A Path-Precise Analysisfor
Property Synthesis

Sean McDirmid and Wilson C. Hsieh

UUCS-03-027

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

December 1, 2003

Abstract

Recent systems such as SLAM, Metal, and ESP help programmers by automating reason-
ing about the correctness of temporal program properties. This paper presents a technique
calledproperty synthesis, which can be viewed as the inverse of property checking. We
show that the code for some program properties, such as proper lock acquisition, can be
automatically inserted rather than automatically verified. Whereas property checking an-
alyzes a program to verify that property code was inserted correctly, property synthesis
analyzes a program to identify where property code should be inserted.

This paper describes a path-sensitive analysis that is precise enough to synthesize property
code effectively. Unlike other path-sensitive analyses, our intra-procepatialprecise
analysiscan describe behavior that occurs in loops without approximations. This precision

is achieved by computing analysis results as a spatii machines. Each path machine
describes assignment behavior of a boolean variable along all paths precisely. This paper
explains how path machines work, are computed, and are used to synthesize code.

A Path-Precise Analysis for Property Synthesis

Sean McDirmid and
School of Computing,

Wilson C. Hsieh
University of Utah

50 S. Central Campus Dr.

Salt Lake City,

Utah USA

{mcdirmid,wilson}@cs.utah.edu

ABSTRACT

Recent systems such as SLAM [3], Metal [11], and ESP [8]
help programmers by automating reasoning about the correc
ness of temporal program properties. This paper presents
technique callegbroperty synthesis, which can be viewed as

the inverse of property checking. We show that code for somg
program properties, such as proper lock acquisition, can be ay
tomatically inserted rather than automatically verified. Wherea:
property checking analyzes a program to verify that property
code was inserted correctly, property synthesis analyzes a pr

I=0;J=0; K= false;
while (true) {
if ('hasNext(J)) break;
J = next(J);

Y = process0(J);
if (J > I)
{I=J K=Y}

-~

if (K) processl(I);

return I;

(a)

I=0;, J3J=0;
while (true) {
if ('hasNext(J)) break;
J = next(J);
if ('K) acquire (LK) ;

K = false;

Y = process0(J);

if (3 > I)
{I=J K=Y;}
if ('K) release (LK) ; }

if (K) processl(I);
if (K) release (LK) ;

return I;

(b)

gram to identify where property code should be inserted.
This paper describes a path-sensitive analysis that is precise

enough to synthesize property code effectively. Unlike otherFigure 1:A code fragment (a) and an implementation of a lock acqui-

path-sensitive analyses, our intra-procedpeah-precise anal- sition property in this code fragment (b).

ysiscan describe behavior that occurs in loops without approx-

imations. This precision is achieved by computing analysis re-

sults as a set gfath machines. Each path machine describes to insert the code automatically. In this paper we desgibp-

assignment behavior of_a boolean varlable' along all paths Ioreérty synthesiswhich can be viewed as turning automatic prop-
cisely. This paper explains how path machines work, are com-

. erty checking on its head.
puted, and are used to synthesize code. Property synthesis requires a program analysis that is com-

parable to a programmer’s “best effort.” As an example, con-
sider the code in Figure 1 (@), which is not synchronized. This
code traverses a list, processes elements, and keeps track of
the largest element for future processing. Inserting synchro-
nization code results in the code in Figure 1 (b). The locking
property requires that lockk be held for each element from
before aprocess0() call until after a matchingr ocess1()
call. If process1() will not be called for the element, then
Many program verification tools [3, 6, 8, 9, 10] have recently the lock can be released after fireocess0() call is made. A
been designed to help programmers reason about the corredood implementation of this property releases the lock as soon
ness of temporal program properties. Examples of such propas it is known thapr ocess1() will not be called on an ele-
erties are adherence to synchronization, consistency, and réaent that was already processed. This example demonstrates
source allocation protocols. Many of these properties, such athat property synthesis is general enough to handle arbitrary
proper lock acquisition, are also ideal candidates for automati¢ooping behavior.
synthesis of code. In other words, given a description of where The tricky part about this example are the loop-carried de-
locking code should be inserted, compiler analyses can be use@gendencies created by assigningndK. Whenevet andK are
assigned ta@ andY, the lock can be releasedKfhappens to
be false. For property synthesis to be effective, this behavior
must be identified via analysis. However, we know of no ex-
isting analysis that can identify lock release opportunities this
precisely.

Our technique for property synthesis is performed in three
steps. The first step automatically adds annotations that setup
property-specific analysis problems, as well as property-specific
code whose reachability depends on solutions to these anal-
ysis problems. A generic description of these annotations is

Keywords

Path-sensitive analysis, data-flow analysis

1. Introduction

Annotation Abstraction
Annotated
Program

expressed in a meta-programming language that is outside t
scope of this paper: consider it to be similar to AspectJ [13].
The second step solves the analysis problems specified in t
annotated program. In the final step, solutions computed dur, ySynthesis
ing analysis are used to determine when property-specific cod|_"r09ram + Property |«
added in the first step is reachable, which results in a modified
program that implements the property. Figure 2:An overview of property synthesis steps.

This paper describes the analysis step of property synthe-
sis, which must compute results with enough precision to im- .
plement a property effectively. Our analysis technique focuse®. Property Synthesis
only on examining the scalar boolean assignment behavior of i . .
a procedure. As noted by Ball and Rajamani, reasoning about ©OUr téchnique for property synthesis is a multi-step process
behavior related to a temporal safety property can be reducef'@t is illustrated in Figure 2. The annotation step takes a pro-
to boolean assignment problems that are cheaply and preciseg/am and a property description and produces a version of the
analyzed [2]. The annotations in the first step are expressefrogram annotated with property details, which is suitable for
as boolean variables that are assigned in strategic places in analysis but not execution. The abstraction step transforms the

program. Our annotations can even express backward analysiinotated program into a regular ,boolean program, which only
problems. describes the annotated program’s control flow and boolean as-

