
Applying Neural Network
Compression to the Transformer

Abhi Mayur Dubal
University of Utah

UUCS-20-012

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

28 August 2020

Abstract

The Transformer is a popular deep neural network model specialized for natural
language processing. Like many deep neural networks, the Transformer is composed
of hundreds of millions of parameters that make it favorable to undergo neural network
compression techniques. Recent research has shown success with using quantization-
aware training as a compression strategy for the Transformer and have delved into
understanding which layers are sensitive to quantization. Moreover, existing research
has used other compression strategies such as pruning but has failed to explain proper
parameter tuning and the effects of these strategies on a per layer basis for the Trans-
former. This thesis aims to provide an in-depth analysis after applying post-training
quantization, automated gradual pruning, and quantization-aware training and under-
standing their effects on the Transformer in hopes of improving uncompressed model
accuracy while achieving high compression rates for the task of machine translation.

1

	

APPLYING NEURAL NETWORK COMPRESSION TO

THE TRANSFORMER

by

Abhi Mayur Dubal

A Senior Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Computer Science

School of Computing
The University of Utah

August 2020

Approved:

____________________ ____________________
Rajeev Balasubramonian H. James de St. Germain
Supervisor Director of Undergraduate Studies

 School of Computing

Mary Hall
Director
School of Computing

Copyright c© Abhi Dubal 2020

All Rights Reserved

ABSTRACT

The Transformer is a popular deep neural network model specialized for natural lan-

guage processing. Like many deep neural networks, the Transformer is composed of

hundreds of millions of parameters that makes it favorable to undergo neural network

compression techniques. Recent research has shown success with using quantization-

aware training as a compression strategy for the Transformer and have delved into under-

standing which layers are sensitive to quantization. Moreover, existing research has used

other compression strategies such as pruning but has failed to explain proper parameter

tuning and the effects of these strategies on a per layer basis for the Transformer. This thesis

aims to provide an in-depth analysis after applying post-training quantization, automated

gradual pruning, and quantization-aware training and understanding their effects on the

Transformer in hopes of improving uncompressed model accuracy while achieving high

compression rates for the task of machine translation. 1

1We make our code available at: https://github.com/abhid1/annotated-transformer

For my parents, Mayur and Rita, and my advisor, Rajeev

CONTENTS

ABSTRACT . ii

LIST OF FIGURES . v

LIST OF TABLES . vi

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1 The Transformer . 4
2.2 Compressing DNNs . 6
2.3 Compressing the Transformer . 8

3. METHOD . 11

3.1 Problem Statement . 11
3.2 Harvard NLP - The Annotated Transformer . 11
3.3 SacreBLEU . 12
3.4 Distiller . 12

3.4.1 Post-Training Quantization . 12
3.4.2 Automated Gradual Pruning . 13
3.4.3 Quantization-Aware Training . 14

4. EXPERIMENTS AND RESULTS . 15

4.1 Setup . 15
4.2 Experiment One - Post-Training Quantization . 16
4.3 Experiment Two - Automated Gradual Pruning . 19
4.4 Experiment Three - Quantization-Aware Training . 22

5. CONCLUSION AND FUTURE WORK . 25

REFERENCES . 26

LIST OF FIGURES

2.1 Self-attention calculations depicted. An input is first embedded at the bottom-
most encoder of the Transformer using a standard embedding algorithm [22].
The embeddings are then multiplied with a query, key, and value matrix that
are learned during the training process. The query and key vectors contribute
to a score that is computing through a dot product and the score is divided
by 8 (square root of 512, the length of the key vector). SoftMax serves as
a normalization step to convert the scores and ensure they add up to one.
Finally, each value vector is multiplied by the SoftMax score to compute a
final weighted sum. This figure was taken from [2]. 5

2.2 A depiction of Multi-Head Attention and its calculations. The steps are very
similar to Figure 2.1 on page 5, but instead, self-attention is calculated eight
times to make up the eight heads. Finally, the eight generated weighted sums
are concatenated to insert into the next layer. This figure was taken from [2]. . . 6

2.3 The overall Transformer architecture depicted. The base Transformer consists
of six identical stacked encoders (left half of figure) and six identical stacked
decoders (right half of figure). This figure was taken from [30]. 7

2.4 K-Means Quantization applied by Cheong and Daniel. Centroids are first
initialized and linearly spaced and then weight tensors are mapped to their
respected centroids following the K-Means clustering approach [7]. 10

2.5 The pruning algorithm applied by Cheong and Daniel. For specific layers of
the Transformer model, if the absolute value of a weight element does not
meet the specified threshold, it is set to 0 [7]. 10

3.1 The range of unsigned asymmetric quantization. The min and max float are
mapped to the min and max of the integer range. This figure was taken from
[34]. 13

3.2 The range of symmetric quantization. The absolute value of the min and max
float are mapped to the min and max of the integer range. This figure was
taken from [34]. 13

LIST OF TABLES

4.1 The Multi30k post-training quantization results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed
under it. FF = Feed-Forward Layers, ATT = Attention Layers, EMB = Embed-
ding Layers, GEN = Generator Layer, and FULL = Total Model Compression.
We saw 8-bit asymmetric quantization of the feed forward, embedding, and
generator layers to perform the best in retaining model accuracy. We also
show that we can achieve 4x compression and incur slight BLEU score loss
when compressing the entire model using 8-bit symmetric quantization. 17

4.2 IWSLT Post-Training Quantization Results. For each cell, the BLEU score is
displayed at the top and the model compression rate is displayed under it. F
= Feed-Forward Layers, ATT = Attention Layers, EMB = Embedding Layers,
GEN = Generator Layer, and FULL = Total Model Compression. We note
slight BLEU score improvement when the embedding layers of the Trans-
former are compressed using 8-bit symmetric quantizaiton. We also achieve
good compression rates when the feed-forward, embedding, and generator
are compressed using 4-bit asymmetric quantization. We achieve 4x com-
pression with a 2% accuracy loss using 8-bit asymmetric quantization. 18

4.3 The Multi30k Automated Gradual Pruning results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed
under it. The first column represents the initial sparsity, final sparsity, and
pruning frequency levels. FF = Feed-Forward Layers, ATT = Attention Lay-
ers, EMB = Embedding Layers, GEN = Generator Layer, and FULL = Total
Model Compression. We show that pruning the feed-forward and attention
layers with an initial sparsity of 10% and final sparsity of 70% achieves a
BLEU score over our baseline with a 1.791x compression rate. Similarly, we
show we can use the same scheme and also achieve a BLEU score over our
baseline for full model compression with a rate of 2.37x. 20

