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Abstract

Recent systems such as SLAM, Metal, and ESP help programmers by automating reason-
ing about the correctness of temporal program properties. This paper presents a technique
calledproperty synthesis, which can be viewed as the inverse of property checking. We
show that the code for some program properties, such as proper lock acquisition, can be
automatically inserted rather than automatically verified. Whereas property checking an-
alyzes a program to verify that property code was inserted correctly, property synthesis
analyzes a program to identify where property code should be inserted.

This paper describes a path-sensitive analysis that is precise enough to synthesize property
code effectively. Unlike other path-sensitive analyses, our intra-proceduralpath-precise
analysis can describe behavior that occurs in loops without approximations. This precision
is achieved by computing analysis results as a set ofpath machines. Each path machine
describes assignment behavior of a boolean variable along all paths precisely. This paper
explains how path machines work, are computed, and are used to synthesize code.
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ABSTRACT

Recent systems such as SLAM [3], Metal [11], and ESP [8]
help programmers by automating reasoning about the correct-
ness of temporal program properties. This paper presents a
technique calledproperty synthesis, which can be viewed as
the inverse of property checking. We show that code for some
program properties, such as proper lock acquisition, can be au-
tomatically inserted rather than automatically verified. Whereas
property checking analyzes a program to verify that property
code was inserted correctly, property synthesis analyzes a pro-
gram to identify where property code should be inserted.

This paper describes a path-sensitive analysis that is precise
enough to synthesize property code effectively. Unlike other
path-sensitive analyses, our intra-proceduralpath-precise anal-
ysis can describe behavior that occurs in loops without approx-
imations. This precision is achieved by computing analysis re-
sults as a set ofpath machines. Each path machine describes
assignment behavior of a boolean variable along all paths pre-
cisely. This paper explains how path machines work, are com-
puted, and are used to synthesize code.
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1. Introduction

Many program verification tools [3, 6, 8, 9, 10] have recently
been designed to help programmers reason about the correct-
ness of temporal program properties. Examples of such prop-
erties are adherence to synchronization, consistency, and re-
source allocation protocols. Many of these properties, such as
proper lock acquisition, are also ideal candidates for automatic
synthesis of code. In other words, given a description of where
locking code should be inserted, compiler analyses can be used

I = 0; J = 0; K = false;

while (true) { 

 if (!hasNext(J)) break;

 J = next(J);

 Y = process0(J);

 if (J > I) 

 { I = J; K = Y;}

}

if (K) process1(I);

return I;

I = 0; J = 0; K = false;

while (true) { 

 if (!hasNext(J)) break;

 J = next(J);

 if (!K) acquire(LK);

 Y = process0(J);

 if (J > I) 

 { I = J; K = Y;}

 if (!K) release(LK);   }

if (K) process1(I);

if (K) release(LK);

return I;(a) (b)

Figure 1:A code fragment (a) and an implementation of a lock acqui-
sition property in this code fragment (b).

to insert the code automatically. In this paper we describeprop-
erty synthesis, which can be viewed as turning automatic prop-
erty checking on its head.

Property synthesis requires a program analysis that is com-
parable to a programmer’s “best effort.” As an example, con-
sider the code in Figure 1 (a), which is not synchronized. This
code traverses a list, processes elements, and keeps track of
the largest element for future processing. Inserting synchro-
nization code results in the code in Figure 1 (b). The locking
property requires that lockLK be held for each element from
before aprocess0() call until after a matchingprocess1()
call. If process1() will not be called for the element, then
the lock can be released after theprocess0() call is made. A
good implementation of this property releases the lock as soon
as it is known thatprocess1() will not be called on an ele-
ment that was already processed. This example demonstrates
that property synthesis is general enough to handle arbitrary
looping behavior.

The tricky part about this example are the loop-carried de-
pendencies created by assigningI andK. WheneverI andK are
assigned toJ andY, the lock can be released ifK happens to
be false. For property synthesis to be effective, this behavior
must be identified via analysis. However, we know of no ex-
isting analysis that can identify lock release opportunities this
precisely.

Our technique for property synthesis is performed in three
steps. The first step automatically adds annotations that setup
property-specific analysis problems, as well as property-specific
code whose reachability depends on solutions to these anal-
ysis problems. A generic description of these annotations is



expressed in a meta-programming language that is outside the
scope of this paper: consider it to be similar to AspectJ [13].
The second step solves the analysis problems specified in the
annotated program. In the final step, solutions computed dur-
ing analysis are used to determine when property-specific code
added in the first step is reachable, which results in a modified
program that implements the property.

This paper describes the analysis step of property synthe-
sis, which must compute results with enough precision to im-
plement a property effectively. Our analysis technique focuses
only on examining the scalar boolean assignment behavior of
a procedure. As noted by Ball and Rajamani, reasoning about
behavior related to a temporal safety property can be reduced
to boolean assignment problems that are cheaply and precisely
analyzed [2]. The annotations in the first step are expressed
as boolean variables that are assigned in strategic places in the
program. Our annotations can even express backward analysis
problems.

We have developed an intra-procedural “path-precise anal-
ysis” (PPA) that solves boolean assignment problems. PPA is
similar to other path-sensitive analyses [5, 8, 12, 14, 15, 17] that
qualify results to distinguish between the behaviors of differ-
ent execution paths. Traditional meet-over-all-paths data-flow
analyses (DFAs) are limited to describing behavior according
to points in a control-flow graph (CFG). Path-sensitive analyses
improve the precision of DFA with simple boolean path predi-
cates that can distinguish between some paths in a CFG. How-
ever, these predicates are not powerful enough to distinguish
between the different behaviors of multiple looping execution
paths.

PPA handles looping paths by computing analysis results as a
set ofpath machines, which are finite-state machines that each
describe boolean assignment behavior for one variable. A path
machine is a state-transition system that can describe arbitrary
looping execution paths in a procedure. By specifying states
where boolean variables are true or false, path machine effec-
tively describe the control-flow of boolean assignment behav-
ior, rather than describing such behavior according to a CFG.
The worst-case time complexity of PPA isO(EL), whereE is
the number of boolean assignments being analyzed andL is the
level of loop nesting in a procedure.

