off has an effect on

MVE. In Figure 4.3, sampled points from MVE’s with different chop offsets are illustrated,

with blue representing the smallest offset, green representing the next smallest, and red

representing the largest.

25

Figure 4.3: Calculated MVE with different offsets in H3. There are only two solutions: [0,0,0]
and [1,1,1].

An experiment was run to investigate the utility of using the maximum volume in-

scribed ellipsoid to detect satisfiable solutions in randomly generated knowledge bases.

For n = 10 to 20, two sets of 100 random KB’s were generated, one ensuring independence

of variables and the other not. Each KB was composed of n atoms and had a maximum of

2n clauses where the maximum number of literals in any clause was n. First, each KB was

converted into a hyperplane representation, hp. For each hp, the MVE was calculated and a

projection vector from the semi-axes of the ellipsoid was derived. This projection vector

was then used as a constraint for linear programming to find a solution xs to the KB. For

every direction along the projection vector (2n directions in total), if the solution point is

more than
√

n− 2/2 + ε distant from the center of the ellipse or if xs satisfies the KB, then

xs indicates there is a solution. If xs indicates a solution, then a 1 is returned, else, a 0 is

26

returned. Table 4.1 shows the average number of attempted directions out of 2n directions

for each set of KBs that led to a solution indication for n ranging from 10 to 20.

Table 4.1: Average number of directions looked along projection vector until a solution is
indicated for 100 random KB’s with independent variables (Set1) and 100 random KB’s
with no variable independence constraints (Set2).

n 10 11 12 13 14 15 16 17 18 19 20
Set1 10.53 11.43 12.52 13.85 14.73 15.98 16.99 17.92 18.88 20.15 21.33
Set2 10.33 11.65 12.88 13.79 15.00 16.08 17.44 18.32 19.51 20.97 21.46

The experiment found that for all 100 randomly generated knowledge bases, both indepen-

dent and non-independent, at least one projection vector obtained from the MVE resulted

in an indication of a satisfiable solution when used as an input to a linear program. This

suggests that the MVE can be a useful tool for aiding in the detection of satisfiable solutions

for generated knowledge bases. The experiment also found that on average, out of the 2n

axes directions to look along the projection vector, only n were needed to indicate the pres-

ence of a solution. This suggests that the MVE is not only useful determining satisfiability,

but efficient as well.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The significance of solving the Boolean satisfiability problem efficiently lies in its po-

sition as one of the most important open problems in theoretical computer science, as a

successful resolution of the problem would have significant implications for the field of

computational complexity theory. In this thesis, we explored the use of singleton elimina-

tion and the maximum volume inscribed ellipsoid as methods for improving the efficiency

and effectiveness of SAT solving.

We defined methods to detect and eliminate singleton points in Chapter 3 and tested the

efficacy of Algorithm SEA. Promising results were found in the complexity of determining

the unsatisfiability of KB’s with all corners removed individually under SEA. Further work

on more general cases of unsatisfiability needs to be performed. Additionally, through

volume estimation, we found that SEA reduces the feasible region in all iterations in every

observed dimension, proving its ability to aid in SAT solving. Overall, singleton elimination

provided valuable insight into properties of unsatisfiable Boolean formulas and resulted in

efficient SAT solving when applied to KB’s in CNF.

In Chapter 4, we articulated a novel method of applying a maximum volume inscribed

ellipsoid to our geometric interpretation of SAT. We found that the MVE indicated a solution

in every observed experiment, requiring only a linear number of checks along its major

semi-axis to do so. The results suggest that in the context of geometric SAT, MVE may be a

useful and efficient method of determining satisfiability for certain KB’s.

Future work includes exploring the applications of SEA in industries and organizations

with high dimensional datasets. Another potential direction of solving a geometric represen-

tation of SAT is utilizing matrix shearing. We speculate that matrix shearing can be used to

transform the coordinates of solutions in such a way that preserves their relative positions

28

and orientations, but changes the shape of the feasible region. This may be a method of

radically exposing solutions, especially when a MVE is computed before shearing.