We have developed an intra-procedural “path-precise analSignment behavior. In the analysis step, the regular boolean

ysis” (PPA) that solves boolean assignment problems. PPA irogram is analyzed to compute a model of path machines,
similar to other path-sensitive analyses [5, 8, 12, 14, 15, 17] thaYVh'Ch precisely describes the boolean as&gnr_nent behavior of
qualify results to distinguish between the behaviors of differ- the a@nnotated program. Finally, the synthesis step uses the
ent execution paths. Traditional meet-over-all-paths data-floWM°de! of path machines to transform the annotated program
analyses (DFAs) are limited to describing behavior accordingnto @n executable program that implements the property.

to points in a control-flow graph (CFG). Path-sensitive analyses

improve the precision of DFA with simple boolean path predi- 2.1 Annotation

cates that can distinguish between some paths in a CFG. How- o) .

ever, these predicates are not powerful enough to distinguish Property descriptions consist of two parts: annotations that

between the different behaviors of multiple looping execution €XPress an analysis problem and property code whose reach-
paths. ability depends on a solution to the analysis problem. Anno-

PPA handles looping paths by computing analysis results as §tions are added to a program according to a description of
set ofpath machineswhich are finite-state machines that each the Property expressed as a set of rules. The rules specify how

describe boolean assignment behavior for one variable. A patqnnotations are added according to landmarks that can be iden-
machine is a state-transition system that can describe arbitrarfyfied in a program using a flow-insensitive analysis. For ex-
looping execution paths in a procedure. By specifying States_ample, a generic description of the lock acquisition property

where boolean variables are true or false, path machine effedMPlemented in Figure 1 (a) can be expressed as the following

tively describe the control-flow of boolean assignment behay-Wo rules:

ior, rather than describing such behavior according to a CFG.
The worst-case time complexity of PPAGY EX), whereE is
the number of boolean assignments being analyzed asthe

Original Program

Property Description

Regular
Boolean
Program

Path Machines

1. Before procedurgr ocess0() is called, the lock K must
be acquired if it is not held already;

level of loop nesting in a procedure. o _ 2. Procedurer ocess1() can be called aftergr ocess0()
In this paper, we use proper lock acquisition as the primary call with the same index only if lockK is held over the
example of a property that can be synthesized. However, prop- span of the two calls.

erty synthesis is applicable to other kinds of properties as well.
Error-handling protocols are properties that require reasoning A meta-programming language for expressing property de-
about potential failures that occur between how some data iscriptions is not described in this paper. Such a language needs
generated and is used. For example, data from user input mugh associate annotations with easily identified points in the pro-
be validated before it can be used to update a database. Cogram, in a manner similar to how advice is added at join points
sistency protocols are properties that require reasoning aboum the aspect-oriented programming language AspectJ [13].
when some operation has occurred so some other operation canProperty code added during annotation specifies actions that
invalidate or update assumptions. For example, repainting of @&hould be performed in certain situations: acquire a lock before
GUI widget must occur after its visible state has been updateda call topr ocess0() when the lock is not already held. Sit-
Code for both error handling and consistency protocols can beiation descriptions can take into account the location in code,
addressed by property synthesis. such as before pr ocess0() call site, or invariants over pro-
The rest of this paper is organized as follows. Section 2gram behavior, such as whether a lock is held. Whether an
describes the four steps of property synthesis. Section 3 denvariant is satisfied is determined by testiagnotation vari-
scribes an algorithm for path-precise analysis that operates ovebles which are boolean variables tested and assigned for anal-
boolean assignment procedures to compute path machines. Sgsis purposes only.
tion 4 discusses issues related to property synthesis and path- Lock LK can be released when no value usedpnacesso0()
precise analysis. Related work and our conclusions are preeall can flow to gr ocess1() call. Therefore, annotation vari-
sented in Sections 5 and 6. ables are needed to track how values flow through the code.
Adding such annotations to the code in Figure 1 (a) results in

BGN|if (LO) L0 =0, L1 = 1;
RA|if (!?USED && LK H) X|if (1) ¥=¥* 11 =0, 12 =1;
- N|if (L2 && X) J=Q@, L2=0, L3 =1;
{ LK _H=false; release(LK); } v|if (L3) Y=* JIS=J, L3=0, L4 = 1;
while (true) { Z|if (L4) Z =%, L4 =0, L5 =1;
X V|if (L5 && 2Z)K =Y, I IS =J1IS, L5 =0, L1 =1;
RB| if (...) {LK H=false ;release (LK) ;} O e e) S e e
- P|if (L2 && !X && K) USE = I_IS, L2 =0, L6 = 1;
N NOP |if (L2 && !X && 'K) L2 = 0, L6 = 1;
Q| if ('LK_H) {LK_H=true;acquire(LK); } RT|if (L6) L6 = 0;
Y J I1s = J; .
RC| if (...) {LK H=false;release (LK) ;} Flgure 4..An RBP of the annotated cpde in Figure @;is tru‘e,.l
z - is false,* is an unknown values, an@is a select values. Initially
all variables excepltO are false. Annotation code line labels for each
RD| if (...) {LK_H=false;release (LK)} instruction are listed on the left.
M| if (2) { I_IS =J_1IS;} }
RE|if (...) {LK H=false;release (LK)}
Plif (K) { USE = I_IS; } is abstracted into segular boolean progranfRBP). An RBP
RF(if (...) {LK_H=false;release (LK)} is similar to a boolean program [2], where the only data type
RT is boolean. Unlike a boolean program, an RBP is a set of un-

ordered guarded assignments to boolean variables. Each pro-
Figure 3:The code from Figure 1 (a) with lock property annotations. cedure in a program is expressed and analyzed separately in an
Labels for each line are specified on the left. RBP; i.e., RBPs do not support inter-procedural analysis.
The annotated code in Figure 3 is translated into the RBP in
Figure 4. Variables are added to the RBP to track control flow.
the code of Figure 3. For illustration purposes, the lines areFollowing each guard is a set of assignments to boolean expres-
labeled in this code, and the labels will be used to refer to thissions that can refer to variables andknown value¢+). Un-

code throughout the synthesis process. known values in boolean programs [4] are non-deterministically