4.4 The IWSLT Automated Gradual Pruning results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed
under it. FF = Feed-Forward Layers, ATT = Attention Layers, EMB = Embed-
ding Layers, GEN = Generator Layer, and FULL = Total Model Compression.
Pruning the attention layers with a 45% and 70% initial and final sparsity
with a pruning frequency of 3 achieved the largest BLEU score improvement.
We also show that pruning the full architecture using the same scheme also
shows large BLEU score improvement with a compression rate of 2.338x. 21

4.5 The Multi30k quantization-aware training results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed
under it. FF = Feed-Forward Layers, ATT = Attention Layers, EMB = Embed-
ding Layers, GEN = Generator Layer, and FULL = Total Model Compression.
8-bit asymmetric quantization to the feed-forward, embedding, and gener-
ator availed the best model accuracy for the Multi30k quantization-aware
training experiment. We also show that we can compress the model by a
factor of 8x using 4-bit symmetric quantization and still achieve a BLEU score
over our baseline. 23

4.6 The IWSLT quantization-aware training results. For each cell, the BLEU score
is displayed at the top and the model compression rate is displayed under
it. FF = Feed-Forward Layers, ATT = Attention Layers, EMB = Embedding
Layers, GEN = Generator Layer, and FULL = Total Model Compression. Ap-
plying 3-bit asymmetric quantization to the generator layer gave the best
BLEU score improvement for the IWSLT dataset. We also saw high BLEU
score improvement when applying 4-bit symmetric quantization to the feed-
forward, embedding, and generator layers of the Transformer while achiev-
ing a 3.557x compression rate. We show that we can compress the entire
model and still achieve a BLEU score higher than our baseline using 4-bit
asymmetric quantization and achieve an 8x compression rate. 24

vii

CHAPTER 1

INTRODUCTION

Deep neural networks (DNNs) have helped achieve state-of-the-art results on many ar-

tificial intelligence tasks such as computer vision, robotics, and natural language process-

ing [28]. Deploying these networks on edge devices has been an attractive goal as more and

more of these devices are being built with resources that can handle DNN workloads. Most

state-of-the-art DNNs, however, consist of a large number of parameters which make them

non-trivial for storing and running on edge devices as they require large memory resources

and in turn, would consume a lot of energy due to memory accesses [15]. Therefore, it is

crucial to deploy a compressed network that will retain as much accuracy as possible of

its non-compressed counterpart and will not exhaust a memory and battery-constrained

edge device. In addition to this importance of compressing a DNN, significant efforts have

been made into developing hardware accelerators to efficiently process DNNs including

compressed DNNs. These accelerators aim to achieve low energy consumption by using

the fewest chips possible and/or exploiting data reuse while achieving high throughput

for DNN operations [28].

DNN compression strategies aim to lessen the storage demand and energy consump-

tion of neural networks by manipulating their weight parameters. This can be accom-

plished by removing non-essential weights and lowering the numerical precision of these

weights via quantization and pruning, respectively. As the storage space of the network

decreases, the energy efficiency increases as there will be fewer memory accesses when

weight fetching and performing operations such as dot products. The goal is that after

applying DNN compression strategies to a network, the original accuracy of the network

is retained as much as possible [15]. This will require thorough analysis on the trade-offs

between compression ratio and model accuracy.

The Transformer is a popular, highly parameterized natural language representation

2

DNN that has heavily influenced many state-of-the-art pre-trained models [9, 21, 31]. This

model is built upon attention mechanisms, deviating from recurrent and convolutional

neural networks commonly used by previous DNNs specialized for natural language pro-

cessing (NLP). Like many DNNs, the Transformer puts a large demand on computational

and memory resources via weight fetching and dot products, which makes it difficult to

store on mobile systems [15]. With its success in many NLP tasks, the Transformer is one

such DNN that is attractive to undergo compression.

Recent research has shown success in compressing the Transformer and retaining its

accuracy through applying different quantization-aware training strategies, but has not

provided an in-depth analysis on compressing specific layers like [27], who applied their

own quantization strategy to the Transformer. Additionally, recent research has not shown

much success in terms of retaining accuracy after applying pruning to the network, which

we aim to show that pruning works very well for the Transformer. In this thesis, we apply

post-training quantization, automated gradual pruning, and quantization-aware training

to the Transformer network focused on achieving high compression rates and high model

accuracy. We also apply these strategies to different layers of the Transformer to study their

effects on the entire performance of the model and study the sensitivity of these layers

when they are compressed. We consider compression on the tasks of English to German

and German to English translation. We summarize our contributions as follows:

• We give an analysis of post-training quantization, automated gradual pruning, and

quantization-aware training on a per layer basis of the Transformer. We also combine

certain layers to study the effects in BLEU score and compression rates.

• We provide results from different parameter tuning of the compression schemes we

have applied.

• We achieve considerable performance improvement and compression rates for the

Transformer when we apply automated gradual pruning and quantization-aware

training.

We present background information on the Transformer network, compression, and ex-

isting research on compressing the Transformer in the following chapter. We then discuss

3

our methodologies in compressing the Transformer in Chapter 3. We share our experi-

ments and results in Chapter 4 and conclude our work along with giving suggestions for

future work in Chapter 5.

CHAPTER 2

BACKGROUND

2.1 The Transformer
The Transformer is a DNN model that formed the basis of many DNN models that

have achieved state-of-the-art results for many NLP tasks (e.g., [9], [21], [31]). NLP models

prior to the Transformer were built upon recurrent neural networks and convolutional

layers; however, the Transformer dispenses those layers and uses attention mechanisms

as a means to promote parallelization and computational efficiency [30]. The idea behind

attention is to weigh relevant parts of an input being fed into a model and then take such a

weight into account while performing a task such as machine translation [12]. In the case

of the Transformer, the attention mechanism is slightly extended to compute self-attention

which allows the model, when encoding a word in a sequence, to attend to other words in

the respective sequence (see Figure 2.1 on the next page). Self-attention aims to generate

effective encodings for sequences as they are passed through each layer of the Transformer

and is formally calculated as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V

Where Q, K, V are the query, key, value matrices that are created during the training

process of the Transformer and
√

dk is the square root of the length of the key matrix.

