Multi-Modal Air Trajectory Traffic Management

Thomas C. Henderson, David Sacharny and Vista Marston
University of Utah

UUCS-22-005

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

31 October 2022

Abstract

Although well-established air traffic control methods exist for manned aircraft systems (MAS) and frameworks are being created for Unmanned Aircraft Systems (UAS), the issue of combined MAS-UAS coordination has not been adequately addressed. We propose a lane-based multi-modal traffic management system, called Multi-Modal Air (MM-AIR), which provides efficient and effective strategic deconfliction for MAS and UAS flying in the same airspace, as well as the capability to schedule safe trajectories for other airborne objects (e.g., artillery rounds). The major contributions are:

1. The efficient scheduling of strategically deconflicted flights of platforms with different speeds and air space requirements, and
2. The capability to schedule the safe passage of other trajectories through the lane-based flights.

1 Introduction

Unmanned Aircraft Systems (UAS) are being developed with the goal of allowing potentially thousands of flights per day in most metropolitan areas. This includes delivery of goods as well as UAS taxi services. Given that manned aircraft may traverse regions where UAS platforms are flying, it is essential to provide a coordination method to keep such flights separated by an adequate distance.
Air traffic controllers provide conflict resolution in congested areas of operation [1], e.g., airports, while pilot protocols [6, 11, 12, 13, 35] give a framework for pilots to safely avoid one another.

UAS traffic management is an active field of research, and many solutions are being studied [2, 3, 4, 5, 7, 8, 9, 14, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34]. In our own work, we have proposed a lane-based approach to UAS traffic management (UTM) [23, 22, 10, 15, 24, 26, 27, 28, 21]. In this approach, a set of lanes in the air are defined and every flight must schedule a sequence of lanes from take-off to landing. A reservation is made if the flight path never allows two aircraft to be closer than the specified safe separation distance (called headway). The Lane-Based Strategic Deconfliction (LBSD) algorithm was developed to ensure this constraint, and due to the structure of the lanes, allows a low complexity algorithm. With this approach it is possible to schedule thousands of flights in dense operation over a restricted airspace. However, our previous work considered the case where all UAS were flying at the same speed.

Here we propose to incorporate manned flights into the same traffic management system as the UAS to perform strategic deconfliction (no flight can be scheduled unless it is known to have no conflicts with any other aircraft during any portion of its flight. The above references also provide algorithms to handle contingencies that arise when flights cannot follow their assigned flight parameters. These are generally handled with the Closest Point of Approach Deconfliction (CPAD) algorithm which also takes advantage of the lane structure to guarantee efficiency. It turns out that CPAD can also be used to determine safe trajectories for flying objects crossing the lane structure.

The contributions here include:

1. The efficient scheduling of strategically deconflicted flights of platforms with different speeds and air space requirements, and
2. The capability to schedule the safe passage of other trajectories through the lane-based flights.

2 Multi-Modal Strategic Deconfliction

The integration of MAS and UAS flights into a common framework can be easily achieved by treating MAS flights just like UAS flights. That is, every flight follows the same procedure with respect to a lane-based system:

- Select a launch site from pre-defined sites.
- Select a land site from pre-defined sites.
- Select a lane sequence from launch site to land site.
- Select a speed for each lane in the lane sequence.
• Select a launch time interval (i.e., request to launch some time during this interval).

• Obtain from the UTM a designated launch time and reservations in the lane sequence for the corresponding times of passage through the lanes.

The major requirement for a multi-modal traffic management system is to allow for a variety of speeds for the aircraft; i.e., the aircraft will fly at a fixed speed in a given lane, but the assigned speed may be different in different lanes. To address this issue the original LBSD algorithm has been extended to a multi-speed LBSD (M-LBSD) algorithm.

2.1 Multi-Speed LBSD

The original LBSD algorithm was designed to handle UAS all traveling at the same speed. This is more efficient because it allows deconfliction to be achieved using only information concerning each lane independently. When a UAS can have different speeds in different lanes in its path sequence, this imposes new considerations concerning the incoming and outgoing lanes for each lane. Consider a flight, \(f \), trying to schedule its traversal times through lane \(l_i \) (see Figure 1). Let lanes \(l_{i,1} \) and \(l_{i,2} \) be two incoming lanes to lane \(l_i \), and let \(h_d \) be the minimal safe headway distance between two aircraft. Suppose that flight \(f_s \) is in lane \(l_{i,1} \) and that \(f_s \) has a very low speed, \(s_{f_s} \), so that it is near \(e_{i,1} \), the entry point to lane \(l_i \), for a long time. If flight \(f \) is moving much faster than \(f_s \), then it should not pass through \(e_{i,1} \) while \(f_s \) is closer than \(h_d \) to \(e_{i,1} \). Since \(d = rt \), the safe headway time is given by:

\[
h_t = \frac{h_d}{s_{f_s}}
\]

Thus, to determine a safe time of arrival for flight \(f \) at lane \(l_i \), the minimum speed of any flight coming into lane \(l_i \) must be used to exclude times of conflict. A similar discussion holds for all outgoing lanes from \(l_i \) as well; when scheduling a new flight \(f \) through \(l_i \) and comparing it to an already scheduled flight \(f_s \) in \(l_i \), the headway time (i.e., the buffer between flights) must be based
on the minimum of the speeds of \(f_s \) in \(t_i \) and its incoming and outgoing lanes. This analysis results in a new strategic deconfliction algorithm called \(M-LBSD \) based on these observations.

