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Abstract

We introduced the use of Turing’s reaction-diffusion pattern formation to support high-level
tasks in smart sensor networks (S-Nets). This has led us to explore various biologically
motivated mechanisms. In this paper we address some issues that arise in trying to get
reliable, efficient patterns in irregular grids with error in inter-node distances.
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Abstract

We introduced the use of Turing’s reaction-diffusion pat-
tern formation to support high-level tasks in smart sensor
networks (S-Nets). This has led us to explore various bio-
logically motivated mechanisms. In this paper we address
some issues that arise in trying to get reliable, efficient pat-
terns in irregular grids with error in inter-node distances.

1. Introduction

Sensor networks are a crucial part of the IT infrastruc-
ture, and intelligent utilization of them is of increasing im-
portance. Sensor network research to date has focused
mainly on the development of new sensing technologies and
the systems aspects (OS, network communication, security,
etc.) of such networks. Much remains to be done at the
higher level of information extraction, interpretation and ex-
ploitation of networked sensor systems. Our central thesis
is that bio-based engineering will lead to strong solutions in
this domain; that is, we propose to identify and ultimately
incorporate effective computational strategies used by bio-
logical systems. The challenge is to identify mechanisms
that lead to algorithms or paradigms that are reliable, inex-
pensive and ubiquitous in many applications.

Others have explored the use of both reaction diffu-
sion and more general diffusion methods in computer vi-
sion and robotics. For example, Fukuda et al. describe
the use of reaction-diffusion techniques in robot motion[7].
Moreover, as described by Peronna et al.[30], multi-scale
descriptions of images (i.e., scale-space) can be done by
embedding the original image in a family of images ob-
tained by convolving the original image with a filter;
Koenderink[18] have shown that this is equivalent to finding
the solution of the diffusion equation:
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Figure 1. Robot Path in Reaction Diffusion
Pattern ( � is the fire control point; � is the
robot load point)

We believe that it will be quite useful for S-nets to use sim-
ilar methods to analyze sensed data of various sorts.

For example, consider a forest fire scenario: sensor de-
vices are dropped into a wide geographic area, establish a
network, compute coordinate frames, calculate gradients,
and produce a stripe pattern of off-on signals that can be
used by fire fighting agents to go to a fire control point by
following on devices (pattern == 1) and return by follow-
ing off devices (pattern == 0) (see Figure 1). Such patterns
can be computed by very robust reaction-diffusion systems
derived from models of biological pattern formation.

Our general research program is to explore a small set
of biological mechanisms, and we hope to make significant
contributions by providing (1) biologically realistic models
and efficient computational counterparts, (2) fault tolerant
frameworks in which to run them, and (3) demonstrations of
their application in human interface and large-scale sensor
networks. In addition, we are building Smart Sensor Net-
work simulation, emulation, and experimentation testbeds
[13]. Here we describe some initial results in the first of



these areas.

2. Background

Sensor networks have received increasing attention over
the last few years. For example, DARPA’s SensIT program
envisioned long-lived, cheap sensor devices [19]. David
Culler’s work on sensor networks explores the rich design
space of low-power processors, communication devices and
sensors [14]. NSF has recently funded an STC Center for
Embedded Network Systems headed by Deborah Estrin that
will develop algorithms for wireless and distributed sensing
systems [26].

Some examples of issues addressed by these vari-
ous projects include: power minimization [32, 35], self-
configuration [4, 21], data handling [3, 15, 22], systems is-
sues [8, 31, 36], and fault tolerance [36]. In general, higher-
level exploitation of sensor networks applies standard se-
quential or distributed algorithms to the data. Some work
in this area includes calibration [34] and habitat monitoring
[24].

Our own work started in the late 90’s [12], and has
mainly addressed the creation of an information layer on top
of the sensor nodes. This includes distributed algorithms
for leadership protocols, coordinate frame and gradient cal-
culation, reaction-diffusion pattern formation, and level set
methods to compute shortest paths through the net [5, 6, 11].

The information processing issues include the represen-
tation of information and knowledge, the processing of that
information, and the development of efficient, robust, scal-
able algorithms. Our thesis is that the exploitation of dis-
tributed sensor and communication devices by a team of
mobile robots or agents offers performance and capability
advantages in terms of speed, energy, robustness and com-
munication requirements. We are developing capabilities
to perform cooperative computations and provide local and
global information about the environment.

3. Reaction Diffusion Patterns in S-Nets

The biological thrust of our work is to model and un-
derstand sensing and signaling in biological systems, and to
ascertain how that can be applied to smart sensor systems.
Specifically, we incorporate known bio-based information
processing strategies and network architectures in order to
improve S-Net organization and information processing ca-
pabilities.

