Composable Consistency for Large-scale
Peer Replication

Sai Susarla and John Carter
{sai, retrag @cs.utah.edu

UUCS-03-025

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

November 14, 2003

Abstract

The lack of a flexible consistency management solution hinders P2P implementation of ap-
plications involving updates, such as directory services, online auctions and collaboration.
Managing shared data in a P2P setting requires a consistency solution that can operate in a
heterogenous network, support pervasive replication for scaling, and give peers autonomy
to tune consistency to their sharing needs and resource constraints. Existing solutions lack
one or more of these features.

In this paper, we propose a new way to structure consistency management for P2P shar-
ing of mutable data calledomposable consistencyt lets applications compose a rich
variety of consistency solutions appropriate for their sharing needs, out of a small set of
primitive options. Our approach splits consistency management into design choices along
five orthogonal aspects, namely, concurrency, consistency, availability, update visibility
and isolation. Various combinations of these choices can be employed to yield numerous
consistency semantics and to fine-tune resource use at each replica. Our experience with
a prototype implementation suggests that composable consistency can effectively support
diverse P2P applications.

1 Introduction

Existing P2P systems largely focus on locating and sharing read-only content. The avail-
ability, failure resilience and incremental scalability of the P2P organization can also benefit
applications that involve updates, such as directory services, online auctions, and collabo-
rative work environments (e.g., Lotus Notes). However P2P sharing of mutable data raises
issues not present in existing centralized implementations of these services, namely, repli-
cation and consistency management. A dynamic wide-area P2P environment poses new
challenges to replication algorithms, such as diverse network characteristics, a large but
floating population of peers and their diverse capabilities and consistency needs. Maintain-
ing a replica at a peer consumes compute and network resources to keep it up-to-date with
other replicas. Peers vary in their resource availability and willingness to handle load from
other peers. A P2P consistency management system must therefore be able to handle per-
vasive replication (e.g., creating and destroying replicas when needed) to scale with load,
and enable peers to individually balance consistency and availability against performance
and resource use.

A number of previous effortsT10] 3] have viewed consistency semantics as a continuous
linear spectrum ranging from strong consistency to best-effort eventual consistency. How-
ever, an application’s consistency needs are not always the same for all types of access
(e.g., read or write). For example, an auction service might need strong consistency for
updates to serialize purchases, but could tolerate a weaker consistency level for queries to
improve performance at the risk of supplying stale data to users. This argues for expressing
consistency requirements as a two-dimensional space. In fact, we have surveyed the data
sharing needs of a variety of distributed servic¢es [7] and found that they could be described
along five major dimensions that are largely orthogonal:

concurrency the degree to which conflicting (read/write) accesses can be tolerated,

consistency the tolerance to stale data and the update dependencies to be preserved,

availability - how data access should be handled when some replicas are unreachable,

visibility - the time at which local modifications to replicated data must be made
visible globally, and

isolation- the time at which remote updates must be made visible locally.

There are multiple reasonable options along each of these dimensions, that create a multi-
dimensional space for expressing consistency requirements of applications. When these

options are combined in various ways, they yield a rich collection of consistency semantics
for reads and updates to shared data, covering the needs of a broad variety of applications.
For instance, our approach lets a P2P auction service employ strong consistency for up-
dates across all peers, while enabling different peers to answer queries with different levels
of accuracy by relaxing consistency for reads to limit synchronization cost. A user can
still get an accurate answer incurring higher latency by specifying a stronger consistency
requirement for her query.

In this paper, we describeomposable consistenayur approach to consistency manage-
ment based on the above classification. We believe that letting applications express con-
sistency requirements individually along these dimensions on a per-access basis instead of
supporting a few packaged combinations gives them more flexibility in balancing consis-
tency, availability and performance. We have developed a wide-area P2P data store called
Khazanathat provides aggressive replication and composable consistency behind a simple
file system-like interface. We developed several P2P applications on top of Khazana includ-
ing a prototype auction service that employs peer proxies via shared objects, a file system
that supports collaborative document sharing, and a replicated BerkeleyDB database to
serve as a shared directory service. We found that Khazana effectively exploits locality in
these applications while precisely meeting their consistency requirements [8].