The standard Transformer architecture, however, computes self-attention many times

in each of its encoders and decoders. This idea known as Multi-Head Attention allows the

model to encode an effective representation of the current word sequence by expanding

its ability to focus on different positions of the entire sequence. The Multi-Head Atten-

tion mechanism in the standard Transformer architecture is constructed with eight heads,

where each head is responsible for computing matrix multiplications to calculate a final

weighted sum (Figure 2.2 on page 6).

5

Figure 2.1: Self-attention calculations depicted. An input is first embedded at the bottom-
most encoder of the Transformer using a standard embedding algorithm [22]. The em-
beddings are then multiplied with a query, key, and value matrix that are learned during
the training process. The query and key vectors contribute to a score that is computing
through a dot product and the score is divided by 8 (square root of 512, the length of the
key vector). SoftMax serves as a normalization step to convert the scores and ensure they
add up to one. Finally, each value vector is multiplied by the SoftMax score to compute a
final weighted sum. This figure was taken from [2].

Before providing input to the first layer of the Transformer, inputs are converted into

word embeddings with positional encodings to provide meaningful distances between

each word embedding. The Transformer is composed of six identical encoder stacks and

six identical decoder stacks. Each encoder first begins with a Multi-Head Attention layer

followed by a fully connected feed-forward layer. A residual connection is used between

the two layers and each layer’s output is normalized using LayerNorm [3]. Each decoder

is built identically as the encoder module but employs an additional layer that executes

Multi-Head Attention over the output of the last encoder stack. The sole purpose of this

layer is to allow the decoder to focus on important positions of the input sequence. In

6

Figure 2.2: A depiction of Multi-Head Attention and its calculations. The steps are
very similar to Figure 2.1 on the preceding page, but instead, self-attention is calculated
eight times to make up the eight heads. Finally, the eight generated weighted sums are
concatenated to insert into the next layer. This figure was taken from [2].

addition, the decoder’s self-attention layer is only allowed to attend to earlier positions of

the input sequence as subsequent positions are effectively masked out. The architecture of

the overall Transformer is depicted by Figure 2.3 on the next page.

2.2 Compressing DNNs
Running DNN workloads on mobile devices have become appealing as these devices

are being equipped with appropriate hardware to run neural networks. Running DNN

workloads on mobile devices can improve latency, inference speeds, and privacy as per-

sonal data would not need to be sent to servers as much [19]. Due to the large storage

demands many DNNs place, effective compression is necessary to ensure these networks

do not exhaust the storage and energy components of a mobile device.

Compressing DNNs is an active area of research as more and more networks are achiev-

ing high accuracies with non-trivial memory demand. There are many compression strate-

gies that can be applied to neural networks and figuring out the most effective strategies

that achieve high compression rates and retain original model accuracy requires extensive

experimentation. The most typical compression strategies include, but are not limited to,

7

Figure 2.3: The overall Transformer architecture depicted. The base Transformer consists
of six identical stacked encoders (left half of figure) and six identical stacked decoders
(right half of figure). This figure was taken from [30].

quantization and pruning.

Quantization focuses on reducing the number of bits that represent each weight in a

tensor to promote weight sharing where multiple connections in a network share the same

weight. The two main methods of quantization include post-training quantization and

quantization-aware training. Quantization and weight sharing are typically implemented

using a codebook structure that stores shared weights [15]. Post-training quantization

performs quantization on a trained model that seeks to reduce CPU and hardware ac-

celerator latency but with some cost to model accuracy. Quantization-aware training, on

the other hand, performs quantization during training time that will ultimately produce

a quantized model [1]. In quantization research, it is typical to implement quantization

while training over post-training as high accuracy is a very crucial goal to retain during

compression. There are many strategies of quantization that can be used on a network

8

(e.g., [8], [23], [32], [34]) as literature pertaining to quantization is extensive.

Pruning aims to strategically remove non-essential weights of an overly parameterized

DNN. Like quantization, there are many pruning strategies that can be applied to a net-

work (e.g., [14], [20], [24], [33]). Pruning can be applied after training a model; however,

most research involving this form of compression has suggested it to be applied during

training. Aside from inducing sparsity to promote high compression, pruning can also

help a model better generalize to ultimately improve its accuracy [18].

2.3 Compressing the Transformer
Relevant research on compressing the Transformer has seen success applying quantization-

aware training. FullyQT is a quantized Transformer developed by Prato et al. that has

achieved impressive compression rates using a quantization-aware training approach. Their

approach involves using a uniform clamping scheme where elements of a tensor are either

the max or min value of the tensor as shown below:

Q(x) = [
clamp(x; xmin, xmax)− xmin

s
] ∗ s + xmin

s =
xmax − xmin

2k − 1

FullyQT quantizes most operations of the Transformer including matrix multiplications,

divisions, and all the activations and weights of the Transformer excluding biases. They

also apply post-training quantization using the same approach and found that there was

only a slight variation in BLEU (see methodology section) [27].

[11] applied range-based linear and binary quantization during training of the Trans-

former. Range-based linear quantization scales a full floating point 32-bit value to a speci-

fied bit integer form:

Xq = round[(x f −minx f) ∗
2n − 1

maxx f −minx f
]

Binary quantization simply maps weights to a value of negative one or positive one and

can be formalized as follows:

binarize(x f) = sign(x f)

9

Due to the non-differentiability of range-based linear and binary quantization, [11] applied

the straight-through estimator (STE) during backpropagation using an identity function

[4]. 8-bit quantization of the Transformer saw a small degradation in BLEU score and

binary quantization of weights performed slightly better than 4-bit quantization of weights

and activations. Fan concluded that the Transformer is sensitive to quantization for its

activations.

This idea is supported by [29], who applied a linear and fixed-point quantization scheme

from [16], shown below to the feed-forward network during training of the Transformer:

LinearQuant(x, bitwidth) = clip(round(
x

bitwidth
)xbitwidth, minV, maxV)

In addition, [29] binarized the inputs of the query and key vectors of the Multi-Head

Attention layer. Linear and fixed-point quantization performed poorly as the compressed

models’ BLEU scores were significantly impacted compared to their uncompressed coun-

terpart.