In this paper, we use proper lock acquisition as the primary
example of a property that can be synthesized. However, prop-
erty synthesis is applicable to other kinds of properties as well.
Error-handling protocols are properties that require reasoning
about potential failures that occur between how some data is
generated and is used. For example, data from user input must
be validated before it can be used to update a database. Con-
sistency protocols are properties that require reasoning about
when some operation has occurred so some other operation can
invalidate or update assumptions. For example, repainting of a
GUI widget must occur after its visible state has been updated.
Code for both error handling and consistency protocols can be
addressed by property synthesis.

The rest of this paper is organized as follows. Section 2
describes the four steps of property synthesis. Section 3 de-
scribes an algorithm for path-precise analysis that operates over
boolean assignment procedures to compute path machines. Sec-
tion 4 discusses issues related to property synthesis and path-
precise analysis. Related work and our conclusions are pre-
sented in Sections 5 and 6.

AbstractionOriginal Program
Annotated 

Program

Regular 

Boolean

Program

Path MachinesProgram + Property

Annotation

Analysis
Synthesis

Property Description

Figure 2:An overview of property synthesis steps.

2. Property Synthesis

Our technique for property synthesis is a multi-step process
that is illustrated in Figure 2. The annotation step takes a pro-
gram and a property description and produces a version of the
program annotated with property details, which is suitable for
analysis but not execution. The abstraction step transforms the
annotated program into a regular boolean program, which only
describes the annotated program’s control flow and boolean as-
signment behavior. In the analysis step, the regular boolean
program is analyzed to compute a model of path machines,
which precisely describes the boolean assignment behavior of
the annotated program. Finally, the synthesis step uses the
model of path machines to transform the annotated program
into an executable program that implements the property.

2.1 Annotation
Property descriptions consist of two parts: annotations that

express an analysis problem and property code whose reach-
ability depends on a solution to the analysis problem. Anno-
tations are added to a program according to a description of
the property expressed as a set of rules. The rules specify how
annotations are added according to landmarks that can be iden-
tified in a program using a flow-insensitive analysis. For ex-
ample, a generic description of the lock acquisition property
implemented in Figure 1 (a) can be expressed as the following
two rules:

1. Before procedureprocess0() is called, the lockLKmust
be acquired if it is not held already;

2. Procedureprocess1() can be called after aprocess0()
call with the same index only if lockLK is held over the
span of the two calls.

A meta-programming language for expressing property de-
scriptions is not described in this paper. Such a language needs
to associate annotations with easily identified points in the pro-
gram, in a manner similar to how advice is added at join points
in the aspect-oriented programming language AspectJ [13].

Property code added during annotation specifies actions that
should be performed in certain situations: acquire a lock before
a call toprocess0() when the lock is not already held. Sit-
uation descriptions can take into account the location in code,
such as before aprocess0() call site, or invariants over pro-
gram behavior, such as whether a lock is held. Whether an
invariant is satisfied is determined by testingannotation vari-
ables, which are boolean variables tested and assigned for anal-
ysis purposes only.

LockLK can be released when no value used in aprocess0()
call can flow to aprocess1() call. Therefore, annotation vari-
ables are needed to track how values flow through the code.
Adding such annotations to the code in Figure 1 (a) results in



I = 0; J = 0; K = false; 

if (!?USED && LK_H)

{ LK_H=false; release(LK); } 

while (true) { 

 X = hasNext(J); if (!X) break;

 if (...) {LK_H=false;release(LK);}

 J = next(J); 

 if (!LK_H) {LK_H=true;acquire(LK); }

 Y = process0(J); J_IS = J;

 if (...) {LK_H=false;release(LK);}

 Z = I > J;

 if (...) {LK_H=false;release(LK);}

 if (Z) { I = J; K = Y; I_IS = J_IS;} }

if (...) {LK_H=false;release(LK);}

if (K) { process1(I); USE = I_IS; }

if (...) {LK_H=false;release(LK);}

return I;
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N
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Figure 3:The code from Figure 1 (a) with lock property annotations.
Labels for each line are specified on the left.

the code of Figure 3. For illustration purposes, the lines are
labeled in this code, and the labels will be used to refer to this
code throughout the synthesis process.

TheJ IS andI IS variables keep track of elements that are
used inprocess0() calls. Whenprocess0() is called at line
Y with the variableJ as an argument,J IS is assigned toJ.
ThoughJ is not a boolean value in the program, it will later be
considered as a booleanselect value, which will be explained
in Section 2.2. When the value inJ is assigned to variableI at
line M, the variableJ IS is assigned toI IS to specify thatI is
now an alias ofJ. The variableUSE tracks when elements are
used in aprocess1() call. TheI IS variable is assigned to
theUSE variable whenever theprocess1() call executes.

Figure 3 also shows the lock release and acquire property
code adding during annotation. The annotation variableLK H
tracks whether lockLK is held. At lineQ, just beforepro-
cess0() is called, annotation code tests theLK H variable, ac-
quires the lock if it is not held, and setsLK H to true. LinesRA,
RB, RC, RD, RE, RF, and other lines not illustrated in Figure 3
release the lock. Because a lock release might occur anytime
the specified invariants are satisfied, the code is inserted be-
tween every statement of the program. During synthesis, most
of the lock release code will be eliminated because they are
never reachable during execution. In Figure 3 the lock release
condition is expressed at lineRA and abbreviated for other lock
release lines. Lock release occurs when the lock is held (LK H),
and when no values used in previousprocess0() calls can
be used in futureprocess1() calls. This last condition is ex-
pressed as!?USE, which is true only if variableUSE cannot be
assigned to true in the future. The future operator? enables
reasoning about the possibility of an event occurring in the fu-
ture via “reachability” relationships, which can be computed by
a static program analysis.