TheJ._I sandi . S variables keep track of elements that are true or false. They express abstracted details about a program'’s
used inpr ocess0() calls. Wherpr ocess0() is called atline behavior that are either unknown statically, or are otherwise

Y with the variableJ as an argumentl_I S is assigned ta. computationally too complex to be expressed in an RBP; e.g.,

ThoughJ is not a boolean value in the program, it will later be general arithmetic. In Figure 4, unknown values are used to de-

considered as a booleaelect valugwhich will be explained scribe the unknown behavior of callstasNext () andpr o-

in Section 2.2. When the value Inis assigned to variable at cess0(), and the expression > i, which are assigned to

line M the variablel_| Sis assigned to _I S to specify that is variablesx, Y, andz.

now an alias ofi. The variableUSE tracks when elements are Assignments in RBP instructions can also occuggtect val-

used in aprocess1() call. Thel I S variable is assigned to ues which are similar to unknown values in that they are non-

the USE variable whenever thgr ocess1() call executes. deterministically true or false. However, a select value will be
Figure 3 also shows the lock release and acquire propertyrue exactly once per instruction it is assigned. Select values are
code adding during annotation. The annotation variale used to describe non-boolean values whose identities are sig-
tracks whether lock K is held. At lineQ just beforepr o- nificant even when they are created in loops; e.g.nthe ()
cessO0() is called, annotation code tests ttkeH variable, ac- result in Figure 3. Values created in a loop can have relation-
quires the lock if it is not held, and sdt& Hto true. LinesRA, ships with each other that are not shared across multiple loop

RB, RC, RD, RE, RF, and other lines not illustrated in Figure 3 iterations. For example, thext () resultin Figure 3 is related

release the lock. Because a lock release might occur anytim thepr ocess0() result created in the same loop iteration. If

the specified invariants are satisfied, the code is inserted behe loop breaks and somext () result is assigned tb, then
tween every statement of the program. During synthesis, moshe pr ocess0() result from the same iteration is assigned to
of the lock release code will be eliminated because they are. Therefore, whether@r ocessi1() call is reachable for some
never reachable during execution. In Figure 3 the lock releas@ext () result depends on th® ocess0() result in the same
condition is expressed at lifRA and abbreviated for other lock iteration being true. To maintain these relationships, a select
release lines. Lock release occurs when the lock is héddH, value is true only for some arbitrary loop iteration during anal-
and when no values used in previousocessO0() calls can ysis, which can then be generalized to all loop iterations. How
be used in futur@r ocess1() calls. This last condition is ex- analysis later handles select values is crucial to reasoning about

pressed as?USE, which is true only if variableJSE cannot be behavior in loops, and will be described in depth in Section 2.3.

assigned to true in the future. The future operatoenables Guards are the only way to represent control flow in an RBP.

reasoning about the possibility of an event occurring in the fu-Control flow of an RBP is very simple and can be described
ture via “reachability” relationships, which can be computed by with respect to a clock. On every tick of the clock, every in-

a static program analysis. struction is executed, although the guard for only one instruc-
tion is ever satisfied per clock tick. Each instruction is guarded
by a CFG variable which corresponds to when the RBP in-

2.2 Regmar Boolean Prer ams struction executes in the annotated code’s CFG. In Figure 4,

After a program has been annotated with property details, i@ll variables prefixed by ab are CFG variables. Initially, all

CFG variables are false except ¥, which acts as the entry
point. Each RBP instruction is also associated with a line la-
bel from the annotated code, which we use to identify an RB
instruction. The last two assignments of each RBP instructior
in Figure 4, except for instructioRT, assign one CFG variable
to false and assign another CFG variable to true to implemen.
ff?r rc])tLrI(g)]Ihﬂggvs|g?l};nlgﬁ?g)n(ijreghna%(:i(;':i;ol:tfﬁ)rl?lze\;)grzg}gs?sn|sRE§m igure 5: A path machine that describes how variallés assigned

in Figure 4. States where the variables are true are black background

bined with assignment analysis. To represent procedure termi-
With white foreground, and the start state has an extra circle around
nation, all CFG variables are set to false, which is what occurs

. . it. States are labeled according the RBP instructions they correspond

at instructionRT.
to and are subscripted when labels are duplicated; unlabeled states il-
Since an RBP can implement arbitrary non-recursive branchs;
Iustrate behavior that continues forever and transition to themselves.
ing (e.g., gotos), transforming a procedure into an RBP is sim
Dashes abbreviate multiple transitions that do not affect behavior.

ple. Using a flat representation of a procedure’s code, such
as in a register transfer language (RTL), all instruction labels
are transformed into CFG variables that are always assigned {
false unless the instruction should execute. All registers or vari-
ables in the RTL become variables in the RBP. All boolean ex-—
pressions that are not formed using logical operators are tran< ~—%
lated into unknown values. Non-boolean expressions are trans ;-\«
lated into select values. @' \

RBPs are useful because their analysis semantics can be d ;
scribed according to a finite state-transition system that pro-
cesses strings of unknown values. Using the clock analogy t
describe RBP behavior, every clock tick is associated with ar
arbitrary boolean value that determines whether an unknowt
value assigned on that clock tick is true or false. These clock
ticks form the basis of a simple boolean-state transition system.
The truth values of transitions in an execution path describd-igure 6:Path machines for variablésl S (a) and?USE (b), and the
what assumptions execution paths depend on about unknowpath machin@ USE (c) after it undergoes select value elimination.
value behavior, which do not exeactly correspond to branches
taken.