Algorithm M-LBSD (Multi-Lane-Based Strategic Deconfliction)

On input:
- lanes: lane sequence for requested flight
- speeds: requested flight’s speeds in lanes
- \([q_1, q_2]\): requested launch interval
- \(n_c \): number of lanes
- flights: flights per lane
- \(h_d \): maximum required headway distance

On output:
- Safe time intervals to launch

\[
\text{possible intervals} \leftarrow [q_1, q_2]
\]

\[
\text{for each lane } c \in \text{lakes}
\]

\[
\text{possible intervals} \leftarrow \text{possible intervals} + \text{speeds}(1:c-1)
\]

\[
\text{for each flight, } f, \text{ in lane } c
\]

\[
\text{new intervals} \leftarrow \emptyset
\]

\[
s_{\text{min}} \leftarrow \min(s_{f,c}^{c-1}, s_{f,c}^{c}, s_{f,c}^{c+1})
\]

\[
h_t = \frac{\text{length(lane } c)}{s_{\text{min}}}
\]

\[
\text{for each interval in possible intervals}
\]

\[
[t_1, t_2] \leftarrow \text{interval } i
\]

\[
\text{label} \leftarrow \text{get_label}(p_{f,1}^c, p_{f,2}^c, s_{\text{min}}, t_1, t_2, s_r, h_t)
\]

\[
\text{f_interval} \leftarrow \text{get_interval(label, } p_{f,1}^c, p_{f,2}^c, s_{\text{min}}, t_1, t_2, s_r, h_t)
\]

\[
\text{new intervals} \leftarrow \text{merge(new intervals, f_intervals)}
\]

\[
\text{end}
\]

\[
\text{possible intervals} \leftarrow \text{new intervals}
\]

\[
\text{end}
\]

\[
\text{possible intervals} \leftarrow \text{possible intervals - time to last lane}
\]

In this algorithm, \(s_f^c \) is the speed of flight \(f \) in lane \(c \); \(p_{f,1}^c \) and \(p_{f,2}^c \) are the entry and exit times of flight \(f \) through lane \(c \), and \(s_r \) is the requesting flight’s speed through lane \(c \).

Proof of M-LBSD Correctness

Suppose that a flight has been assigned a flight plan; then the algorithm guarantees that for every lane the new flight passes through, no remaining allowable time interval has any point closer than \(h_t \) to any flight’s time in the lane (note this is temporal separation). Now assume that at some point
in some lane, the new flight is distance \(d \) from some flight in the lane, and \(d < h_d \). Then:

\[
d < h_d
\]

\[
\rightarrow \frac{d}{s_{min}} < \frac{h_d}{s_{min}}
\]

\[
\rightarrow t < h_t
\]

but this violates the condition guaranteed in the interval selection.

3 Scheduling Other Airborne Objects through the Lane-Based System

Consider the case of a scenario in which a set of UAS, flying at different speeds, are traveling over an area at the same time a set of projectiles are launched through the same airspace. An initial description of a similar setup for a warfare example is given in [21].

Strategic deconfliction is achieved as follows:

- UAS flights are deconflicted using the M-LBSD algorithm.
- Deconfliction of UAS and projectiles is achieved by:
 - sample the projectile’s trajectory,
 - for each sample point, find the nearest point in the lane structure,
 - determine if any flight has a conflict at that point and time,
 - delay projectile if conflict and re-schedule.

4 Experiments

In the experimental setup we consider the trajectories of projectiles with the following characteristics: 500 unit effective range, 250 units/sec launch velocity, and \(71.7^\circ \) maximum angle of launch. Air resistance is not considered.

Figure 2 shows the simulation paths for all UAS flights (blue) and projectiles (red) traversing the region. The projectile tracks have all been deconflicted, and their paths through the lane systems pose no safety threats for the UAS flights operating there.
Figure 2: The trajectories of all UAS (blue) flying through the airspace as well as the trajectories of the projectiles (red). All trajectories are strategically deconflicted.

5 Conclusions and Future Work

The integration of MAS and UAS will require not just the development of theoretical frameworks which work well in simulation, but a detailed examination of the platform requirements for UAS to be able to follow the assigned flight plan in terms of speed maintenance, turning radius, altitude maintenance, etc. In addition, safe contingency handling measures must be developed for MAS-UAS integrated systems. Finally, robust adaptive measures like that in [25] need to be studied which allow the entire lane structure system to dynamically respond to external interference.

References