Alongside quantization, Cheong and Daniel apply iterative magnitude pruning to the

Transformer. They performed k-means quantization (see Figure 2.4 on the following page)

where they created linearly-spaced centroids [15] and mapped weights to the closest cen-

troid. They then retrained the Transformer model and backpropagated using the centroid

values. They also performed two binarized forms of quantization. Their first method, also

shown below, sets weight tensors to one of two chosen values prior training based on their

sign bit and their second methods sets weight tensors to one of two chosen values prior

training based on comparison to the average of the two values. They also performed two

binarized forms of quantization. Their first method, shown below sets weight tensors to

one of two chosen values prior training based on their sign bit:

wbin,ij =

{
c1 i f wij > 0
c2 i f wij ≤ 0

and their second methods sets weight tensors to one of two chosen values prior training

based on comparison to the average of the two values:

wbin,ij =

{
c1 i f wij >

c1+c2
2

c2 i f wij ≤ c1+c2
2

For their pruning experiment, they applied the algorithm in Figure 2.5 on the next page

and selected the pruned Transformer model that performed well on the validation set or

10

Figure 2.4: K-Means Quantization applied by Cheong and Daniel. Centroids are first
initialized and linearly spaced and then weight tensors are mapped to their respected
centroids following the K-Means clustering approach [7].

Figure 2.5: The pruning algorithm applied by Cheong and Daniel. For specific layers of the
Transformer model, if the absolute value of a weight element does not meet the specified
threshold, it is set to 0 [7].

until a certain number of weights have been removed. They found that 4-bit k-means

quantization performed the best with a 1.57% accuracy loss and a compression ratio of

5.85x. Their best pruned model removed 50% of weights less than a certain threshold

and achieved a 6.02% accuracy loss with a compression ratio of 2. Their pruned model,

however, was not able to replicate the results of Gale et al. where they achieved 90%

sparsity through iterative magnitude pruning with an estimate of 7% accuracy loss [7,13].

CHAPTER 3

METHOD

In this chapter, we begin by explaining our problem statement, the implementation

we followed, the measurements we used for analyzing the performance of our imple-

mentation, the Distiller compression library, and compression strategies we applied to the

Transformer.

3.1 Problem Statement
As mentioned in the introduction, our work focuses on applying compression algo-

rithms to the Transformer architecture to achieve high compression rates and retain high

model accuracy. More formally, given a Transformer model M and a task T, our goal is to

derive a new Transformer model M’ that has fewer parameters and performs identically

on task T [7]. We chose T to be the tasks of English to German and German to English

translation. To understand the sensitivity of the Transformer from certain compression

algorithms, we apply such algorithms on a per layer basis followed with compressing the

entire model.

3.2 Harvard NLP - The Annotated Transformer
The Annotated Transformer is a popular and efficient implementation of the original

Transformer developed by [17] from the Harvard NLP research group. The implementa-

tion is around 400 lines of PyTorch code and is based on the OpenNMT implementation of

the Transformer. The main purpose of this implementation is to provide a comprehensive

view of the Transformer architecture and a starting place for researchers to adapt the

implementation. The code can process around 27,000 tokens on 4 GPUs.

12

3.3 SacreBLEU
SacreBLEU is a Python library developed by [26] that aids in calculating BLEU scores.

A BLEU score is calculated by comparing n-grams of the candidate translation to the n-

grams of a reference translation and is position-independent. Research work that report

BLEU scores often do not report the parameters used to calculate such scores and makes it

difficult to replicate results for intrigued researchers. SacreBLEU differs from other metrics

such as Moses’ scoring scripts as it does not require the user to handle reference tokens and

applies its own preprocessing. This prevents ambiguity in reference pre-processing which

can affect the way a BLEU score is calculated. In addition, the library makes it easy to

report parameters used when calculating BLEU scores to aid in replicating results in the

research pipeline.

3.4 Distiller
Distiller is an open-source Python package developed by Intel AI Labs that aids in

performing DNN compression research. The goal of Distiller is to improve DNN de-

sign and optimizations to promote fast and energy-efficient neural networks. Distiller’s

algorithms are primarily related to quantization and sparsification through pruning and

regularization. It allows control over applying compression algorithms using a scheduler

mechanism and YAML file configuration. Categories of compression include, but are not

limited to, weight regularization, pruning, post-training quantization, quantization-aware

training, knowledge distillation, and more [34]. We now begin discussing the different

compression techniques we chose to apply to the Transformer using Distiller.

3.4.1 Post-Training Quantization

We chose to apply unsigned asymmetric and symmetric range-based linear, post-training

quantization to the Transformer. Range-based linear quantization (see section 2.3) multi-

plies a float value with a scale factor where the scale factor is computed from the min and

max values of a tensor. There are two modes of range-based linear quantization offered

by Distiller: asymmetric and symmetric. In asymmetric mode, the min and max of the

float range are mapped to the min and max of the integer range using an offset in addition

to the scale factor. In symmetric mode, an offset is not used and the maximum absolute

13

Figure 3.1: The range of unsigned asymmetric quantization. The min and max float are
mapped to the min and max of the integer range. This figure was taken from [34].

Figure 3.2: The range of symmetric quantization. The absolute value of the min and max
float are mapped to the min and max of the integer range. This figure was taken from [34].

value between the float range is mapped to the integer range. The tradeoff between these

two modes is simplicity and utilization. Asymmetric quantization uses the full quantized

range where symmetric quantization does not if float range gravitates to a specific range.

Although this is the case, symmetric quantization is simpler in terms of implementation

than asymmetric quantization. These two modes are portrayed in Figure 3.1 and Figure

3.2 [34].

3.4.2 Automated Gradual Pruning

We also apply automated gradual pruning formulated by [33] to our implementation.

Automated gradual pruning does not require much hyperparameter tuning and does not

make assumptions of a DNN which makes it a widely applicable compression technique.

Automated gradual pruning is applied during the training process of a network where a

given initial sparsity value, si, is gradually increased to a final sparsity value, s f , over a

given number of training steps, n. The pruning frequency, ∆t, is preset before training. A

binary mask variable is added for each layer that is the same shape as the weight tensor

and determines the weight tensors that are involved in the forward pass. These masks are

updated every ∆t steps. The weight tensors that were masked and involved in the forward

pass do not get updated during back-propagation. The compression algorithm is shown

below:

14

st = s f + (si − s f)(1−
t− t0

n∆t
)3 f or t ∈ {t0, t0 + ∆t, ..., t0 + n∆t}

One of the objectives of automated gradual pruning is to prune weights intensely at the

beginning of training to remove redundant connections and gradually reduce pruning

intensity as connections lessen. Zhu and Gupta saw that after applying automated gradual

pruning, sparse models performed better than dense models which suggests that pruning

can act as a regularization technique.