is satisfied, or executes, on the state’s transitions. RBP instruc-
: tions are labeled according to line labels in the annotated code
2.3 Path Machines of Figure 3; e.g., the start state is labeB@N because on the
A path machinedescribes boolean variable assignment be-first transition the assignments of instructi®@N will be eval-
haviors in an RBP through a state-transition system. Intuitively,uated. Branching occurs from a state in a path machine when
a path machine describes assignment behavior with respect fwath behavior diverges on the basis of an unknown value cre-
feasible execution paths through the code being analyzed. Patited at the state. For example, becausevthariable can be
machines are computed by analyzing the RBP representatioassigned ta and the path machine tracks value, the un-
of a procedure, and are precise with respect to the RBP. Th&nown value computed at sta¥g can change the value &f
path-precise analysis that computes path machines is describdthe K path machine describes hawis initially true and be-
in Section 3. comes false aftel, executes. In order foK to go from true
One path machine describes one variable in the RBP. Patto false in one loop iteration, the call tmsNext () and eval-
machines are deterministic binary-transition finite-state machineation ofi > J must be true at state§ andZ,, and a call to
(FSMs) whose accept states specify where in a program’s exesr ocess0() at stateY, must be false.
cution a variable is true and non-accept states specify where a The path machines in Figure 6 demonstrate the semantics of
variable is false. Path machines support all the basic FSM operselect values and the future operatorA select value is simi-
ations, which correspond to boolean operations over variabletar to an unknown value except that it accepts exactly one true
being described: FSM complement is logical negation, FSMtransition per label. In Figure 4, a select value is created at
union is disjunction, and FSM intersection is conjunction. ForinstructionM Any path that passes through states with ¥he
example, the expressiontUSE || LK His described by a path label must contain exactly one true transition from one of these
machine that is formed by complementing the path machinestates. The _I S path machine in Figure 6 (a) describes S
for variable?USE, and unioning it with the.K_H path machine. assignment behavior, wherel S is assigned to a select value
Path machines can also be minimized using traditional FSMat instructionN. Because state}, creates a select value that de-
minimization algorithms. termines whether _| S becomes true, a branch is made. If the
A path machine is shown in Figure 5 that describes the asselect value is false, then the path loops througiMhstate un-
signment behavior of variabl&s For illustration purposes only, til the select value is true. The false transition from sb&tés
if both of the transitions from one state go to the same state, thaot part of a feasible path, because then the loop would exit and
transitions are illustrated as one unlabeled transition. Branchthe select value could not be true exactly oncenaéNext ()
ing transitions are labeled withfor true or- for false. Also, never returns true, indicating that the list is empty, then the false
states are labeled according to the RBP instructions whose guardnsition occurs from stat¥, and stateX; is never reached.

I =0; JdJ=0; K= false;
RA[if (!?USE&&LK H) release (LK) ; false
while (true) {
X| X = hasNext(); if (!X) break;
RB| if (!?USE&&LK H) release (LK) ; false
W| W = next();
Q| if ('LK _H) acquire (LK) 'K
Y| Y = processO (W) ;
RC| if ('?USE&&LK H) release (LK) ; IK&&!Y
Z| Z = compare (V,W));
RD| if (1?USE&ELK H) release(LK); :T;zﬁ;iz Figure 8:The path machine for thek_Hvariable (select values eIi.m-
inated);Q andR states that correspond to lock release and acquire are
V| if (2) { I=J; K=Y/} } highlighted, and occur wheneveK_H goes between true and false;
RE|if (!?USE&SLK H) release(IK); false states with label andN are not shown.
P|if (K) { processl(I); }
RF|[if (!?USE&&LK H) release (LK) ; K
RT | return V;

be resolved to one of three conclusions: it always executes,
.) . . . in which case it is left in the program; it never executes, in
Figure 7: Annotated code from Figure 3 witholkH variable as- \ hich case it should be removed from the program; or it exe-
signments; the rlg.ht column specifies un‘derwhat conditions annotatlo%utes conditionally, in which case it is left in the program with
code executes using a boolean expression. a dynamic test. Figure 7 lists resolution results for the propery
code in Figure 3 in its right column. Th@line of lock acquire
code executes whek is false, theRF line lock release code
executes whekK is true, and thdRA, RB, andRE lines of lock
release code never execute. Lock release code atRiGesd

RD execute according to expressions okey, andz.

Conditions under which annotation code can execute are de-
termined by looking at the guard in its controlling test, and
implementing the guard expression with path machines. Given
property code located at some label, a path machine that de-
scribes its guard behavior, and states in the path machine with
the same label as the code, the following can occur: the states
are all true, in which case the code executes unconditionally;
the states are all false, in which case the code never executes;
or some of the states are true and some of the states are false, in
which case code execution is contingent on conditions known
at run time. For the last case, conditions are never derived from
annotation variables, which are always removed from the pro-
gram. However, they can be derived from original variables or
new variables added to the code specifically for dynamic test-
ing.

Figure 8 illustrates the path machine for the varial#eH.
ock acquisition occurs only in statg and lock release oc-
urs in statefRCy, RD;, RD4, andRFs. Instruction labels cor-
respond to static locations in the CFG, so states can always be

ambiguated by their labels at run time using CFG informa-
on. However, multiple states with the same label cannot be
istinguished using the CFG alone. When property code exe-
‘cutes in a state that is identified by an ambiguous label in a path
machine, it must be guarded to ensure that it executes only in
the right states. This condition can be computed by tracking
transitions in a path machine at run time. For example, state
RCo can be disambiguated from stat®S; andRC, by noting
that if the true transition fronZ; is taken, therRC; will not
execute until the true transition from stafe is taken. This
expression corresponds to the current value ofdtivariable,

: whereRC; will not execute unlesk is false. Stat&C; is only

24 Wnthes's entered from the false transition of tNe state, so the expres-

The synthesis step uses path machines to determine whegion that guard®C; is equivalent td K && ! Y. However, be-
property code is reachable during execution. Property code cacause this expression uses multiple variables, it is not feasible

Once the true transition throud¥ is taken and if the evalua-
tion ofi > j atstateZ, is true, then _I Sis assigned to true
at stateN,. The path can continue through stdfie Since a
true transition for a state with the labdlwas already consid-
ered, only a false transition can be considered from dthfe
If stateN, is reached, then the select value assignadits at
that state will always be false.

The visual structure of thie.l S path machine in Figure 6 (a)
shows that _I Sis only contiguously true, so only one assign-
ment ofl I Sto onenext () resultis described. Other assign-
ments ofl LI Sto anext () result are false because the select
value is only true once. As a result, the S path machine
describes when aext () result in an arbitrary iteration is as-
signed to variable , and how long it remains assigneditan
successive loop iterations. It does not describe whethetis
assigned to “somefiext () result.