In Section[R we describe our composable consistency scheme, and outline several useful
semantics it enables in sectign 3. In Sectidns 4[and 5 we compare our approach with related
work and conclude.

2 Composable Consistency Options

Composable consistency lets applications express data sharing requirements along five di-
mensions:concurrency consistencyavailability, visibility, andisolation These dimen-

sions reflect common decisions during consistency management.[Table 1 lists several use-
ful design options along each dimension. These options can be combined several useful
ways as described in sectipn 3, although not all of them make sense.

Runtime Model

We assume the following runtime data access model for the rest of our discussion. Applica-
tion instances (hereafter referred todisntsof the consistency system) access their local

Concur. control Consistency guarantee| Update Reader | Availability
rd wr Strength | Timeliness | Data Deps.| Visibility | Isolation
latest none session session
RD WR | hard (pull) | time-based | total order | per-access per-access optimistic
RDLK | WRLK | soft (push)| mod-based| causality manual manual | pessimistic
atomicity
Table 1:Composable Consistency Options.
Access (rd & wr) | Strength of | Check for Wr Availability Use/
semantics guarantee | updates | Visible | in partition Provider
| strong (exclusive) | hard(pull) | onopen | on close no serializability
close-to-open hard(pull) onopen | onclose| app. choice| collaboration, AFS
close-to-rd hard on access| on close| app. choice| read stable data
wr-to-open hard onopen | onwrite | app. choice NFS
wr-to-rd hard on access| on write | app. choice| log monitoring
eventual close-to-rd soft(push) never | on close yes Pangaea
eventual wr-to-rd soft never | onwrite yes chat, streaming

Table 2:Major flavors of access semantics possible.

replicas of shared data via sessions bracketed by open() and close() calls. Before access-
ing a local replica, a client opens a session, optionally specifying the desired consistency
semantics as a vector of consistency options along the dimensions below. In response, the
system brings the local replica to the desired consistency. The client then reads or writes
the local replica directly and later closes the sesgic@onsistency options can either be set

on the data globally affecting all replicas, individually on a per-replica basis, or when open-
ing a session to hold good for the rest of that session. Local options override global ones.
However, weakly consistent access at a replica cannot compromise stronger consistency
guaranteed elsewhere.

Concurrency Options

Concurrency control refers to the parallelism allowed among reads and writes at various
replicas. We found that two distinct flavors of access mode for each of reads and writes
(specified at open() time) are adequate for a variety of applicatmreurrent(RD, WR)
andexclusive(RDLK, WRLK) access. Concurrent modes allow other writes to proceed

IClients can also make updates by supplying an update procedure to be applied at all replicas.

in parallel, at the expense of operating on stale data or generating write conflicts. Ex-
clusive modes enforce the traditional concurrent-read-exclusive-write (CREW) semantics
and globally serialize writes for strong consistency. Resolving write conflicts may require

application intervention unless last-writer-wins [9] rule suffices.

Consistency Options

Consistency refers to the degree to which stale data can be tolerated. Applications can
specify this in terms ofimelinesgguarantees andiata interdependencies

Timelinesgefers to how close data read must be to the most current global version. There
are three useful choices for timelinessiost current time-boundedand modification-
bounded Our evaluation presented elsewhere [8] shows that even small time bounds
(e.g., 10 millisecs) can significantly improve performanceost currenunder high speed
workloads. Modification bound specifies the number of unseen remote writes tolerated by
a replica before it needs to synchronize.

Clients can specify whether their timeliness requirementharé meaning they must be
checked before every accesssoft indicating that best effort suffices. For example, close-
to-open consistency for files can be achieved by choosing hard 'most-current’ guarantee
at open() time. Soft guarantees are adequate for applications like bulletins boards and
shopping queries, and can lead to significantly better performance and scalability, as our
study [8] indicates. Hence application choice over hardness is valuable.