3.4.3 Quantization-Aware Training

Next, we consider quantization-aware training for our implementation. Quantization-

aware training is a much favorable approach than post-training quantization as it focuses

on minimizing loss from ”aggressive” quantization. In Distiller, a full-precision copy of

weights are maintained during the training process; however, only the quantized weights

are using during inference time. Like post-training quantization, we apply an asymmetric

unsigned and symmetric range-based linear formulation of quantization-aware training to

our implementation (see Figure 3.1 and Figure 3.2).

CHAPTER 4

EXPERIMENTS AND RESULTS

We focus this chapter on detailing the experiments we conducted and the results we

collected from applying compression techniques to the Transformer. As recap, our goal

is to achieve high compression rates for the Transformer network and retain or improve

model accuracy for machine translation. In order to suggest an optimal compression

technique, we find it necessary to conduct a per layer analysis, perform compression

parameter tuning, and repeat our experiments with a larger parameterized Transformer.

We begin this chapter by discussing our experiment setup.

4.1 Setup
Our experiments were conducted using the Multi30k [10] and IWSLT English and

German data sets [6]. The Multi30k data set consists of 29,000 training data, 1,014 de-

velopment data, and 1,000 test examples with the task of translating English sentences

into German. The IWSLT data set we use consists of 196,546 training examples, 1,305

test examples, and 992 validation examples with the task of German to English transla-

tion. For the IWSLT data set, we limit the vocabulary set to contain words that appear

at least twice. We experiment with three compression strategies, namely, post-training

quantization, automated gradual pruning, and quantization-aware training. Each strategy

was tested on each data set and we analyze performance and compression rates on a per

layer basis as well as the overall model. We apply compression to the entire Transformer

architecture, but chose not to compress the sublayers as the sublayers make up a very

small portion of the entire Transformer [7]. We use the Harvard NLP’s PyTorch [25]

implementation of the Transformer and did not use beam search which was used by [30].

We trained the Transformer implementation using a single 16 GB Nvidia Titan X GPU

with a batch size of 3000 for both data sets. We used the Adam optimizer as expressed

by [30] and used Distiller as our resource for applying the three compression strategies.

16

We measure accuracy using SacreBLEU as detailed by [26]. We measure compression for

our quantization experiments as follows:

r =
nm ∗ b

nc ∗ bc + (nm − nc) ∗ b

Where nm is the total number of parameters of the Transformer model, b is the number

of uncompressed bits (32 bits for floating point tensors), nc is the number of parameters

being compressed, and bc is the desired bit compression. For our pruning experiments, we

measure compression using:

r =
nm

NNZ

Where NNZ is the number of non-zero parameters in the model. Because Distiller only

simulates compression without considering hardware resources, we did not consider im-

provements in training and inference times after applying compression for all of our ex-

periments.

Our Transformer baseline for the Multi30k data set was trained with 20 epochs and

around 484 steps per epoch which achieved a BLEU score of 34.713. This model contains

63,736,903 parameters and was trained using a source vocabulary set of 18,657 words and

target vocabulary set of 9,799 words. The baseline for the IWSLT data set was trained with

50 epochs with 1,966 steps per epoch and achieved a BLEU score of 17.637. This model

contains 106,139,542 parameters as we restricted the the vocabulary set to a frequency of

2 for frequent words. The vocabulary set for this baseline had a source vocabulary set of

55,704 words and a target vocabulary set of 32,662 words.

4.2 Experiment One - Post-Training Quantization
We apply asymmetric and symmetric post-training range-based linear quantization to

the Transformer architecture. To accomplish this, we simply take the trained Transformer

baselines that performed the best on the validation sets out of 20 epochs and use Distiller

to convert specified layers with quantization wrappers. By default, the wrappers are tuned

to quantize with 32 bit precision for activations, weights, bias, and accumulators. We

change the default precision and experiment with 16, 8, 4, 3 bits of precision for activations,

weights, and biases. We report our results in Tables 4.1 and 4.2:

17

FF ATT EMB GEN FF,EMB,GEN FULL

16-bit Asym.
34.505

1.22x

34.541

1.159x

34.505

1.118x

34.702

1.038x

34.706

1.482x

34.631

1.860x

16-bit Sym.
34.505

1.22x

34.541

1.159x

34.505

1.118x

34.55

1.038x

34.55

1.482x

34.505

1.860x

8-bit Asym.
34.431

1.421x

34.528

1.286x

34.734

1.207x

34.467

1.063x

34.752

2.115x

34.540

4x

8-bit Sym.
34.510

1.421x

34.566

1.286x

34.474

1.207x

34.608

1.063x

34.687

2.115x

34.575

4x

4-bit Asym.
34.322

1.529x

33.401

1.351x

34.374

1.25x

34.037

1.074x

33.622

2.597x

32.086

8x

4-bit Sym.
33.887

1.529x

32.722

1.351x

34.573

1.25x

34.037

1.074x

27.276

2.597x

24.849

8x

3-bit Asym.
34.362

1.588x

27.185

1.368x

34.522

1.261x

29.188

1.077x

27.924

2.754x

18.938

10.614x

3-bit Sym
33.285

1.588x

22.045

1.368x

34.431

1.261x

8.673

1.077x

16.334

2.754x

4.803

10.614x

Table 4.1: The Multi30k post-training quantization results. For each cell, the BLEU score
is displayed at the top and the model compression rate is displayed under it. FF = Feed-
Forward Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN = Generator
Layer, and FULL = Total Model Compression. We saw 8-bit asymmetric quantization of
the feed forward, embedding, and generator layers to perform the best in retaining model
accuracy. We also show that we can achieve 4x compression and incur slight BLEU score
loss when compressing the entire model using 8-bit symmetric quantization.