The path machine for variab®JSE is shown in Figure 6 (b),
and has a structure similar to tha S path machine. Variable
?USE is true in states that can reach stBtewhich callspr o-
cess1() while I s is still true. The non-determinism of a L
select value must be eliminated from a path machine before iE
is used for synthesis. A select value is eliminated by unioning
the behavior of path segments where the select value is assum
true into the behavior of path segments where the select valu
is assumed false. Intuitively, the result is a path machine thaEi
specifies behavior about an expression value for all loop iter
ations, not just an arbitrary iteration. TR&ISE path machine
with its select value eliminated is shown in Figure 6 (c). This
path machine is true whenrext () result created in statd,
or M; can reach state with a truepr ocess0() result created
at stateY, or Yz in the same iteration. Otherwise, the path ma-
chine is false and the lock can be released.

A |z = false; if (L0) 2 =0, L0 =0, Ll = 1;

while (true) {
B | X =1z; if (L1) X =*, L1 =0, L2 =1;

while (true) {
Cc Y = getY(); if (L2) Y=*, L2 =0, L3 =1;
D | if (Y == 2) if (L3&&(!Y88!7))

break; L3 =0, L1 =1;

E | Z=Y&&X; X=Y; if (L3&&(Y|12Z))

1 A SRS B i e Ui S5 Figure 10: Intermediate steps (a) through (c) in computing the path

) machine for variabl& in Figure 9, and the final result (d).
Figure 9:A code fragment with a two-level nested loop structure and

its corresponding RBP; line labels are listed in the left column.

as long a% does not equat. Otherwise the inner loop breaks

into the outer loop. Though this example does nothing useful,
to reuse an existing variable to describe it. Instead, new variits looping behavior is complicated. Real code often exhibits
ables and new assignments can be generated automatically kgoping behavior that is simpler; this example code demon-
track the transitions that determine when e && ! Yregion strates that path-precise analysis is general enough to handle
of the path machine is entered. arbitrary looping behavior.

Once path machines are used to resolve the reachability of Three intermediate steps in computing the path machine for
property code, annotation variables are removed from the code:ariableX in Figure 9 are shown in Figure 10. Figure 10 (a)
For Figure 7, this results in code that is similar to the code ofshows what th& path machine looks like after tracing arbitrary
Figure 1 (b). However, the solution computed by property syn-paths up to length 4. The trace proceeds as follows: instruction
thesis is slightly more efficient and less obvious: it can releaseA is the first instruction to execute, followed by instructiBn
alock before thé > j expression at lin€ is evaluated. This The next instruction to execute @ which creates a result that
replaces the one line of lock release code in the loop of Fig-determines what instruction executes next. Therefore &ate
ure 1 (b) with three lines that enable the lock to be released &ranches to two choices, stddg (instructionD will execute
few instructions sooner. wheny is false), or statd,. Following the execution of in-

structionD, instructionB will execute again. An existing state

is recycled in a path when it executes the same instruction and
3. Path-Precise Ana]ysis has the same truth value as a new state in the path would have.

Given multiple recycling candidates, a well-defined order that

Path machines used in property synthesis are computed wittakes into account distance from start and the branching struc-
a path-precise analysis that does not utilize any of the approxiture of the path machine is used to choose a state. A well-
mations used in a MOP (meet-over-all-paths) data-flow analy-defined order in choosing recycling candidates is important as
sis. The only time approximation occurs in property synthe-it ensures no state is skipped when guesses are incorrect. Be-
sis is when the annotated code is transformed into an RBR;ausex is false at stat®,, it can be recycled for the transition
where unknown values approximate behavior that is either unfrom stateD,.
known or not expressible through boolean assignments. This Figure 10 (b) shows what thepath machine looks like after
section describes how path machines are computed from arbtracing arbitrary paths up to length 6. St&gis recycled for
trary RBPs without any loss of precision. the transition from stat&;. This transition will be known to

Each variable in an RBP is associated with one path mabe incorrect when arbitrary paths of up to length 7 are traced.
chine. PPA computes path machines by tracing longer andt this time it will be known that theéD instruction, not theeE
longer paths through an RBP. The key insight is that a fix-instruction, succeeds tl@instruction on a true transition when
point can eventually be recognized if path machine construcstateE; was executed two transitions before. When incorrect
tion makes compact guesses about paths in the RBP longer thajuesses are identified, path machines must be patched.
they are precise for. In other words, the path machines that are Path machine patching finds the next possible guess in the
precise for paths ofC length express behavior that is possibly path machine that is precise with respecki@nd recycles the
wrong for paths of lengtli + 1. When a path machine is re- most states using a well-defined order. In the case of Figure 10
fined to be more precise for a longer path, states must be reus€t), there is only the one falgg state, so a new falsg state
to represent this precision vigate recyclingoefore new states must be created to capture the new path. This occurs in Fig-
are created, otherwise a fix-point can never be identified. Statare 10 (c) with the neuZ, state to express behavior precise for
recycling is similar to FSM minimization, except that equiva- paths of length 7. In general, incorrect guess paths are always
lence between the original and minimized machines is not ashe result of assignment behavior that occurs only periodically
strong. Instead, state recycling only requires that the resultingn a loop. For example, consider a loop where a periodic as-
path machine expresses the same behavior for execution patkggnment only occurs every four iterations when two counter-
for which the original path machines is precise. like boolean values are both true. Path machines would recy-

As an example, consider the code in Figure 9 and a correele three sets of states through the loop’s transition path before
sponding RBP, where a call tet Y() is changed into an un- the incorrect guess was discovered. Patching the path machine
known value. The code contains two loops, where the outemwould require unrolling the existing cycle in the path machine
loop never breaks, and two loop-carried variabkeandz. In three times so that special behavior can be considered in the
the outer loopX is always assigned toz. In the inner loop, fourth iteration. In Figure 10 (b), periodic behavior is identi-