2.2 Regular Boolean Programs
After a program has been annotated with property details, it

if (L0)                          L0 = 0, L1 = 1;

if (L1)                   X = *, L1 = 0, L2 = 1;

if (L2 && X)              J = @, L2 = 0, L3 = 1;

if (L3)         Y = *, J_IS = J, L3 = 0, L4 = 1;

if (L4)                   Z = *, L4 = 0, L5 = 1;

if (L5 &&  Z)K = Y, I_IS = J_IS, L5 = 0, L1 = 1;

if (L5 && !Z)                    L5 = 0, L1 = 1;

if (L2 && !X &&  K)  USE = I_IS, L2 = 0, L6 = 1;

if (L2 && !X && !K)              L2 = 0, L6 = 1;

if (L6)                          L6 = 0;

BGN

X

N

Y

Z

V

NOP

P

NOP

RT

Figure 4: An RBP of the annotated code in Figure 3;0 is true,1
is false,* is an unknown values, and@ is a select values. Initially
all variables exceptL0 are false. Annotation code line labels for each
instruction are listed on the left.

is abstracted into aregular boolean program(RBP). An RBP
is similar to a boolean program [2], where the only data type
is boolean. Unlike a boolean program, an RBP is a set of un-
ordered guarded assignments to boolean variables. Each pro-
cedure in a program is expressed and analyzed separately in an
RBP; i.e., RBPs do not support inter-procedural analysis.

The annotated code in Figure 3 is translated into the RBP in
Figure 4. Variables are added to the RBP to track control flow.
Following each guard is a set of assignments to boolean expres-
sions that can refer to variables andunknown values(*). Un-
known values in boolean programs [4] are non-deterministically
true or false. They express abstracted details about a program’s
behavior that are either unknown statically, or are otherwise
computationally too complex to be expressed in an RBP; e.g.,
general arithmetic. In Figure 4, unknown values are used to de-
scribe the unknown behavior of calls tohasNext() andpro-
cess0(), and the expressionj > i, which are assigned to
variablesX, Y, andZ.

Assignments in RBP instructions can also occur toselect val-
ues, which are similar to unknown values in that they are non-
deterministically true or false. However, a select value will be
true exactly once per instruction it is assigned. Select values are
used to describe non-boolean values whose identities are sig-
nificant even when they are created in loops; e.g., thenext()
result in Figure 3. Values created in a loop can have relation-
ships with each other that are not shared across multiple loop
iterations. For example, thenext() result in Figure 3 is related
to theprocess0() result created in the same loop iteration. If
the loop breaks and somenext() result is assigned toI, then
theprocess0() result from the same iteration is assigned to
K. Therefore, whether aprocess1() call is reachable for some
next() result depends on theprocess0() result in the same
iteration being true. To maintain these relationships, a select
value is true only for some arbitrary loop iteration during anal-
ysis, which can then be generalized to all loop iterations. How
analysis later handles select values is crucial to reasoning about
behavior in loops, and will be described in depth in Section 2.3.

Guards are the only way to represent control flow in an RBP.
Control flow of an RBP is very simple and can be described
with respect to a clock. On every tick of the clock, every in-
struction is executed, although the guard for only one instruc-
tion is ever satisfied per clock tick. Each instruction is guarded
by a CFG variable, which corresponds to when the RBP in-
struction executes in the annotated code’s CFG. In Figure 4,
all variables prefixed by anL are CFG variables. Initially, all



CFG variables are false except forL0, which acts as the entry
point. Each RBP instruction is also associated with a line la-
bel from the annotated code, which we use to identify an RBP
instruction. The last two assignments of each RBP instruction
in Figure 4, except for instructionRT, assign one CFG variable
to false and assign another CFG variable to true to implement
control flow. By incorporating CFG information into an RBP
through assignment and guards, control-flow analysis is com-
bined with assignment analysis. To represent procedure termi-
nation, all CFG variables are set to false, which is what occurs
at instructionRT.

Since an RBP can implement arbitrary non-recursive branch-
ing (e.g., gotos), transforming a procedure into an RBP is sim-
ple. Using a flat representation of a procedure’s code, such
as in a register transfer language (RTL), all instruction labels
are transformed into CFG variables that are always assigned to
false unless the instruction should execute. All registers or vari-
ables in the RTL become variables in the RBP. All boolean ex-
pressions that are not formed using logical operators are trans-
lated into unknown values. Non-boolean expressions are trans-
lated into select values.

RBPs are useful because their analysis semantics can be de-
scribed according to a finite state-transition system that pro-
cesses strings of unknown values. Using the clock analogy to
describe RBP behavior, every clock tick is associated with an
arbitrary boolean value that determines whether an unknown
value assigned on that clock tick is true or false. These clock
ticks form the basis of a simple boolean-state transition system.
The truth values of transitions in an execution path describe
what assumptions execution paths depend on about unknown
value behavior, which do not exeactly correspond to branches
taken.

2.3 Path Machines
A path machinedescribes boolean variable assignment be-

haviors in an RBP through a state-transition system. Intuitively,
a path machine describes assignment behavior with respect to
feasible execution paths through the code being analyzed. Path
machines are computed by analyzing the RBP representation
of a procedure, and are precise with respect to the RBP. The
path-precise analysis that computes path machines is described
in Section 3.

One path machine describes one variable in the RBP. Path
machines are deterministic binary-transition finite-state machines
(FSMs) whose accept states specify where in a program’s exe-
cution a variable is true and non-accept states specify where a
variable is false. Path machines support all the basic FSM oper-
ations, which correspond to boolean operations over variables
being described: FSM complement is logical negation, FSM
union is disjunction, and FSM intersection is conjunction. For
example, the expression!?USE || LK H is described by a path
machine that is formed by complementing the path machines
for variable?USE, and unioning it with theLK H path machine.
Path machines can also be minimized using traditional FSM
minimization algorithms.