We have previously described pattern forming reaction-
diffusion methods for S-Nets [5, 6]. Other researchers have
proposed diffusion models as well; for example, [16] pro-
poses directed diffusion - a datacentric communication co-
ordination technique that “enables energy savings by select-
ing empirically good paths and by caching and processing

data in- network.” The focus of such work is more on the
networking and operating systems aspects of the sensor net-
work, whereas our work is more concerned with the sensor
network as a computation engine itself. More closely re-
lated to our work is that of Justh and Krishnaprasad [17]
who propose the active coordination of a large array of mi-
croactuators by means of diffusive coupling implemented as
interconnection templates, and Nagpal [28] who describes
methods to create patterns of diverse geometry. We believe
that this style of research will reap great benefits in 2 as-
pects: (1) network morphogenesis, and (2) sensed data anal-
ysis.

As Meinhardt points out [25], “the control of develop-
ment in a higher organism is one of the major unresolved
problems in biology ... in a developmental system a signal-
ing and signal-receiving mechanism must exist which en-
ables the cell to communicate in a manner appropriate to its
position ... [the] goal is to show which interactions of sub-
stances can lead to such signaling systems and how the cells
then can respond to these signals in order that stable states
of determination are attained.” This matches our view of
the core issues, and we see that their solution can heavily
impact sensor network algorithms as well. For a recent col-
lection of work on reaction-diffusion pattern formation, see
Maini and Othmer [23].

To date, we have assumed a dense set of sensors and have
found it useful to develop a pattern in the network by means
of a distributed reaction-diffusion mechanism. For exam-
ple, striped patterns can be formed along the temperature
gradient so that mobile robots can move along the white
stripe toward a fire and along a black stripe to return to
base (see Figure 1). We use Turing [33] and other reaction-
diffusion mechanisms [27] to generate such patterns in S-
Nets. The basis of this mechanism is a set of equations that
captures the reaction and diffusion aspects of certain chem-
ical kinetics: ���
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expresses the
diffusion component. The simplest such systems have two
morphogens or variables; one of these acts as the activa-
tor and the other acts as the inhibitor (i.e., some cells will
have more morphogen over time, and other cells less – this
uneven distribution leads to the pattern). The two variable
system can be modeled by:��"
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are the concentrations of the morphogens,1
is the diffusion coefficient and

#
is a constant measure

of scale. The functions
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represent the
reaction kinetics. As an example, we have explored the
generation of spatial patterns using the Thomas system of



equations [27]:
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where
4
,
=
,
:

, A , and
D

are the positive reaction param-
eters. They define a domain in which the Thomas equa-
tions become linearly unstable to certain spatial distur-
bances (noise). This domain is referred to as Turing space
where the concentrations of the two morphogens will be-
come unstable and result in the stripe patterns. The pattern
is the result of each network device running the equations
locally while diffusing to its neighbors; a stable solution is
thresholded to produce a binary value at each sensor, and
the total of these gives the pattern in the S-Net.

Patterns in the S-Net can be used to support many high-
level algorithms or activities:

E stripe, spot or ring patterns can be used as encoders
for physical or logical purposes; for example, a robot
can keep track of how far it has traveled (physical), or
communication packets can travel along certain stripes
to minimize power cost or to avoid congestion (logical)

E certain sets of patterns form a basis set for 2D images
(e.g., Haar or Hadamard basis sets); any map (topo,
etc.) or image can then be encoded in terms of the co-
efficients associated with the respective basis images.

E the patterns can be used as a reference wave so that
sensed data (or features derived from it) can be en-
coded as an interference pattern (i.e., a hologram)

E moving waves can also be computed, and thus the S-
Net can serve as a signal carrier or modulator.

Understanding the precision and reliability of pattern for-
mation is then of high importance.

4. Relevant Issues in Pattern Formation

Some work has already been done to determine the range
and type of patterns possible with the Turing pattern for-
mation approach. Theoretical aspects have been studied
and regions of the parameter space characterized as they
relate to pattern formation (i.e., the parameters are the co-
efficients in the PDEs) [1, 10, 20]. Others have investi-
gated how pattern formation is influenced by number of
cells, time scale, and initial condition variation. In par-
ticular, Bard and Lauder [2] showed that “stable repeating
peaks of chemical concentration of periodicity 2-20 cells
can be obtained in embryos in periods of time less than an
hour. We do find however that these patterns are not reli-
able. Small variations in initial conditions give small but

significant changes in the number and positions of observed
peaks.” They showed that this method has difficulty produc-
ing exact patterns reliably. We have found other difficulties
in producing the patterns necessary to support higher-level
tasks. We describe these here and propose some solutions.

4.1 Topology vs. Metrology

A major issue is that most of the reaction-diffusion work
is based on the topological configuration of the cells; that
is, diffusion occurs at the cell level and patterns are formed
at the cell level. Thus, the equations are solved for cells -
and not at specific locations in space. This means that even
though stripes exist, their width is measured in cells - not in
units of length (e.g., meters). For the applications that we
envisage, e.g., using stripes as distance encoders for mobile
agents who use the S-Net, it would be more useful for the
stripe dimensions to be related to physical units of length.

One possible solution to this problem is to exploit the
physical dimension of the cell (in our case an S-Net de-
vice). The dimension of the stripe can be tied statistically
to the number of nodes per unit area. Assume that there areF � devices per unit area; then there are F devices per unit
length (assuming a uniform distribution). Thus, if there areG devices per stripe width, then the width of a stripe is given
as: H � G

F
where

H
is the width in physical units. We have found this

to be a useful approximation.