Z is assigned tor && X, whereY is computed fronget Y(), fied on the second iteration, so the incorrect guess is discovered

quickly. between states, not between instructions, the CFM will be more
Because incorrect guess paths can cycle for multiple iteraprecise than a CFG in guiding state traversals. In Figure 10 (d),

tions before periodic behavior is identified, path machines musthe z path machine actually consists of four sequential inner

be annotated with transition precision information to ensureloops and one outer loop. The fast PPA algorithm maintains a

that incorrect guesses can be recovered from. Each transitioget of dirty states relative to the CFM. Initially, only the CFM

must be associated with a precision that specifies how mangtart state corresponding to the first evaluated instruction is in

times itis precise in a path before the next transition taken canthe dirty set.

not be guaranteed to be as precise. When a state is initially On each iteration of the analysis, a state is chosen for pro-

recycled from some state, the transition between these states @gssing from the dirty list based on two criteria. The higher

assigned a precision of zero, meaning the next transition is ngpriority criterion selects a dirty state based on the current loop

guaranteed to be as precise. As tracing recycles a state multipleeing processed according to the CFM’s clique structure. The

times in a path, the precision of the transition is incrementeddirty state in the same loop with the last processed state will be

Beyond enabling incorrect guess recovery, transition precisionprocessed before another dirty state. For example, if the CFM

are not used for any other purpose. resembles the path machine in Figure 10 (a), if sGytés the
Thez path machine in Figure 10 (c) still makes an incorrect last state processed, and stadeandE, are dirty, then statBy

guess on the false transition from st@eto stateE,, where the will be processed befor,. The lower priority criterion selects

E instruction is preceded in execution by a fad@struction, the nearest successor state, based on the CFM, of the previously

not a true one. When a trace of path length 8 is performed, th@rocessed state. Otherwise, a dirty state is just chosen at ran-

path machine is patched to the path machine in Figure 10 (d)Jdom. Processing traces all imprecise CFM paths through the

This path machine is completely precise for any arbitrary lengthprocessed state, patching the path machines according to the

path, although the algorithm will only terminate after it traces results of the traces. If any path machine is patched as a re-

arbitrary paths of length 9 (8 + 1) to discover that theath sult of the trace, states whose evaluation follows the processed

machine and path machines for other variables have reachestate in the CFM are added to the dirty list. A fix-point has been

fixed-points. A path of length 8 has encountered all possiblereached when the dirty list is empty.

states in this RBP. The RBP has four instructions in the loop and

two loop-carried variableX(andz). Therefore, a path machine :

could duplicate an instruction at most only four times, which 3.2 CompleXIty

results in at most 17 states (includiAgutside the loop). PPA The worst-case feasible state space of an RBO(iE"),

is guaranteed to terminate at or before a path length of 18 (1WhereE is the number of instructions anfid is the number of

+ 1) for the RBP in Figure 9. Termination occurs at path lengthvariables in a program. This determines the shortest path that

9 because half of the possible states happen to be infeasible aan be traced before a fix-point is identified, which is the same

redundant. The example in Figure 9 is an extreme case, wher®r the fast or basic PPA algorithm. The worst case assumes

all variables are dependent on each other. that all variabled/ are related to each other’s behavior, which
does not occur often in real programs.
31 Fas PPA The number of arbitrary paths for a given length is related to

the number of unknown valudg in a program. In the basic

An implementation of PPA simply by direct induction on PPA algorithm, an instruction will be explored for each path
path lengths explores every possible path of increasing lengthi is in; therefore, the worst-case complexity with respect to
until a fix-point is computed. This results in a computationally state processing i9(EY). Because of its traversal technique,
inefficient algorithm where the number of paths explored is ex-the fast PPA algorithm has a worst case time complexity of
ponentially related to the number of unknown values in an RBPO(E"), whereL is the looping depth in the CFM. Although
The basic algorithm is analogous to a naive implementation oft is possible to contrive programs whelieapproaches the size
data-flow analysis (DFA), where a CFG has only one “dirty” of U, loop nesting in the CFM is usually related to loop nesting
bit and basic blocks are traversed repeatedly until the dirty bitin the CFG. However, it is always possible for loops in the CFG
is no longer set. As in a fast DFA algorithm, a fast PPA algo- to only execute a constant number of times, which means they
rithm should focus on computing local fix-point behavior for are not loops in the CFM. Alternatively, variables and branches
semi-independent sections of the CFG, like inner loops, beforeanay be used in a way that creates loops in the CFM that do not
tracing behavior for successive sections of the CFG. Althougtexist in the CFG. For the code in Figure 9, the code’'s CFM is
nodes will have to be processed multiple times, tracing an exsimilar to the path machine in Figure 10 (d) indicates a loop
ponential number of paths can be avoided. nesting depth of two, which would also be the looping depth

Control-flow in an RBP is implicit in variable assignment, in its CFG. Since PPA is not inter-proceduraljs likely to be
so control-flow of an RBP is not known in a graph form un- a small number, the exception being loop-intensive scientific
til PPA is finished. However, aontrol-flow machindCFM) code.
is constructed and refined during PPA by computing the path Each path machine describes behavior for only one variable.
machines for the RBP’s CFG variables, and it can guide analyAs a result, PPA avoids the state explosion problem often asso-
sis. A CFM is analogous to a CFG and is formed by unioningciated with constructing state machines that describe program
the path machines of all CFG variables together. The CFM isbehavior. Except for control-flow variables, which are obvi-
dependent on every variable used in control-flow tests, so willously all inter-related, variables are often only loosely related to
contain the complexity of those variable’s path machines. Theeach other. Therefore, their path machines can be smaller and
CFM is not precise until PPA terminates, but even in its im- can arrive at fix-points faster than a single monolithic state ma-
precise form, it can aid in identifying potential loops to focus chine that describes all variable assignment behavior together.
analysis on. Because the loops PPA is concerned about occérdditionally, this also means PPA will suffer when false depen-

determinism of a select value can and must be eliminated. Se-
lect value elimination occurs by unioning sections of the path
machine where the value is true with sections of the path ma-
chine where the value is false. Select value elimination is a
lossy process because it intuitively merges together all behav-
ior about the iterations of an expression value created in a loop.
Therefore, select values are only eliminated when a path ma-
chine is directly used to reason about the reachability of some
property code. Before synthesis, select values enable these cor-
relations between values produced in a loop to be maintained
long enough to derive other path machines that are more pre-
cise as a result of the correlations. Consider the path machine
for variablel _I' S, which is repeated in Figure 11 (a), and the
Figure 11:Repeated from Figure 8, the path machines for variablespath machine for variable?USE in Figure 11 (b). Because the