A path machine is shown in Figure 5 that describes the as-
signment behavior of variablesK. For illustration purposes only,
if both of the transitions from one state go to the same state, the
transitions are illustrated as one unlabeled transition. Branch-
ing transitions are labeled with+ for true or- for false. Also,
states are labeled according to the RBP instructions whose guard
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Figure 5: A path machine that describes how variableK is assigned
in Figure 4. States where the variables are true are black background
with white foreground, and the start state has an extra circle around
it. States are labeled according the RBP instructions they correspond
to and are subscripted when labels are duplicated; unlabeled states il-
lustrate behavior that continues forever and transition to themselves.
Dashes abbreviate multiple transitions that do not affect behavior.
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Figure 6:Path machines for variablesI IS (a) and?USE (b), and the
path machine?USE (c) after it undergoes select value elimination.

is satisfied, or executes, on the state’s transitions. RBP instruc-
tions are labeled according to line labels in the annotated code
of Figure 3; e.g., the start state is labeledBGN because on the
first transition the assignments of instructionBGN will be eval-
uated. Branching occurs from a state in a path machine when
path behavior diverges on the basis of an unknown value cre-
ated at the state. For example, because theY variable can be
assigned toK and the path machine tracksK’s value, the un-
known value computed at stateY0 can change the value ofK.
The K path machine describes howK is initially true and be-
comes false afterN0 executes. In order forK to go from true
to false in one loop iteration, the call tohasNext() and eval-
uation ofi > J must be true at statesX0 andZ0, and a call to
process0() at stateY0 must be false.

The path machines in Figure 6 demonstrate the semantics of
select values and the future operator?. A select value is simi-
lar to an unknown value except that it accepts exactly one true
transition per label. In Figure 4, a select value is created at
instructionM. Any path that passes through states with theM
label must contain exactly one true transition from one of these
states. TheI IS path machine in Figure 6 (a) describesI IS
assignment behavior, whereI IS is assigned to a select value
at instructionN. Because stateM0 creates a select value that de-
termines whetherI IS becomes true, a branch is made. If the
select value is false, then the path loops through theM0 state un-
til the select value is true. The false transition from stateX1 is
not part of a feasible path, because then the loop would exit and
the select value could not be true exactly once. IfhasNext()
never returns true, indicating that the list is empty, then the false
transition occurs from stateX0 and stateX1 is never reached.



I = 0; J = 0; K = false; 

if (!?USE&&LK_H) release(LK); 

while (true) { 

 X = hasNext(); if (!X) break;

 if (!?USE&&LK_H) release(LK); 

 W = next();

 if (!LK_H) acquire(LK);

 Y = process0(W);

 if (!?USE&&LK_H) release(LK); 

 Z = compare(V,W));

 if (!?USE&&LK_H) release(LK);

 

 if (Z) { I=J; K=Y;}           }

if (!?USE&&LK_H) release(LK); 

if (K) { process1(I);   }

if (!?USE&&LK_H) release(LK); 

return V;
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false

false

!K

!K&&!Y

!K&&Y&&!Z

||K&&!Y&&Z

false

K

Figure 7: Annotated code from Figure 3 withoutLK H variable as-
signments; the right column specifies under what conditions annotation
code executes using a boolean expression.

Once the true transition throughM0 is taken and if the evalua-
tion of i > j at stateZ0 is true, thenI IS is assigned to true
at stateN0. The path can continue through stateM2. Since a
true transition for a state with the labelM was already consid-
ered, only a false transition can be considered from stateM2b.
If stateN2 is reached, then the select value assigned toI IS at
that state will always be false.

The visual structure of theI IS path machine in Figure 6 (a)
shows thatI IS is only contiguously true, so only one assign-
ment ofI IS to onenext() result is described. Other assign-
ments ofI IS to anext() result are false because the select
value is only true once. As a result, theI IS path machine
describes when anext() result in an arbitrary iteration is as-
signed to variableI, and how long it remains assigned toI in
successive loop iterations. It does not describe whetherI IS is
assigned to “some”next() result.

The path machine for variable?USE is shown in Figure 6 (b),
and has a structure similar to theI IS path machine. Variable
?USE is true in states that can reach stateP, which callspro-
cess1() while I IS is still true. The non-determinism of a
select value must be eliminated from a path machine before it
is used for synthesis. A select value is eliminated by unioning
the behavior of path segments where the select value is assumed
true into the behavior of path segments where the select value
is assumed false. Intuitively, the result is a path machine that
specifies behavior about an expression value for all loop iter-
ations, not just an arbitrary iteration. The?USE path machine
with its select value eliminated is shown in Figure 6 (c). This
path machine is true when anext() result created in stateM0

or M2 can reach stateP with a trueprocess0() result created
at stateY0 or Y2 in the same iteration. Otherwise, the path ma-
chine is false and the lock can be released.

2.4 Synthesis
The synthesis step uses path machines to determine when

property code is reachable during execution. Property code can
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be resolved to one of three conclusions: it always executes,
in which case it is left in the program; it never executes, in
which case it should be removed from the program; or it exe-
cutes conditionally, in which case it is left in the program with
a dynamic test. Figure 7 lists resolution results for the propery
code in Figure 3 in its right column. TheQ line of lock acquire
code executes whenK is false, theRF line lock release code
executes whenK is true, and theRA, RB, andRE lines of lock
release code never execute. Lock release code at linesRC and
RD execute according to expressions overK, Y, andZ.

Conditions under which annotation code can execute are de-
termined by looking at the guard in its controllingif test, and
implementing the guard expression with path machines. Given
property code located at some label, a path machine that de-
scribes its guard behavior, and states in the path machine with
the same label as the code, the following can occur: the states
are all true, in which case the code executes unconditionally;
the states are all false, in which case the code never executes;
or some of the states are true and some of the states are false, in
which case code execution is contingent on conditions known
at run time. For the last case, conditions are never derived from
annotation variables, which are always removed from the pro-
gram. However, they can be derived from original variables or
new variables added to the code specifically for dynamic test-
ing.