18

FF ATT EMB GEN FF,EMB,GEN EMB,GEN FULL

16-bit Asym.
0.216

1.135x

0.011

1.098x

17.620

1.271x

17.641

1.086x

0.216

1.697x

17.639

1.413x

0

2x

16-bit Sym.
2.487

1.135x

0.025

1.098x

17.627

1.271x

17.633

1.086x

2.483

1.697x

17.617

1.413x

.005

2x

8-bit Asym.
17.425

1.217x

17.653

1.154x

17.615

1.47x

17.219

1.134x

17.3

2.61x

16.89

1.78x

17.287

4x

8-bit Sym.
17.553

1.217x

17.613

1.154x

17.747

1.47x

16.722

1.134x

16.657

2.61x

16.96

1.78x

16.853

4x

4-bit Asym.
10.839

1.26x

8.056

1.185x

17.296

1.595x

0.001

1.16x

17.3

3.557x

.001

2.045x

0.035

8x

4-bit Sym.
6.422

1.26x

3.813

1.185x

16.849

1.595x

0.005

1.16x

0.008

3.557x

.004

2.045x

0.027

8x

3-bit Asym.
1.820

1.274x

0.780

1.193x

15.651

1.629x

0

1.167x

0

3.914x

0

2.125x

0

10.635x

3-bit Sym
1.26

1.274x

0.19

1.193x

15.339

1.629x

0

1.167x

0

3.914x

0

2.125x

0

10.635x

Table 4.2: IWSLT Post-Training Quantization Results. For each cell, the BLEU score is dis-
played at the top and the model compression rate is displayed under it. F = Feed-Forward
Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN = Generator Layer, and
FULL = Total Model Compression. We note slight BLEU score improvement when the em-
bedding layers of the Transformer are compressed using 8-bit symmetric quantizaiton. We
also achieve good compression rates when the feed-forward, embedding, and generator
are compressed using 4-bit asymmetric quantization. We achieve 4x compression with a
2% accuracy loss using 8-bit asymmetric quantization.

19

From Table 4.1, we see that applying 8-bit post-training quantization did considerably

better than other precisions in retaining model accuracy and achieving good compression

rates for the Multi30k data set. We show that we can achieve 4x compression and lose only

.4% in BLEU score for the Multi30k data set. We also show a slight increase in BLEU score

over our baseline while achieving 2.115x compression. Finally, we note significant BLEU

score drop as precision lowers when solely quantizing the attention and generator layers

of the Transformer architecture.

This idea is also supported by Table 4.2, where we saw near total accuracy drop for

the attention and generator layers as precision for quantization lowered. Unlike Table

4.1, we also saw significant BLEU score drop for the feed-forward layers as precision

for quantization lowered, but found 8-bit post-training quantization to be the best for

the layers. We suspect the attention and generator layers are sensitive to post-training

quantization and that the feed-forward layers become more sensitive to quantization as

model parameters increase. We also show that applying 8-bit, symmetric range-based

linear post-training quantization slightly increased BLEU score over our baseline for our

IWSLT experiment. Finally, we show that we can compress the model by 4x and incur a

2% accuracy loss in Table 4.2. Like in Table 4.1, we demonstrate that 8-bit post-training

quantization retained model accuracy the best across all the layers of the Transformer

while achieving considerable compression rates. We did not see a distinction in terms

of performance between asymmetric and symmetric post-training quantization as BLEU

scores varied for the two modes. We now consider automated gradual pruning for the

Transformer network.

4.3 Experiment Two - Automated Gradual Pruning
We apply automated gradual pruning through Distiller to our implementation with an

initial sparsity of 10% and a final sparsity of 70% and a pruning frequency of 1, an initial

sparsity of 45% and a final sparsity of 70% with a pruning frequency of 3, and an initial

sparsity of 90% and a final sparsity of 100% with a pruning frequency of 1. We use Dis-

tiller’s YAML file support to configure the initial and final sparsity and pruning frequency

of the compression scheme. To our knowledge, we are the first to apply automated gradual

pruning to the Transformer architecture in evaluating how it affects BLEU score. For all

20

experiments, we begin the pruning schedule at epoch 2 and end at epoch 20. We use the

compressed Transformer model that performed the best on the validation set through 20

epochs. We use Distiller’s tool for calculating model sparsity to collect our results. We

present the results of this experiment in Tables 4.3 and 4.4:

Initial / Final / Freq FF ATT EMB GEN FF,ATT FULL

10% / 70% / 1
33.077

1.384x

34.743

1.262x

32.268

1.111x

36.171

1.052x

36.292

1.791x

35.915

2.37x

45% / 70% / 3
35.423

1.467x

35.348

1.363x

31.194

1.152x

35.969

1.06x

34.577

1.81x

34.208

3.312x

90% / 100% / 1
35.423

1.656x

25.198

1.414x

31.128

1.262x

21.743

1.082x

33.090

3.175x

9.741

28.094x

Table 4.3: The Multi30k Automated Gradual Pruning results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed under it. The
first column represents the initial sparsity, final sparsity, and pruning frequency levels.
FF = Feed-Forward Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN
= Generator Layer, and FULL = Total Model Compression. We show that pruning the
feed-forward and attention layers with an initial sparsity of 10% and final sparsity of 70%
achieves a BLEU score over our baseline with a 1.791x compression rate. Similarly, we
show we can use the same scheme and also achieve a BLEU score over our baseline for full
model compression with a rate of 2.37x.

We saw varying results between the experiments with the Multi30k and IWSLT data

sets. When automated gradual pruning was applied to the feed-forward layers for the

Multi30k data set, we notice BLEU score improvement the more sparse the layers are.

The opposite was the case when pruning the same layers for the IWSLT data set. Similar

to post-training quantization, we also suspect the feed-forward layers are sensitive to

automated gradual pruning as model parameters increase.

We were amazed to see the BLEU score increase over baseline for both data sets when

automated gradual pruning was applied with a 45% initial sparsity, 70% final sparsity, and

pruning frequency of 3, to the self-attention network. We achieved a BLEU score of 35.348

with a compression rate of 1.363x and a BLEU score of 25.315 with a compression rate of

1.114x for the Multi30k and IWSLT data sets respectively. We suspect that the self-attention

21

Initial / Final / Freq FF ATT EMB GEN FF,ATT FULL

10% / 70% / 1
17.637

0x

22.296

1.134x

11.327

1.328x

11.981

1.113x

23.728

1.341x

24.679

2.37x

45% / 70% / 3
11.518

1.195x

25.315

1.114x

16.197

1.382x

12.003

1.077x

24.805

1.313x

25.032

2.338x

90% / 100% / 1
4.783

1.311x

21.416

1.186x

20.996

1.743x

2.789

1.082x

24.293

1.616x

11.842

14.514x

Table 4.4: The IWSLT Automated Gradual Pruning results. For each cell, the BLEU score
is displayed at the top and the model compression rate is displayed under it. FF = Feed-
Forward Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN = Generator
Layer, and FULL = Total Model Compression. Pruning the attention layers with a 45%
and 70% initial and final sparsity with a pruning frequency of 3 achieved the largest BLEU
score improvement. We also show that pruning the full architecture using the same scheme
also shows large BLEU score improvement with a compression rate of 2.338x.

network is resistant to automated gradual pruning. We also note varying results when

automated gradual pruning is applied to the embedding layers. We see a drop in BLEU

score accuracy for both data sets as the layer became more sparse for the Multi30k, but see

improvement for the IWSLT data set as the embedding layers become sparser.