I 1 S (a) and?USE (b), and the path machirRUSE (c) after it under- select value is not eliminated from the S path machine, the
goes select value elimination. structure of the ?USE path machine describes cases where the
process1() call is sometimes unreachable for a value used in

. . . aprocess0() call. If the select value was eliminated from the
dencies exist between variables because they are reused for uny path machine, then ther ocess1() call would always

related purposes. Before PPA is performed, renaming variablege jngicated as reachable in theuse path machine as long
using a technique such as SSA [7] can potentially improve PPAgp, o next was true at least once. However, when the select
performance by eliminating easily detected false dependencies, e is eliminated from the?USE path machine, as in Fig-

ure 11 (c), theprocessi() call is sometimes reachable and
3.3 FutureVariables s_om_etimgs un_reachable. As a result, the path machine identi-
fies iterations in the loop where lotk can be safely released,
Future variablesare created when the future operatoiis which would not be possible if the select value was eliminated
applied to a variable. Because of future variables, PPA occur§rom thel _I S path machine before the?USE path machine
in multiple passes. On each pass, PPA computes path machinggs computed.
for a set of variables that are not dependent on variables in later The select value elimination process first identifies the re-
passes. Because of this requirement, conventional and futurgions in the path machine where the select value transitition is
variables can never be mutually dependent on each other. Adrye and regions where it is false. For theUSE path machine
ditionally, future variables are restricted from ever being as-in Figure 11 (b), a beginning false region for thlselect value
signed to unknown values. Three analysis passes are need@@presentingiext call results) starts at staBGN and ends at
to compute path machines for the code in Figure 3, where thetateM,. The single true region ranges from sthteuntil state
second pass computes path machines forth& expression M, where another false region exists forever. Behavior that oc-

and the third pass computes the path machine forkhivari- curs in the false regions that surround a true region are unioned
able, while the first pass computes paths machines for all otheith the behavior of that true region. For example, in the later
variables. false region of Figure 11 (b), the transition from stétds split

All CFG variables exist in the first pass, so by the secondin Figure 11 (c) because? USE will always remain true through
pass, which processes future variables, the CFM is already coRhe nextX state wherpr ocess0() is true.
structed. Whereas path machines for conventional variables are
constructed from a start state, path machines for future vari-
ables are constructed from a termination state that all paths isl. Djscussion
the CFM conceptually can reach, even if they cycle forever.
Starting from the termination state, assignments to the variable |n its current form, path-precise analysis is intra-procedural
flow backward from their assigning states. An assignment tohecause path machines cannot express the unbounded stack be-
true flows backward, adding states to the true set, until an ashavior needed to reason about recursion. Enhancing path ma-
signment to false of the same variable is encountered. After &hines with a stack abstraction would increase their expressive-
path machine for a future variable is computed, it is identical inness to the power of push-down automata. Such path machines
form and function to path machines of conventional variables. would be much more difficult to compute via an analysis. Us-
ing the results of these path machines in property synthesis
would also be problematic, because a stack would need to be
34 Select Values maintained and inspected at run-time to ensure that code exe-
When the path machines are being constructed, select valuesited in the correct context.
are treated the same as unknown values that are true exactly Our strategy for making PPA inter-procedural involves ab-
once. To implement this constraint, all paths that take a truestracting away the call stack and recursion. Annotations pro-
transition more than once for the same select value are elimivided by a meta-program or inferred via analysis can mitigate
nated. Additionally, all paths that take a false transition for athe precision lost through abstraction. Annotations can de-
select value is eliminated if they do not eventually take a truescribe a procedure’s behavior as a set of boolean assignments,
transition for the select value. These criteria are identified durwhich can replace calls to the procedure in an RBP. The same
ing path machine construction. strategy can be generalized to reason about other kinds of un-
Before a path machine is used to synthesize code, the norbounded memory constructs, such as arrays, using techniques

like shape analysis [16]. the analyses used in both ESP or Metal, path-precise analy-

Although we separate our discussion of the annotation andis can correlate how loop-carried dependencies affect control-
abstraction property synthesis steps in Section 2, they are tightfyow.
inter-related. Annotations are added as boolean variables and Path-sensitive analyses often work by sharpening data-flow
assignments, which will not be abstracted away during the abanalysis results with a finite set of path predicates [12]. GSA[18]
straction step. Any precision lost during property synthesisis a variation of SSA that enhances precision by qualifying
occurs when expressions are converted into unknown valuesnerge nodes with path predicates. Predicated array data-flow
Annotations can be used to direct the abstraction process by renalysis [15] uses path predicates to enhance both compile-
placing what would otherwise be a single unknown value withtime analysis and to introduce run-time tests that guard safe
more a detailed set of variables, tests, and assignments. For egxecution of optimized code, which is similar to how path ma-
ampley > x andy < x evaluate to mutually exclusive con- chines are used to derive run-time tests that guard execution of
ditions that can be expressed with one unknown value ratheproperty code. Path-precise analysis innovates on these path-
than two. Libraries can also express domain-specific relationsensitive analyses by describing paths directly in a transition
ships that can be used to enhance the precision of an abstrasystem. As a result, path-precise analysis can disambiguate be-
tion. In addition to enabling the encoding of property-specific tween paths as they loop, whereas simple path predicates can-
behavior in a generic way, the annotation language can enableot.
encodings that improve precision of the abstraction process. An alternative to dealing with loops is to expand the Idop

times to recognize loop-carried dependencies that occur across

k iterations [14]. However, using the results of this analysis
5. Reated Work can lead to an exponential blow-up in the program. Addition-

ally, loop-carried dependency distances may not be constant.

