
Direct Ray Tracing of Smoothed and
Displacement Mapped Triangles

Brian Smits Peter Shirley Michael M. Stark
University of Utah

Technical Report UUCS-00-008
www.cs.utah.edu/ bes/papers/height/tech.html

Abstract.
We present an algorithm for ray tracing displacement maps that requires no ad-
ditional storage over the base model. Displacement maps are rarely used in ray
tracing due to the cost associated with storing and intersecting the displaced ge-
ometry. This is unfortunate because displacement maps allow the addition of
large amounts of geometric complexity into models. Our method works for mod-
els composed of triangles with normals at the vertices. In addition, we present a
special purpose displacement that creates a smooth surface that interpolates the
triangle vertices and normals. Thus two adjacent triangles which share two ver-
tices and normals will be smoothly interpolated. This displacement can be added
to the displacement associated with the object. The combination allows relatively
coarse models to be displacement mapped and ray traced with much less storage
and fewer artifacts due to tessellation.

1 Introduction

Visually rich images are often generated from simpler models by applyingdisplace-
ment mapsto increase surface detail (Figure 1). Displacement maps are a special type
of offset surface, and are usually assumed to perturb surface positions a small distance
using some function. Images with displacement maps are usually computed using ex-
plicit subdivision [3]. The displacement is often a semi-random procedural function
that uses Perlin-style noise [11]. Somewhat surprisingly, displacement maps are almost
never used in ray tracing. This turns out to be for entirely technical reasons; a straight-
forward implementation would need to store more micropolygons than would fit in
main memory on most computers [4]. For this reason, sophisticated caching strategies
have been suggested [12]. Although caching strategies work well for a variety of appli-
cations they are problematic for applications that resist reordering such as Metropolis
Light Transport [15]. Alternatively, explicit numeric root-finding can be used, provided
the displacements can be nicely bounded [5, 8]. A third approach that could work for
displacement mapped surfaces is the recursive subdivision scheme used for procedural
geometry by Kajiya[6]. This approach requires knowing tight bounds over each subdi-
vided region of the displacement function in order to be efficient. Because most global
illumination algorithms require ray tracing, it is desirable to find a simple way to add
displacement maps to ray tracing programs. This would allow realism in both global
lighting complexity and local geometric complexity.

We introduce a method for ray tracing polygonal models with displacements that
avoids complex strategies by restricting the allowable base geometry to triangle meshes
with vertex normals. Although this is a narrow class of modeling primitive, almost all
other modeling primitives can be converted to triangle meshes in a practical manner.

1

Fig. 1. An image of a complex object created by displacement mapping an icosahedron. The
figure is ray traced with global illumination. Only twenty triangles are stored.

The key problem with triangle meshes is the well-known faceting artifacts. However,
we show how to use a deterministic spline displacement function to smooth tessellated
models. While we have restricted how our base models must be represented, we feel
the resulting benefits in computation and storage make up for this restriction.

In Section 2 we give an overview of our assumptions on the model and the restric-
tions we impose for our algorithm. In Section 3 we present the ray intersection algo-
rithm for triangles with displacement functions. The requirements for a displacement
function used to smooth triangle meshes is discussed in Section 4. Images resulting
from the algorithm are shown in Section 5. Finally, we discuss future directions for the
work in Section 6.

2 Overview

The inspiration for our method comes from theREYESrendering architecture [3]. That
simple architecture has worked well for almost two decades, and relies on three simpli-
fying assumptions related to displacements:

• displacements are bounded in distance,
• base surfaces know how to subdivide themselves,
• subdividing the displaced base surfaces into a net of simple sub-pixel patches

provides sufficient accuracy.