4.2 Non-Uniform Placement of Cells

Another major factor in the nature of the pattern, and
even its possibility of forming, is noise and error in the vari-
ous parameters of the system. As Bard and Lauder [2] have
shown, small variations in initial conditions yield signifi-
cant changes in the patterns formed. However, since we
get to initialize the morphogen concentrations in our com-
putational context, this problem can be countered by using
specific initial values to achieve the required patterns.

A more significant issue for us is that the reaction-
diffusion pattern formation equations assume that the inter-
cell distance is uniform (and usually equal to 1). Our S-
Nets, however, do not form a uniformly spaced grid in 1D
or 2D; in fact, we generally assume that the sensor devices
are randomly dropped in the environment. In addition, the
diffusion part of the equations uses the inter-node distances
in the computation of the second derivative. Two concerns
are:

E these distances are not uniform, and
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Figure 2. Basic Turing Pattern in 1D

10 cells 20 cells 60 cells4
mean value 1.84 9.31 19.224
stdev 1.2849 1.8185 1.3377=
mean value 1.14 9.49 19.27=
stdev 1.2872 1.0683 1.1534

Table 1. Mean and Stdev for Morphogens
4

and
=

E in an actual implementation, there will be some
amount of error in the inter-node distance determina-
tion.

This has led us to investigate the impact of non-uniform
spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism pro-
duces a pattern as shown in Figure 2, and takes about 700
iterations to converge. A set of 1,000 experiments were run
with different initial conditions for 10, 20 and 60 cells in
1D. Table 1 gives the results for the mean and standard de-
viation of morphogens

4
and

=
.

We also investigated the frequency of the stripe pattern
on equispaced points; Figure 3 gives the mean and stan-
dard deviation of the pattern frequency on 20, 60 and 120
points over 1,000 trials. A reaction is considered to have
converged if morphogen

=
changes by less than

CJIBKBL
on 5

consecutive iterations.
Next consider what happens when error is introduced

into the inter-device distances (this is the same as sim-
ply having irregularly spaced points since the distance, al-
though in error, will be calculated once at the start of the
S-Net formation and stay the same thereafter). The point
locations are determined as follows:
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Figure 3. Mean and Standard Deviation of Fre-
quencies of Patterns

random error total iterations frequency

0 830 10
0.05 450 10
0.1 320 10
0.2 190 8
0.3 130 8
0.4 130 6

Table 2. Position Error vs. Time to Converge
and Stripe Frequency

E start with 60 equispaced points, 1 unit length apart,

E add uniform noise to the location as: M?N%O for N �P & C�I &RQ I &)S I &/T I
.

Table 2 gives the total number of iterations for the pattern to
emerge visually and the stripe frequency for a given amount
of error in the inter-device distances. Beyond this number
of iterations, the amount of morphogen in some cells grows
without bound. Note that as error increases, the stripe fre-
quency decreases.

Figure 4 shows an interesting result: the number of it-
erations required to converge decreases with an increase
in error. Thus, it is more efficient to have non-uniformly
spaced points, and the larger the variation in the inter-node
distance, the faster the convergence. We have investigated
the use of Chebyshev points (60 of them), and the reac-
tion process converged in 3000 iterations. The frequency is
somewhat higher using Chebyshev points, though (see Fig-
ure 5). points. Figure 6 shows a typical pattern formed with
30 % error in the inter-node distance. However, the fact that
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we threshold the morphogen level leads to minimal impact
from the shape of the pattern.

4.3 Pattern Formation by Simple Diffusion

In some applications it may be desirable to form lin-
ear stripes or rings more simply than by using reaction-
diffusion systems. In this case, we propose to use diffusion
directly as a pattern formation mechanism. This is achieved
as follows:

E diffuse a counter value (modulo n), and

E threshold at k for stripes of width n-k.

This can form circular patterns (from a point source) or lin-
ear patterns (from a line source).

5. Conclusions and Future Work

We have discussed here some of the issues related to pat-
tern formation in irregular meshes of S-Nets. Our main re-
sult is that patterns can indeed be formed, however, the pat-
tern can vary based on inter-node distances. However, we
have determined that such meshes can lead to much more
rapid pattern formation.

Some further issues that we hope to resolve in the near
future include:

E the diffusion part of the equation is typically computed
by a finite difference approximation. Given the sensi-
tive nature of the equations involved, we intend to look
at other models of diffusion: e.g., random walk or flux
differences. In fact, these may lead to more robust or



efficient computational methods. (See [9] for a good
review of diffusion phenomena.)

E Only a few pattern forming systems have been stud-
ied in any detail. A wider search for action specific
mechanisms may yield a toolkit of algorithms for spe-
cific system goals. We also intend to look at other new
techniques for pattern formation, such as reported by
Peletier and Troy [29] who study a family of fourth
order differential equations.
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