Data interdependenceefers to whether an application requires that multiple updates be
seen in a particular order by replicas. We identified four useful options. Updates may
need to be seen (i) in no particular order, (ii) in the same order at all replicas, (iii) in
causal orderi]2], meaning that if replica A sees B’s update and makes an update, B’s update
must be seen before A's everywhere, or (iv) atomically, meaning that updates by sessions
grouped as atomic must be seen together everywhere.

Unordered and totally ordered updates suffice for many popular applications including file
updates, chat sessions, and updates to replicated directory services. Lack of causal ordering
could cause confusion to mobile users if updates made by them do not propagate as fast as
they move. Databases typically require atomicity to preserve data integrity. However, pre-
serving causality and atomicity often incur significant bookkeeping and hence applications
must be able to disable them when not needed.

Availability Options: When a consistency or concurrency control guarantee cannot be

met due to node or network failures, applications mayop@mistici.e., continue with

the available data in their partition, or Ipessimistid.e., abort. When connected, both
options behave identically. Applications can choose between availability and consistency
on a per-session basis.

Visibility and Isolation Options

Visibility refers to the time at which updates are made visible to remote sestsolagion

refers to the time when a replica must check for and apply remote updates. We identified
three useful flavors of visibility and isolatiosessionper-acces@ndmanual They im-

ply that updates are made visible by writers or checked by readers (i) only at a session
boundary, (ii) eagerly on every access, or (iii) only when the application requests it. Ses-
sion semantics ensures that readers never see intermediate writes of remote sessions. This
is important for document updates. Eager semantics allows long-lived sessions at replicas
to quickly disseminate or monitor each other’'s updates and can be used for stock quote
updates, Internet chat and real-time data multicast. Manual semantics lets an application
completely hand-tune its update propagation strategy using application knowledge to bal-
ance timeliness against CPU and bandwidth usage.

3 Discussion

The above options allow a variety of applications to compose consistency semantics appro-
priate for their sharing needs. Taljle 2 lists some common sets of options that correspond
to well known “hard wired” consistency semantics. The first column denotes a particular
consistency semantics, and the other fields denote the set of options that an application
should specify to achieve this semantics. For example, “close-to-rd” semantics means that
a session reads only writes by completed sessions, not the intermediate writes of still open
sessions. If an application’s updates preserve data integrity only at session boundaries,
this set of options ensures that reads always return stable (i.e., internally “consistent”) data
regardless of ongoing update activity. In contrast, “wr-to-rd” semantics does not provide
this guarantee, but is useful when up-to-date data is preferred over stable data, or when
write sessions are long-lived as in the case of distributed data logging, or live multimedia
streaming. Finally, the rightmost column gives an example situation or application where
that choice of consistency options is appropriate.

The table shows three broad categories of semantics. We hereatfter refer to tteon@s

eager and best-effort/eventuatonsistency semantics for brevity. Strong semantics are
achieved by exclusive access modes (RDLK, WRLK), and others by concurrent modes
(RD, WR) with hard and soft timeliness requirements respectively. The eager and best-
effort semantics can be further qualified by a timeliness bound to achieve continuously
variable control over replica divergence both in terms of time and number of unseen up-
dates. These semantics can be achieved independently for reads and writes, further en-
hancing the options available to applications. Combining atomic updates with the above
options yields a rich variety of weak consistency flavors for databases, all of which ensure
transactional atomicity. Similarly, combining eager read and strong write semantics with
atomicity ensures that a reader always sees an internally consistent snapshot of data without
blocking ongoing writes elsewhere. This allows a reader to safely navigate shared objects
and data structures being actively modified elsewhere (analogous to Objectstore’s MVCC
reads [4]).

As an example, consider a P2P implementation of an online marketplace such as EBay
where peers (i) publish and browse items for sale, and (ii) place bids and make sales. The
latter require exclusive access to an item (e.g., to prevent selling it to two people). How-
ever, the item catalog itself can be widely replicated with weak consistency as shoppers
are used to fluctuating content. To reduce coherence traffic further, updates can be for-
warded to a few 'master’ sites, while all others handle queries and resynch with masters
only periodically or when a query fails.