We borrow these assumptions directly. By assuming that a finely subdivided model
provides sufficient accuracy, we can use micropolygon normals directly, so no deriva-

2

0 1 2
3

4

displaced

surface

base

surface

Fig. 2. A set of points with normals partitions space into cells (one is shaded) which can be
traversed in order by a ray. This observation holds in 3D as well. An analogous partition can be
added within each cell.

tive properties of the displacement need be known. We also add the assumption that
the displacements are along the direction of the interpolated normal. Although this is
more restrictive than the displacement mapping found in the REYES architecture, it is
the type of displacement mapping found in Maya[1]. For the intersection method, first
imagine a base surface being “carved up” with a set of vertices and normals (Figure 2).
Within each partition we could displace a triangle whose vertices lie along projected
normal vectors from the base surface. If one considers a given triangle under all pos-
sible displacements, it sweeps out a 3D region in space. For reasonably well-behaved
surfaces, adjacent triangles have adjacent regions. The shape of the boundaries between
these regions depends on how the normal vectors of base geometry behave. If one imag-
ines all the regions swept out by all triangles, each triangle forming a “column” in space,
the possibility of a traversal algorithm presents itself. If the base geometry is a plane
then all displacements are perpendicular to the plane and the traversal algorithm would
be similar to that usually used for ray intersections with height fields [9], except that the
traversed cells would have triangular rather than rectangular cross-sections. We would
like to choose a base geometry that is general enough to be geometrically expressive,
but restrictive enough that such a traversal algorithm is feasible.

Because they are so often used in practice, three obvious choices are NURBS sur-
faces, subdivision surfaces, and implicit surfaces such as metaballs. Since all three of
these primitive types are quite different from each other, it is desirable to find a common
representation that they could all be converted into. The only obvious choice for this
common representation is a triangulated mesh, to which it is straightforward to convert
for NURBS and subdivision surfaces, and at least feasible for implicit surfaces [14].
For this reason we choose triangles as our base geometry. To ensure that the displaced
surface is continuous, we use shared vertex normals and displace along normals com-
puted via barycentric interpolation (i.e., Phong normal interpolation [13]). Although
more general displacements are useful [10], we leverage this restriction on the direction
of displacement to create a simpler algorithm than would be possible otherwise.

We strengthen the restriction of a bound on the displacement to limit the range
of possible displacements so that any resulting displaced surface is unable to intersect
itself. Each point in the valid region corresponds to exactly one position and displace-
ment value on the base triangle. This restriction means that each region has only one
set of neighbors, another requirement for a simple traversal algorithm. It also means
that the first intersection found will be the closest intersection to the ray origin.

Our displacement framework assumes there is a pointp on an underlying surface
which is displaced in the direction of the normal vectorn(p) by a displacement func-
tion h(p) (Figure 3). For a triangle with pointsp0, p1, p2 and corresponding normals

3

p

h(p)

n(p)

!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!p + h(p)n

base surface

displaced surface

Fig. 3. A simple displacement by functionh in the normal direction creates a new curve in 2D.

Fig. 4. Icosahedron with displacement pushing each point to a sphere,N = 1, 4, 100.

n0, n1, n2 the bilinearly interpolated points and normalsp andn are:

p = αp0 + βp1 + γp2,

n = αn0 + βn1 + γn2,

where(α, β, γ) are thebarycentric coordinateson the triangle, soα + β + γ = 1. Our
displaced surfacepd is thus:

pd = αp0 + βp1 + γp2 + h(αp0 + βp1 + γp2) (αn0 + βn1 + γn2)

3 Ray Intersection

Our ray intersection test is similar in spirit to intersecting a ray with a height field using
a regular grid over the base plane. We will take advantage of an implicit triangular grid
formed by the barycentric coordinates. We choose a subdivision amountN (Figure 4)
and use dividing linesαi = γi = βi = i/N for i = 0, ..., N which createsN2 grid
cells for each triangle. Each grid cell generates one displaced microtriangle, as shown
in Figure 5. The grid is regular on the base triangle, but due to the interpolated surface
normals, it is irregular throughout space. Although it is irregular, our restrictions limit
the range of the displacement functionh() to the interval[−m,+M] where a traversal
algorithm is possible.

Much like standard grid traversal algorithms, there are two phases to the algorithm.
First the start point must be initialized. Next the grid must be traversed, checking each
cell for an intersection with the triangle it contains. The traversal algorithm will be
described first in order to determine the quantities that need to be initialized.

4

n2

n0
M

m

n1

base
triangle

volume

p0

p1

p2

Fig. 5. The base triangle and four displaced microtriangles generated by setting the subdivision
parameter,N , to 2. The volume for the maximum displacement is also shown.