Figure 8 illustrates the path machine for the variableLK H.
Lock acquisition occurs only in stateQ0 and lock release oc-
curs in statesRC0, RD1, RD4, andRF3. Instruction labels cor-
respond to static locations in the CFG, so states can always be
disambiguated by their labels at run time using CFG informa-
tion. However, multiple states with the same label cannot be
distinguished using the CFG alone. When property code exe-
cutes in a state that is identified by an ambiguous label in a path
machine, it must be guarded to ensure that it executes only in
the right states. This condition can be computed by tracking
transitions in a path machine at run time. For example, state
RC0 can be disambiguated from statesRC3 andRC4 by noting
that if the true transition fromZ1 is taken, thenRC3 will not
execute until the true transition from stateZ4 is taken. This
expression corresponds to the current value of theK variable,
whereRC3 will not execute unlessK is false. StateRC3 is only
entered from the false transition of theY0 state, so the expres-
sion that guardsRC3 is equivalent to!K && !Y. However, be-
cause this expression uses multiple variables, it is not feasible



Z = false;

while (true) {

 X = !Z;

 while (true) {

  Y = getY();

  if (Y == Z)

   break;

 Z=Y&&X; X=Y;

}}

if (L0)  Z = 0, L0 = 0, L1 = 1;

if (L1)  X = *, L1 = 0, L2 = 1;

if (L2)  Y = *, L2 = 0, L3 = 1;

if (L3&&(!Y&&!Z)) 

                L3 = 0, L1 = 1;

if (L3&&(Y||Z)) 

Z = Y&&X,X = Y, L3 = 0, L2 = 1;

A

B

C

D

E

Figure 9:A code fragment with a two-level nested loop structure and
its corresponding RBP; line labels are listed in the left column.

to reuse an existing variable to describe it. Instead, new vari-
ables and new assignments can be generated automatically to
track the transitions that determine when the!K && !Y region
of the path machine is entered.

Once path machines are used to resolve the reachability of
property code, annotation variables are removed from the code.
For Figure 7, this results in code that is similar to the code of
Figure 1 (b). However, the solution computed by property syn-
thesis is slightly more efficient and less obvious: it can release
a lock before thei > j expression at lineZ is evaluated. This
replaces the one line of lock release code in the loop of Fig-
ure 1 (b) with three lines that enable the lock to be released a
few instructions sooner.

3. Path-Precise Analysis

Path machines used in property synthesis are computed with
a path-precise analysis that does not utilize any of the approxi-
mations used in a MOP (meet-over-all-paths) data-flow analy-
sis. The only time approximation occurs in property synthe-
sis is when the annotated code is transformed into an RBP,
where unknown values approximate behavior that is either un-
known or not expressible through boolean assignments. This
section describes how path machines are computed from arbi-
trary RBPs without any loss of precision.

Each variable in an RBP is associated with one path ma-
chine. PPA computes path machines by tracing longer and
longer paths through an RBP. The key insight is that a fix-
point can eventually be recognized if path machine construc-
tion makes compact guesses about paths in the RBP longer than
they are precise for. In other words, the path machines that are
precise for paths ofK length express behavior that is possibly
wrong for paths of lengthK + 1. When a path machine is re-
fined to be more precise for a longer path, states must be reused
to represent this precision viastate recyclingbefore new states
are created, otherwise a fix-point can never be identified. State
recycling is similar to FSM minimization, except that equiva-
lence between the original and minimized machines is not as
strong. Instead, state recycling only requires that the resulting
path machine expresses the same behavior for execution paths
for which the original path machines is precise.

As an example, consider the code in Figure 9 and a corre-
sponding RBP, where a call togetY() is changed into an un-
known value. The code contains two loops, where the outer
loop never breaks, and two loop-carried variables,X andZ. In
the outer loop,X is always assigned to!Z. In the inner loop,
Z is assigned toY && X, whereY is computed fromgetY(),
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Figure 10: Intermediate steps (a) through (c) in computing the path
machine for variableZ in Figure 9, and the final result (d).

as long asY does not equalZ. Otherwise the inner loop breaks
into the outer loop. Though this example does nothing useful,
its looping behavior is complicated. Real code often exhibits
looping behavior that is simpler; this example code demon-
strates that path-precise analysis is general enough to handle
arbitrary looping behavior.

Three intermediate steps in computing the path machine for
variableX in Figure 9 are shown in Figure 10. Figure 10 (a)
shows what theX path machine looks like after tracing arbitrary
paths up to length 4. The trace proceeds as follows: instruction
A is the first instruction to execute, followed by instructionB.
The next instruction to execute isC, which creates a result that
determines what instruction executes next. Therefore stateC0

branches to two choices, stateD0 (instructionD will execute
whenY is false), or stateE0. Following the execution of in-
structionD, instructionB will execute again. An existing state
is recycled in a path when it executes the same instruction and
has the same truth value as a new state in the path would have.
Given multiple recycling candidates, a well-defined order that
takes into account distance from start and the branching struc-
ture of the path machine is used to choose a state. A well-
defined order in choosing recycling candidates is important as
it ensures no state is skipped when guesses are incorrect. Be-
causeX is false at stateB0, it can be recycled for the transition
from stateD0.

Figure 10 (b) shows what theX path machine looks like after
tracing arbitrary paths up to length 6. StateC0 is recycled for
the transition from stateE1. This transition will be known to
be incorrect when arbitrary paths of up to length 7 are traced.
At this time it will be known that theD instruction, not theE
instruction, succeeds theC instruction on a true transition when
stateE1 was executed two transitions before. When incorrect
guesses are identified, path machines must be patched.

Path machine patching finds the next possible guess in the
path machine that is precise with respect toK and recycles the
most states using a well-defined order. In the case of Figure 10
(b), there is only the one falseC state, so a new falseC state
must be created to capture the new path. This occurs in Fig-
ure 10 (c) with the newC2 state to express behavior precise for
paths of length 7. In general, incorrect guess paths are always
the result of assignment behavior that occurs only periodically
in a loop. For example, consider a loop where a periodic as-
signment only occurs every four iterations when two counter-
like boolean values are both true. Path machines would recy-
cle three sets of states through the loop’s transition path before
the incorrect guess was discovered. Patching the path machine
would require unrolling the existing cycle in the path machine
three times so that special behavior can be considered in the
fourth iteration. In Figure 10 (b), periodic behavior is identi-
fied on the second iteration, so the incorrect guess is discovered



quickly.
Because incorrect guess paths can cycle for multiple itera-

tions before periodic behavior is identified, path machines must
be annotated with transition precision information to ensure
that incorrect guesses can be recovered from. Each transition
must be associated with a precision that specifies how many
times it is precise in a path before the next transition taken can-
not be guaranteed to be as precise. When a state is initially
recycled from some state, the transition between these states is
assigned a precision of zero, meaning the next transition is not
guaranteed to be as precise. As tracing recycles a state multiple
times in a path, the precision of the transition is incremented.
Beyond enabling incorrect guess recovery, transition precisions
are not used for any other purpose.