REFERENCES

[1] S. Buss and P. Clote, “Cutting Planes, Connectivity, and Threshold Logic,” Archive for
Mathematic Logic, vol. 35, pp. 33–62, 1996.

[2] V. Chvatal, “Edmonds Polytopes and a Hierarchy of Combinatorial Problems,” Dis-
crete Mathematics, vol. 4, pp. 305–337, 1973.

[3] ——, “Cutting Planes in Combinatorics,” European Journal of Combinatorics, vol. 6,
pp. 217–226, 1985.

[4] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the Third Annual ACM Symposium on Theory of Computing, ser. STOC ’71, Shaker
Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158,
ISBN: 9781450374644. DOI: 10.1145/800157.805047. [Online]. Available: https:
//doi.org/10.1145/800157.805047.

[5] G. Dantzig, “Discrete-Variable Extremum Problems,” Journal of Operations Research
Society of America, vol. 5, no. 2, 1957.

[6] J. Devriendt, S. Gocht, E. Demirovic, J. Nordstrom, and P. Stuckey, “Cutting to the
Core of Psuedo-Boolean Optimization: Combining Core-Guided Search with Cutting
Planes Reasoning,” in Thirty-Fift AAAI Conference on Artificial Intelligence, Elsevier,
2021.

[7] R. Gomory, “Outline of an Algorithm for Integer Solution to Linear Programs,” Bul-
letin of the Americal Mathematical Society, vol. 64, no. 5, pp. 275–278, 1958.

[8] J.-Y. Gotoh and H. Konno, “Minimal ellipsoid circumscribing a polytope defined by a
system of linear inequalities,” Journal of Global Optimization, vol. 34, no. 1, pp. 1–14,
Jan. 2006, ISSN: 1573-2916. DOI: 10.1007/s10898-005-3883-8. [Online]. Available:
https://doi.org/10.1007/s10898-005-3883-8.

[9] T. C. Henderson, R. Simmons, B. Serbinowski, M. Cline, D. Sacharny, X. Fan, and
A. Mitiche, “Probabilistic Sentence Satisfiability: An Approach to PSAT,” Artificial
Intelligence, vol. 278, 2020.

[10] T. C. Henderson, D. Sacharny, A. Mitiche, X. Fan, A. Lessen, I. Rajan, and T. Nishida,
“CHOP-SAT: A New Approach to Solving SAT and Probabilistic SAT for Agent
Knowledge Bases,” in International Conference on Agents and Artificial Intelligence,
Lisbon, Portugal, Feb. 2023.

[11] T. C. Henderson, A. Lessen, I. Rajan, and T. Nishida, “Chop-SAT: A New Method for
Knowledge-Based Agent Decision Making,” in International Conference on Autonomous
Intelligent Systems, Suwon, South Korea, Jul. 2023.

[12] J. Hooker, “Generalized Resolution and Cutting Planes,” Annals of Operations Research,
vol. 12, pp. 217–239, 1988.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/s10898-005-3883-8
https://doi.org/10.1007/s10898-005-3883-8

30

[13] L. Khachiyan and M. Todd, “On the complexity of approximating the maximal
volume ellipsoid for a polytope,” Cornell University, Ithaca, NY, Technical Report
TR No. 893, 1990.

[14] C. Papadimitriou, “On the Complexity of Integer Programming,” Journal of the
Association of Computing machinery, vol. 28, pp. 765–768, Oct. 1981.

[15] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York, NY: John Wiley &
Sons, 2011.

[16] Y. Zhang and L. Gao, “On numerical solution of the maximum volume ellipsoid
problem,” SIAM Journal on Optimization, vol. 14, no. 1, pp. 53–76, 2002.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and related work
	Boolean Satisfiabilty
	Probabilistic SAT
	ChopSAT

	Singleton Elimination
	Singleton Detection
	Singleton Elimination
	Unsatisfiable CNFs and Geometry

	Maximum Volume Ellipsoid
	Maximum Volume Ellipsoid

	Conclusions and Future Work
	References