In summary, our combinatorial approach covers a large space of consistency semantics indi-
vidually provided by many applications in a single system. Each of our consistency options
can be implemented independently of others and contributes to a portion of the overall se-
mantics. Hence we hypothesized that a consistency solution composed out of these options
is also likely to perform well. Our experience with a prototype implementation confirms
our hypothesis.

4 Related Work

Several solutions exist to manage sharing of aggressively replicated data among wide-area
peers. However, most previous work has targetted read-only data such as multimedia files
(PAST [6], KaZaa) or access to personal files [9], but not frequent write-sharing. Numer-
ous consistency schemes have been developed individually to handle the data coherence
needs of specific services such as file systems, directory senvices [5], databases and persis-
tent object systemsl[4], Distributed file systems such as NFS, Pangaea, Sprite, AFS, Coda
and Ficus target traditional file access with low write-sharing among multiple users. Com-

posable consistency adopts a novel approach to support many of their consistency schemes
efficiently in a P2P setting.

Fluid replication [1] provides multiple selectable consistency policies. In contrast, our ap-
proach offers primitive options that can be combined to yield a variety of policies, offering
more customizability.

Many previous efforts have explored a continuous consistency maodei [10, 3]. Of those, the
TACT toolkit comes closest to our approach. TACT provides continuously tunable consis-
tency along three dimensions similar to those covered by our timeliness and concurrency
control aspects. We provide two additional dimensions, namely update visibility and iso-
lation, that cater to a wider variety of application needs as described in Sgction 3. TACT'’s
order error offers continuous control over the number of update conflicts. In contrast, our
concurrency options provide a binary choice between zero and unlimited number of con-
flicts. However, we believe that for many real-world applications, a binary choice such as
ours is adequate and reduces bookkeeping overhead.

5 Conclusions

In this paper we advocated a new way to structure consistency management for P2P shar-
ing of mutable data, called composable consistency. It splits consistency management into
design choices along several orthogonal dimensions and lets applications express their con-
sistency requirements as a vector of these choices on a per-access basis. Our design choices
are chosen such that they can be combined in various ways to yield a rich collection of
semantics, while enabling an efficient implementation. We described composable consis-
tency options and outlined how a variety of popular consistency schemes can be easily
achieved with them.

References

[1] L. Cox and B. Noble. Fast reconciliations in Fluid ReplicationPhoc. 21st Intl. Conference
on Distributed Conputing Systep#spr. 2001.

[2] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou
architecture: Support for data sharing among mobile users€P?rdo. Workshop on Mobile
Computing Systems and ApplicatipBsc. 1994.

[3]

[4]

[5]

N. Krishnakumar and A. Bernstein. Bounded ignorance: A technique for increasing concur-
rency in a replicated systemPACM Transactions on Data Base Systef®(4), Dec. 1994.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database Sg&t€EM,
Oct. 1991.

Microsoft Corp. Windows 2000 server resource kit. Microsoft Press, 2000.

[6] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, per-

[7]

[8]

sistent peer-to-peer storage utility. fmoc. 18th Symposium on Operating Systems Principles
2001.

S. Susarla. A survey of implementation techniques for distributed applications.
http://www.cs.utah.edu/"sai/papers/app-survey.ps, Mar. 2000.

S. Susarla and J. Carter. Khazana: A flexible wide-area data store. Technical Report UUCS-
03-020, University of Utah School of Computer Science, Oct. 2003.

[9] Y. Saito et al. Taming aggressive replication in the Pangaea wide-area file systéhocin

[10]

5th Symposium on Operating System Design and Implementa@68a.

H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for replicated
services. IrProc. 4th Symposium on Operating System Design and Implement@tibr2000.

	Introduction
	Composable Consistency Options
	Discussion
	Related Work
	Conclusions