TheZ path machine in Figure 10 (c) still makes an incorrect
guess on the false transition from stateC2 to stateE0, where the
E instruction is preceded in execution by a falseC instruction,
not a true one. When a trace of path length 8 is performed, the
path machine is patched to the path machine in Figure 10 (d).
This path machine is completely precise for any arbitrary length
path, although the algorithm will only terminate after it traces
arbitrary paths of length 9 (8 + 1) to discover that theX path
machine and path machines for other variables have reached
fixed-points. A path of length 8 has encountered all possible
states in this RBP. The RBP has four instructions in the loop and
two loop-carried variables (X andZ). Therefore, a path machine
could duplicate an instruction at most only four times, which
results in at most 17 states (includingA outside the loop). PPA
is guaranteed to terminate at or before a path length of 18 (17
+ 1) for the RBP in Figure 9. Termination occurs at path length
9 because half of the possible states happen to be infeasible or
redundant. The example in Figure 9 is an extreme case, where
all variables are dependent on each other.

3.1 Fast PPA
An implementation of PPA simply by direct induction on

path lengths explores every possible path of increasing lengths
until a fix-point is computed. This results in a computationally
inefficient algorithm where the number of paths explored is ex-
ponentially related to the number of unknown values in an RBP.
The basic algorithm is analogous to a naive implementation of
data-flow analysis (DFA), where a CFG has only one “dirty”
bit and basic blocks are traversed repeatedly until the dirty bit
is no longer set. As in a fast DFA algorithm, a fast PPA algo-
rithm should focus on computing local fix-point behavior for
semi-independent sections of the CFG, like inner loops, before
tracing behavior for successive sections of the CFG. Although
nodes will have to be processed multiple times, tracing an ex-
ponential number of paths can be avoided.

Control-flow in an RBP is implicit in variable assignment,
so control-flow of an RBP is not known in a graph form un-
til PPA is finished. However, acontrol-flow machine(CFM)
is constructed and refined during PPA by computing the path
machines for the RBP’s CFG variables, and it can guide analy-
sis. A CFM is analogous to a CFG and is formed by unioning
the path machines of all CFG variables together. The CFM is
dependent on every variable used in control-flow tests, so will
contain the complexity of those variable’s path machines. The
CFM is not precise until PPA terminates, but even in its im-
precise form, it can aid in identifying potential loops to focus
analysis on. Because the loops PPA is concerned about occur

between states, not between instructions, the CFM will be more
precise than a CFG in guiding state traversals. In Figure 10 (d),
the Z path machine actually consists of four sequential inner
loops and one outer loop. The fast PPA algorithm maintains a
set of dirty states relative to the CFM. Initially, only the CFM
start state corresponding to the first evaluated instruction is in
the dirty set.

On each iteration of the analysis, a state is chosen for pro-
cessing from the dirty list based on two criteria. The higher
priority criterion selects a dirty state based on the current loop
being processed according to the CFM’s clique structure. The
dirty state in the same loop with the last processed state will be
processed before another dirty state. For example, if the CFM
resembles the path machine in Figure 10 (a), if stateC0 is the
last state processed, and statesD0 andE0 are dirty, then stateD0

will be processed beforeE0. The lower priority criterion selects
the nearest successor state, based on the CFM, of the previously
processed state. Otherwise, a dirty state is just chosen at ran-
dom. Processing traces all imprecise CFM paths through the
processed state, patching the path machines according to the
results of the traces. If any path machine is patched as a re-
sult of the trace, states whose evaluation follows the processed
state in the CFM are added to the dirty list. A fix-point has been
reached when the dirty list is empty.

3.2 Complexity
The worst-case feasible state space of an RBP isO(EV ),

whereE is the number of instructions andV is the number of
variables in a program. This determines the shortest path that
can be traced before a fix-point is identified, which is the same
for the fast or basic PPA algorithm. The worst case assumes
that all variablesV are related to each other’s behavior, which
does not occur often in real programs.

The number of arbitrary paths for a given length is related to
the number of unknown valuesU in a program. In the basic
PPA algorithm, an instruction will be explored for each path
it is in; therefore, the worst-case complexity with respect to
state processing isO(EU ). Because of its traversal technique,
the fast PPA algorithm has a worst case time complexity of
O(EL), whereL is the looping depth in the CFM. Although
it is possible to contrive programs whereL approaches the size
of U , loop nesting in the CFM is usually related to loop nesting
in the CFG. However, it is always possible for loops in the CFG
to only execute a constant number of times, which means they
are not loops in the CFM. Alternatively, variables and branches
may be used in a way that creates loops in the CFM that do not
exist in the CFG. For the code in Figure 9, the code’s CFM is
similar to the path machine in Figure 10 (d) indicates a loop
nesting depth of two, which would also be the looping depth
in its CFG. Since PPA is not inter-procedural,L is likely to be
a small number, the exception being loop-intensive scientific
code.

Each path machine describes behavior for only one variable.
As a result, PPA avoids the state explosion problem often asso-
ciated with constructing state machines that describe program
behavior. Except for control-flow variables, which are obvi-
ously all inter-related, variables are often only loosely related to
each other. Therefore, their path machines can be smaller and
can arrive at fix-points faster than a single monolithic state ma-
chine that describes all variable assignment behavior together.
Additionally, this also means PPA will suffer when false depen-
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Figure 11:Repeated from Figure 8, the path machines for variables
I IS (a) and?USE (b), and the path machine?USE (c) after it under-
goes select value elimination.

dencies exist between variables because they are reused for un-
related purposes. Before PPA is performed, renaming variables
using a technique such as SSA [7] can potentially improve PPA
performance by eliminating easily detected false dependencies.