For the Multi30k data set, we saw the biggest improvement in BLEU score when the

feed-forward and self-attention layers are 63.74% sparse, but as sparsity increased, the

BLEU score would drop. We were surprised to see that we can sparsify the feed-forward

and self-attention layers by up to 91.66% and still see better results than our uncompressed

baseline. This idea completely deviates from the sensitivity we saw with compressing

these layers through post-training quantization.

Finally, we saw that we can compress the Transformer network using automated grad-

ual pruning by a factor of 2.37x and see results better than our baseline for the Multi30k

and IWSLT data sets. We were also able to sparsify the entire model by 69.8% and still

retain 98.5% model accuracy for the Multi30k dataset. For the IWSLT data set, we show

that we can compress the model by a factor of 2.338x and improve BLEU score performance

that is over our baseline’s.

22

4.4 Experiment Three - Quantization-Aware Training
Next, we apply asymmetric and symmetric range-based linear quantization-aware train-

ing to our implementation. Like for our automated gradual pruning experiment, we again

use Distiller’s YAML configuration to configure precision for our quantization experi-

ments. Like our post-training quantization experiment, we consider 16, 8, 4, and 3 bits

of precision for activations, weights, and biases. Again, we take the compressed models

that performed the best on the validation set within 20 epochs. We report our results in

Tables 4.5 and 4.6:

Our results show that we achieved the best BLEU score of 36.280 with a compression

rate of 2.115x for the Multi30k data set. Also for this data set, we show that we can

compress the Transformer by 8x and achieve a BLEU score over our baseline when we

apply 4-bit symmetric, range-based linear quantization-aware training. Unlike our post-

training quantization experiments for the Multi30k data set, we note fairly considerable

retention across all the layers of the model as precision lowered. This idea is supported

by [34], where quantization-aware training is argued to do better in retaining accuracy

than post-training quantization because the quantized tensors are baked into the training

procedure which forces the model to learn better through smaller tensors.

In contrast with the Multi30k data set, for the IWSLT data set, we show that com-

pressing the generator to 3-bits using asymmetric unsigned quantization-aware training

achieves the higher BLEU score over our baseline and the highest BLEU score of all our

experiments. Similar to our Multi30k experiment for this strategy, we achieve a BLEU

score better than baseline applying 4-bit range-based quantization-aware training, but

for asymmetric unsigned. Like post-training quantization, we did notice a significant

BLEU score drop for the feed-forward and attention layers, again suggesting that these

layers are sensitive to quantization. Unlike post-training quantization, however, we saw

improvement in BLEU score as we lowered the precision each time we quantized the

generator layer.

23

FF ATT EMB GEN FF,EMB,GEN EMB,GEN FULL

16-bit Asym.
34.7

1.22x

34.875

1.159x

34.268

1.118x

34.524

1.038x

33.641

1.482x

35.578

1.182x

34.006

1.860x

16-bit Sym.
35.761

1.22x

35.393

1.159x

33.976

1.118x

34.069

1.038x

34.849

1.482x

34.372

1.182x

31.799

1.860x

8-bit Asym.
32.987

1.421x

34.182

1.286x

33.797

1.207x

34.961

1.063x

36.280

2.115x

32.885

1.3x

34.398

4x

8-bit Sym.
32.804

1.421x

32.574

1.286x

34.284

1.207x

34.517

1.063x

34.351

2.115x

33.932

1.3x

34.115

4x

4-bit Asym.
34.324

1.529x

35.135

1.351x

33.128

1.25x

33.457

1.074x

35.883

2.597x

31.459

1.368x

33.057

8x

4-bit Sym.
34.321

1.529x

35.582

1.351x

34.227

1.25x

34.894

1.074x

34.502

2.597x

33.238

1.368x

35.445

8x

3-bit Asym.
34.324

1.588x

34.467

1.368x

34.874

1.261x

33.495

1.077x

34.213

2.754x

35.800

1.368x

33.335

10.614x

3-bit Sym.
33.705

1.588x

34.178

1.368x

32.740

1.261x

34.370

1.077x

35.077

2.754x

34.181

1.368x

34.101

10.614x

Table 4.5: The Multi30k quantization-aware training results. For each cell, the BLEU
score is displayed at the top and the model compression rate is displayed under it. FF
= Feed-Forward Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN =
Generator Layer, and FULL = Total Model Compression. 8-bit asymmetric quantization
to the feed-forward, embedding, and generator availed the best model accuracy for the
Multi30k quantization-aware training experiment. We also show that we can compress
the model by a factor of 8x using 4-bit symmetric quantization and still achieve a BLEU
score over our baseline.