Property synthesis follows work in property checking. The Path-precise analysis avoids both of these problems with path
multiple steps used in property synthesis are similar to thosenachines. Although the state structure of a path machine may
used in SLAM [3], a verification method based on iterative be expanded to describe periodic loop behavior, this expansion
refinement. In SLAM, a program is annotated, the annotatedloes not carry through to the CFG when the path machine is
program is abstracted into a boolean program, and the booleamsed to synthesize code. Unlike expansion, path machines can
program is analyzed to determine whether or not a temporahlso be used to identify loop-carried dependencies over an ar-
safety property is adhered to in the program. Property synthebitrary number of iterations; e.g., path machines can identify a
sis uses these same steps even though the technologies used la@p-carried dependency that occurs until the loop terminates.
different. An additional step in SLAM, which iteratively re-
fines the precision of a boolean program to guide results, is
not applicable in property synthesis. Property synthesis abg. Conclusions and Future Work
stracts programs into regular boolean programs that are similar
to boolean programs created by the tool C2BP [1]. Although In this paper we have described property synthesis, a mecha-
regular boolean programs are less expressive than boolean proism for automatically inserting code that achieves some prop-
grams because they lack a stack abstraction, they are more aprty into a procedure. The property, such as lock acquisition, is
propriate for program synthesis because they form a simplalescribed as a program analysis problem, such as determining
state-transition system that can be inspected during programhere and when a value is used in a procedure. The correct
execution. insertion of property code into a program occurs automatically

Property synthesis is supported by a path-precise analysighen an answer to this analysis problem is provided for the
that is most similar to Bebop [2], which model checks booleanprogram.
programs in SLAM. Bebop computes over sets of boolean vari- We have concentrated on describing the analysis necessary
able behavior for each statement in a boolean program, which iso support property synthesis. Because property code depends
similar to how path-precise analysis computes path machinesn tracking value use, a precise analysis is necessary. We have
Bebop results are used to reason about the reachability of edescribed PPA, path-precise analysis, which produces a set of
ror states in a program, which is similar to how path machinespath machines. The path machines form a finite-state model
are used to reason about about the invariants under which propf the procedure being analyzed; i.e., it is based on a boolean
erty code should execute. Unlike Bebop results, path machineabstraction of the procedure. Path machines are produced with
are designed specifically to enable the synthesis of code: patbycles of state transitions, which enables the precise analysis of
machines can identify every path in a regular boolean prograntoop behavior. Beyond property synthesis, computing analysis
that can reach property code, and can be used to synthesizesults as state machines could also benefit other program anal-
code that recognizes these paths at run-time in the correspongsis domains, such as partial verification of program behavior
ing program. and optimizing programs.

Property simulation is a path-sensitive analysis designed to We are implementing this analysis in the context of a meta-
support partial property verification in ESP [8]. Property simu- programming system that supports property synthesis. We have
lation improves precision over traditional DFA by heuristically implemented early versions of this analysis for Java programs,
tracking branches in a program when they obviously affect thebut we have not yet implemented the version of the analysis
behavior being analyzed. Metal’s xgcc [11] finds bugs using adescribed in this paper. The meta-programming system pro-
path-sensitive algorithm based on a heuristic that most path areides a language to describe properties. When this language is
executable and data dependencies are simple. Where ESP aocdmbined with the analysis in this paper, the system will en-
Metal are designed to be scalable, property synthesis requiresble property code to be described at a high level and inserted
precision and only processes one procedure at a time. Unlikautomatically.

Besides lock acquisition, property synthesis can be applied14] J. Knoop, O. Ruthing, and B. Steffen. Expansion-based
to other properties such as error handling and consistency pro- removal of semantic partial redundanciesPhoc. of
tocols. Property synthesis should be useful for arange of meta- CC, page 91, 1999.
programming tasks. We are currently exploring how property[15] S. Moon, M. W. Hall, and B. R. Murphy. Predicated
synthesis can be used to generate and customize software com- array data-flow analysis for run-time parallelization. In
ponents. Also, we are exploring how property synthesis can Proc. of ICS pages 204-211, July 1998.
accommodate architectural properties that span multiple procg46] M. Sagiv, T. Reps, and R. Wilhelm. Parameteric shape
dures, such as resource management policies. analysis via 3-valued logic. IRroc. of POPL pages

303-321, Jan. 1999.
[17] B. Steffen. Property-oriented expansionLINCS 1145,
Symposium on Static Analysgmage 22, 1996.
I[18] P. Tu and D. Padua. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. Broc. of
ICS June 1995.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Nationa
Science Foundation under Grant No. 9876117. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

7. REFERENCES

[1] T. Ball, R. Majmdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programsPhoc.
of PLDI, June 2001.

[2] T.Ball and S. K. Rajamani. Bebop: A symbolic model
checker for boolean programs. Broc. of SPIN
Workshoppages 113-130, May 2000.

[3] T.Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfacesAroc. of SPIN
WorkshopMay 2001.

[4] T.Ball and S. K. Rajamani. Bebop: A path-sensitive
interprocedural dataflow engine. Rroc. of PASTEJune
2001.

[5] R. Bodik and S. Anik. Path-sensitive value-flow analysis.
In Proc. of POPL, pages 237-251, Jan. 1998.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors. In
Software: Practice and Experience, 30(gages
775-802, 2000.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficient computing static single
assignment form and the control dependence graph. In
ACM Transactions on Programming Languages and
Systems, 13(4pages 8497, Oct. 1991.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. IRroc. of
PLDI, June 2002.

[9] D. L. Detlefs. An overview of the extended static
checking system. IRroc. of Workshop on Formal
Methods in Software Practicpages 1-9, 1996.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. IRroc. of OSD] Oct. 2000.

[11] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proc. of PLDI June 2002.

[12] L. Holley and B. Rosen. Qualified dataflow problems. In
Proc. of POPL,_Jan. 1980.

[13] G.Kiczales, E. Hilsdale, J. Hungunin, M. Kersten,

J. Palm, and W. Griswold. An overview of AspectJ. In
Proc. of ECOOPRJune 2001.