3.3 Future Variables
Future variablesare created when the future operator? is

applied to a variable. Because of future variables, PPA occurs
in multiple passes. On each pass, PPA computes path machines
for a set of variables that are not dependent on variables in later
passes. Because of this requirement, conventional and future
variables can never be mutually dependent on each other. Ad-
ditionally, future variables are restricted from ever being as-
signed to unknown values. Three analysis passes are needed
to compute path machines for the code in Figure 3, where the
second pass computes path machines for the?USE expression
and the third pass computes the path machine for theLK H vari-
able, while the first pass computes paths machines for all other
variables.

All CFG variables exist in the first pass, so by the second
pass, which processes future variables, the CFM is already con-
structed. Whereas path machines for conventional variables are
constructed from a start state, path machines for future vari-
ables are constructed from a termination state that all paths in
the CFM conceptually can reach, even if they cycle forever.
Starting from the termination state, assignments to the variable
flow backward from their assigning states. An assignment to
true flows backward, adding states to the true set, until an as-
signment to false of the same variable is encountered. After a
path machine for a future variable is computed, it is identical in
form and function to path machines of conventional variables.

3.4 Select Values
When the path machines are being constructed, select values

are treated the same as unknown values that are true exactly
once. To implement this constraint, all paths that take a true
transition more than once for the same select value are elimi-
nated. Additionally, all paths that take a false transition for a
select value is eliminated if they do not eventually take a true
transition for the select value. These criteria are identified dur-
ing path machine construction.

Before a path machine is used to synthesize code, the non-

determinism of a select value can and must be eliminated. Se-
lect value elimination occurs by unioning sections of the path
machine where the value is true with sections of the path ma-
chine where the value is false. Select value elimination is a
lossy process because it intuitively merges together all behav-
ior about the iterations of an expression value created in a loop.
Therefore, select values are only eliminated when a path ma-
chine is directly used to reason about the reachability of some
property code. Before synthesis, select values enable these cor-
relations between values produced in a loop to be maintained
long enough to derive other path machines that are more pre-
cise as a result of the correlations. Consider the path machine
for variableI IS, which is repeated in Figure 11 (a), and the
path machine for variable!?USE in Figure 11 (b). Because the
select value is not eliminated from theI IS path machine, the
structure of the!?USE path machine describes cases where the
process1() call is sometimes unreachable for a value used in
aprocess0() call. If the select value was eliminated from the
I IS path machine, then theprocess1() call would always
be indicated as reachable in the!?USE path machine as long
ashasNext was true at least once. However, when the select
value is eliminated from the!?USE path machine, as in Fig-
ure 11 (c), theprocess1() call is sometimes reachable and
sometimes unreachable. As a result, the path machine identi-
fies iterations in the loop where lockLK can be safely released,
which would not be possible if the select value was eliminated
from theI IS path machine before the!?USE path machine
was computed.

The select value elimination process first identifies the re-
gions in the path machine where the select value transitition is
true and regions where it is false. For the!?USE path machine
in Figure 11 (b), a beginning false region for theM select value
(representingnext call results) starts at stateBGN and ends at
stateM0. The single true region ranges from stateM0 until state
M2, where another false region exists forever. Behavior that oc-
curs in the false regions that surround a true region are unioned
with the behavior of that true region. For example, in the later
false region of Figure 11 (b), the transition from stateY2 is split
in Figure 11 (c) because!?USEwill always remain true through
the nextX state whenprocess0() is true.

4. Discussion

In its current form, path-precise analysis is intra-procedural
because path machines cannot express the unbounded stack be-
havior needed to reason about recursion. Enhancing path ma-
chines with a stack abstraction would increase their expressive-
ness to the power of push-down automata. Such path machines
would be much more difficult to compute via an analysis. Us-
ing the results of these path machines in property synthesis
would also be problematic, because a stack would need to be
maintained and inspected at run-time to ensure that code exe-
cuted in the correct context.

Our strategy for making PPA inter-procedural involves ab-
stracting away the call stack and recursion. Annotations pro-
vided by a meta-program or inferred via analysis can mitigate
the precision lost through abstraction. Annotations can de-
scribe a procedure’s behavior as a set of boolean assignments,
which can replace calls to the procedure in an RBP. The same
strategy can be generalized to reason about other kinds of un-
bounded memory constructs, such as arrays, using techniques



like shape analysis [16].
Although we separate our discussion of the annotation and

abstraction property synthesis steps in Section 2, they are tightly
inter-related. Annotations are added as boolean variables and
assignments, which will not be abstracted away during the ab-
straction step. Any precision lost during property synthesis
occurs when expressions are converted into unknown values.
Annotations can be used to direct the abstraction process by re-
placing what would otherwise be a single unknown value with
more a detailed set of variables, tests, and assignments. For ex-
ample,y > x andy ≤ x evaluate to mutually exclusive con-
ditions that can be expressed with one unknown value rather
than two. Libraries can also express domain-specific relation-
ships that can be used to enhance the precision of an abstrac-
tion. In addition to enabling the encoding of property-specific
behavior in a generic way, the annotation language can enable
encodings that improve precision of the abstraction process.

5. Related Work

Property synthesis follows work in property checking. The
multiple steps used in property synthesis are similar to those
used in SLAM [3], a verification method based on iterative
refinement. In SLAM, a program is annotated, the annotated
program is abstracted into a boolean program, and the boolean
program is analyzed to determine whether or not a temporal
safety property is adhered to in the program. Property synthe-
sis uses these same steps even though the technologies used are
different. An additional step in SLAM, which iteratively re-
fines the precision of a boolean program to guide results, is
not applicable in property synthesis. Property synthesis ab-
stracts programs into regular boolean programs that are similar
to boolean programs created by the tool C2BP [1]. Although
regular boolean programs are less expressive than boolean pro-
grams because they lack a stack abstraction, they are more ap-
propriate for program synthesis because they form a simple
state-transition system that can be inspected during program
execution.