24

FF ATT EMB GEN FF/EMB/GEN EMB/GEN FULL

16-bit Asym.
17.16

1.135x

16.073

1.098x

16.291

1.271x

15.583

1.086x

16.872

1.697x

15.497

1.413x

14.188

2x

16-bit Sym.
10.092

1.135x

14.427

1.098x

15.719

1.271x

16.763

1.086x

15.918

1.697x

12.494

1.413x

16.612

2x

8-bit Asym.
13.230

1.217x

16.514

1.154x

12.686

1.47x

12.729

1.134x

14.955

2.61x

16.355

1.78x

13.804

4x

8-bit Sym.
15.266

1.217x

14.706

1.154x

14.871

1.47x

15.021

1.134x

16.486

2.61x

12.495

1.78x

16.486

4x

4-bit Asym.
12.735

1.26x

14.013

1.185x

15.464

1.595x

16.365

1.16x

20.1

3.557x

19.524

2.045x

19.636

8x

4-bit Sym.
11.518

1.26x

12.306

1.185x

17.072

1.595x

18.198

1.16x

21.611

3.557x

21.275

2.045x

15.847

8x

3-bit Asym.
10.809

1.274x

11.762

1.193x

18.154

1.629x

22.752

1.167x

9.874

3.914x

19.463

2.125x

6.415

10.635x

3-bit Sym.
10.987

1.274x

11.044

1.193x

17.153

1.629x

21.979

1.167x

10.713

3.914x

14.356

2.125x

9.478

10.635x

Table 4.6: The IWSLT quantization-aware training results. For each cell, the BLEU score
is displayed at the top and the model compression rate is displayed under it. FF = Feed-
Forward Layers, ATT = Attention Layers, EMB = Embedding Layers, GEN = Generator
Layer, and FULL = Total Model Compression. Applying 3-bit asymmetric quantization
to the generator layer gave the best BLEU score improvement for the IWSLT dataset. We
also saw high BLEU score improvement when applying 4-bit symmetric quantization to
the feed-forward, embedding, and generator layers of the Transformer while achieving a
3.557x compression rate. We show that we can compress the entire model and still achieve
a BLEU score higher than our baseline using 4-bit asymmetric quantization and achieve
an 8x compression rate.

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we considered compressing the novel Transformer architecture through

post-training quantization, automated gradual pruning, and quantization-aware training

strategies. We considered tuning different compression parameters and analyzed how

they affected performance of the overall architecture. We saw varying results from our

ablation studies when compressing individual and multiple layers of the Transformer net-

work which we believe can ultimately be leveraged in achieving higher accuracy and bet-

ter compression rates. Our results show that automated gradual pruning and quantization-

aware training can improve BLEU score when compressing certain layers and compressing

the entire model.

In the future, we wish to see how certain compression schemes work in tandem in com-

pressing the Transformer. Specifically, we would like to answer the question: Can pruning

and quantization work well together when compressing the Transformer architecture [15]?

Because of constraints with experimentation time, we would have also liked to perform

these studies on the WMT14 English to German translation task [5] as was done in [27,30].

Additionally, we would like to explore how certain design changes can be made to neuro-

morphic accelerators in efficiently processing DNNs such as the Transformer network.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] J. Alammar, The illustrated transformer, 2018.

[3] J. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, ArXiv, abs/1607.06450
(2016).

[4] Y. Bengio, N. Léonard, and A. C. Courville, Estimating or propagating gradients
through stochastic neurons for conditional computation, ArXiv, abs/1308.3432 (2013).

[5] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz,

P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and A. s. Tamchyna,
Findings of the 2014 workshop on statistical machine translation, in Proceedings of the
Ninth Workshop on Statistical Machine Translation, Baltimore, Maryland, USA, June
2014, Association for Computational Linguistics, pp. 12–58.

[6] M. Cettolo, C. Girardi, and M. Federico, Wit3: Web inventory of transcribed and
translated talks, in Proceedings of the 16th Conference of the European Association for
Machine Translation (EAMT), Trento, Italy, May 2012, pp. 261–268.

[7] R. Cheong and R. Daniel, transformers.zip: Compressing transformer with pruning and
quantization, tech. rep., Stanford University, 2019.

[8] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and

K. Gopalakrishnan, Pact: Parameterized clipping activation for quantized neural networks,
ArXiv, abs/1805.06085 (2018).

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in NAACL-HLT, 2019.

[10] D. Elliott, S. Frank, K. Sima’an, and L. Specia, Multi30K: Multilingual English-
German image descriptions, in Proceedings of the 5th Workshop on Vision and Lan-
guage, Berlin, Germany, Aug. 2016, Association for Computational Linguistics,
pp. 70–74.

[11] C. Fan, Quantized transformer, tech. rep., Stanford University, 2019.

27

[12] A. Galassi, M. Lippi, and P. Torroni, Attention in natural language processing., arXiv:
Computation and Language, (2020).

[13] T. Gale, E. Elsen, and S. Hooker, The state of sparsity in deep neural networks, ArXiv,
abs/1902.09574 (2019).

[14] Y. Guo, A. Yao, and Y. Chen, Dynamic network surgery for efficient dnns, in NIPS,
2016.

[15] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding, CoRR, abs/1510.00149 (2016).

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Quantized
neural networks: Training neural networks with low precision weights and activations, J.
Mach. Learn. Res., 18 (2017), pp. 187:1–187:30.

[17] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, Opennmt: Open-source
toolkit for neural machine translation, in Proc. ACL, 2017.

[18] Y. LeCun, J. S. Denker, and S. A. Solla, Optimal brain damage, in Advances in
Neural Information Processing Systems 2, D. S. Touretzky, ed., Morgan-Kaufmann,
1990, pp. 598–605.

[19] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin,

A. Kulik, and M. Grundmann, On-device neural net inference with mobile gpus, ArXiv,
abs/1907.01989 (2019).

[20] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for efficient
convnets, ArXiv, abs/1608.08710 (2017).

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer, and V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, ArXiv,
abs/1907.11692 (2019).

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estimation of Word Repre-
sentations in Vector Space, arXiv e-prints, (2013), p. arXiv:1301.3781.

[23] A. K. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, Wrpn: Wide reduced-precision
networks, ArXiv, abs/1709.01134 (2018).

[24] S. Narang, G. Diamos, S. Sengupta, and E. Elsen, Exploring sparsity in recurrent
neural networks, ArXiv, abs/1704.05119 (2017).

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, Automatic differentiation in pytorch, in NIPS
2017 Workshop on Autodiff, 2017.

[26] M. Post, A call for clarity in reporting bleu scores, ArXiv, abs/1804.08771 (2018).

[27] G. Prato, E. Charlaix, and M. Rezagholizadeh, Fully quantized transformer for
improved translation, ArXiv, abs/1910.10485 (2019).

[28] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient processing of deep neural
networks: A tutorial and survey, Proceedings of the IEEE, 105 (2017), pp. 2295–2329.

28

[29] A. P. Tierno, Quantized transformer, tech. rep., Stanford University, 2019.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, Attention is all you need, ArXiv, abs/1706.03762 (2017).

[31] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, Ernie: Enhanced language
representation with informative entities, ArXiv, abs/1905.07129 (2019).

[32] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients, ArXiv, abs/1606.06160 (2016).

[33] M. Zhu and S. Gupta, To prune, or not to prune: exploring the efficacy of pruning for model
compression, ArXiv, abs/1710.01878 (2018).

[34] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, Neural network distiller:
A python package for dnn compression research, ArXiv, abs/1910.12232 (2019).