Property synthesis is supported by a path-precise analysis
that is most similar to Bebop [2], which model checks boolean
programs in SLAM. Bebop computes over sets of boolean vari-
able behavior for each statement in a boolean program, which is
similar to how path-precise analysis computes path machines.
Bebop results are used to reason about the reachability of er-
ror states in a program, which is similar to how path machines
are used to reason about about the invariants under which prop-
erty code should execute. Unlike Bebop results, path machines
are designed specifically to enable the synthesis of code: path
machines can identify every path in a regular boolean program
that can reach property code, and can be used to synthesize
code that recognizes these paths at run-time in the correspond-
ing program.

Property simulation is a path-sensitive analysis designed to
support partial property verification in ESP [8]. Property simu-
lation improves precision over traditional DFA by heuristically
tracking branches in a program when they obviously affect the
behavior being analyzed. Metal’s xgcc [11] finds bugs using a
path-sensitive algorithm based on a heuristic that most path are
executable and data dependencies are simple. Where ESP and
Metal are designed to be scalable, property synthesis requires
precision and only processes one procedure at a time. Unlike

the analyses used in both ESP or Metal, path-precise analy-
sis can correlate how loop-carried dependencies affect control-
flow.

Path-sensitive analyses often work by sharpening data-flow
analysis results with a finite set of path predicates [12]. GSA [18]
is a variation of SSA that enhances precision by qualifying
merge nodes with path predicates. Predicated array data-flow
analysis [15] uses path predicates to enhance both compile-
time analysis and to introduce run-time tests that guard safe
execution of optimized code, which is similar to how path ma-
chines are used to derive run-time tests that guard execution of
property code. Path-precise analysis innovates on these path-
sensitive analyses by describing paths directly in a transition
system. As a result, path-precise analysis can disambiguate be-
tween paths as they loop, whereas simple path predicates can-
not.

An alternative to dealing with loops is to expand the loopk

times to recognize loop-carried dependencies that occur across
k iterations [14]. However, using the results of this analysis
can lead to an exponential blow-up in the program. Addition-
ally, loop-carried dependency distances may not be constant.
Path-precise analysis avoids both of these problems with path
machines. Although the state structure of a path machine may
be expanded to describe periodic loop behavior, this expansion
does not carry through to the CFG when the path machine is
used to synthesize code. Unlike expansion, path machines can
also be used to identify loop-carried dependencies over an ar-
bitrary number of iterations; e.g., path machines can identify a
loop-carried dependency that occurs until the loop terminates.

6. Conclusions and Future Work

In this paper we have described property synthesis, a mecha-
nism for automatically inserting code that achieves some prop-
erty into a procedure. The property, such as lock acquisition, is
described as a program analysis problem, such as determining
where and when a value is used in a procedure. The correct
insertion of property code into a program occurs automatically
when an answer to this analysis problem is provided for the
program.

We have concentrated on describing the analysis necessary
to support property synthesis. Because property code depends
on tracking value use, a precise analysis is necessary. We have
described PPA, path-precise analysis, which produces a set of
path machines. The path machines form a finite-state model
of the procedure being analyzed; i.e., it is based on a boolean
abstraction of the procedure. Path machines are produced with
cycles of state transitions, which enables the precise analysis of
loop behavior. Beyond property synthesis, computing analysis
results as state machines could also benefit other program anal-
ysis domains, such as partial verification of program behavior
and optimizing programs.

We are implementing this analysis in the context of a meta-
programming system that supports property synthesis. We have
implemented early versions of this analysis for Java programs,
but we have not yet implemented the version of the analysis
described in this paper. The meta-programming system pro-
vides a language to describe properties. When this language is
combined with the analysis in this paper, the system will en-
able property code to be described at a high level and inserted
automatically.



Besides lock acquisition, property synthesis can be applied
to other properties such as error handling and consistency pro-
tocols. Property synthesis should be useful for a range of meta-
programming tasks. We are currently exploring how property
synthesis can be used to generate and customize software com-
ponents. Also, we are exploring how property synthesis can
accommodate architectural properties that span multiple proce-
dures, such as resource management policies.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 9876117. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

7. REFERENCES

[1] T. Ball, R. Majmdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. InProc.
of PLDI, June 2001.

[2] T. Ball and S. K. Rajamani. Bebop: A symbolic model
checker for boolean programs. InProc. of SPIN
Workshop, pages 113–130, May 2000.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. InProc. of SPIN
Workshop, May 2001.

[4] T. Ball and S. K. Rajamani. Bebop: A path-sensitive
interprocedural dataflow engine. InProc. of PASTE, June
2001.

[5] R. Bodik and S. Anik. Path-sensitive value-flow analysis.
In Proc. of POPL, pages 237–251, Jan. 1998.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors. In
Software: Practice and Experience, 30(7), pages
775–802, 2000.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficient computing static single
assignment form and the control dependence graph. In
ACM Transactions on Programming Languages and
Systems, 13(4), pages 84–97, Oct. 1991.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. InProc. of
PLDI, June 2002.

[9] D. L. Detlefs. An overview of the extended static
checking system. InProc. of Workshop on Formal
Methods in Software Practice, pages 1–9, 1996.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. InProc. of OSDI, Oct. 2000.

[11] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proc. of PLDI, June 2002.

[12] L. Holley and B. Rosen. Qualified dataflow problems. In
Proc. of POPL, Jan. 1980.

[13] G. Kiczales, E. Hilsdale, J. Hungunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
Proc. of ECOOP, June 2001.

[14] J. Knoop, O. Ruthing, and B. Steffen. Expansion-based
removal of semantic partial redundancies. InProc. of
CC, page 91, 1999.

[15] S. Moon, M. W. Hall, and B. R. Murphy. Predicated
array data-flow analysis for run-time parallelization. In
Proc. of ICS, pages 204–211, July 1998.

[16] M. Sagiv, T. Reps, and R. Wilhelm. Parameteric shape
analysis via 3-valued logic. InProc. of POPL, pages
303–321, Jan. 1999.

[17] B. Steffen. Property-oriented expansion. InLNCS 1145,
Symposium on Static Analysis, page 22, 1996.

[18] P. Tu and D. Padua. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. InProc. of
ICS, June 1995.