3.1 Traversal

Assuming we will be able to initialize the traversal algorithm, we focus first on how
to do an efficient traversal. This traversal is conceptually simple, however the use of
triangles complicates the indexing. For each cell entered, the microtriangle is generated.
If it is hit, the traversal is over, if it is missed, the next cell must be determined and a
new microtriangle generated. The new triangle will differ from the previous triangle
by exactly one vertex. This means that for each step through the grid we need only
evaluate the expensive displacement function once.

A position in the grid will be labeled by a triple,(i, j, k), corresponding to the lines
of constant barycentric coordinatesα = i/N, β = j/N, γ = k/N . The indices sum to
eitherN − 1 or N − 2 depending upon whether the triangle is alower triangle or an
uppertriangle as shown in Figure 6. The classification into lower and upper determines
how the vertices are generated given the indices. For a lower triangle, the barycentric
lines corresponding to indices are the edges of the triangle. For an upper triangle, the
barycentric lines corresponding to the indices touch the triangle only at the vertices.
This is not as neat as other possible numbering schemes, however it means that each
triangle differs from its neighbors by one in exactly one index.

Each microtriangle is represented by three displaced points,a, b, andc, with the
order chosen such that the ray is assumed to have entered the cell passing through the
side corresponding to edgea, b. The next cell to be tested can be marked based on
which index will change and if the index will be incremented or decremented. This flag
can be represented as{iplus, jminus, kplus, iminus, jplus, kminus}, and depends upon
the orientation of the current triangle and which side of the cell the ray exits through.
By knowing how the ray entered the current cell, there are usually only two options for
how the ray leaves the cell. The exception for when the ray exits through the face it
enters is handled by the initialization code and will be discussed later. These options
can be checked by seeing on which side of the line determined byc + snc (the far
point and its normal) the ray passes, as shown in Figure 7. If the above list of choices
is viewed as a ring, the next possible choice is either the next flag in the ring, or the

5

p0

p2

p1

increasing k, γ

increasing j, β

increasing i, α

(1,0,0)

(0,0,0)

(0,1,0)

(0,0,1)

(2,0,0)

(1,0,1)

(0,0,2)

(1,1,0)

(0,1,1)

(1,0,0) (0,1,0)

(0,0,1)

(0,2,0)

N=3N=2

lower

upper

Fig. 6. Barycentric indexing forN = 2 andN = 3. When moving between adjacent triangles,
exactly one index changes by one. For a given triangle, this change has the same sign for all
three edges. The “upper” triangle for a given(j, k) is the one with the smalleri index.

n

c

o
v

o−c

a

b

Fig. 7. The rayo + tv passes between the normals ata andb. It will leave either between the
normals ata and c, or between the normals atb and c. This can be tested by whether the ray
passes left or right ofn. It goes to the left of the linec + tn if v · (n × (o− c)) is negative.

6

previous flag in the ring.
The traversal can be terminated by checking if the(i, j, k) values are the same as

the stop cell(ie, je, ke) determined by the initialization phase. We also terminate the
traversal if the ray exits the volume. The traversal loop can be expressed in pseudocode
as follows:

Ray ray // ray, including valid interval for t
Vector3 a,b,c // microtriangle vertices, ordered
Vector2 uva,uvb,uvc // (β, γ) for each vertex
Vector3 cNormal // normal at vertex c
int i, j, k // indices of current cell
bool rightOfC // flag used to determine next cell
LastChange change // where change is one of:

// {iplus, jminus, kplus, iminus, jplus,kminus}
float delta = 1 / N
while(true)

if TriangleIntersect (ray, a, b, c)
intersectionNormal = (b-a)× (c-a)
return true

if EndCell (i,j,k) return false
rightOfC = ((cNormal× (ray.Origin() - c)) * ray.Direction()> 0)
if (rightOfC)

a = c, uva = uvc
else

b = c, uvb = uvc
// Take advantage of numbering.5 = −1 mod 6

change = AdvanceType((change + (rightOfC ? 1 : 5)) % 6)
if (change == iminus)

if (−− i < 0) return false
uvc = Vector2((j+1)*delta, (k+1)*delta)

else if(change == iplus)
if (++ i ≥ N) return false
uvc = Vector2(j*delta, k*delta)

else if(change == jminus
if (−− j < 0) return false
uvc = Vector2(j*delta, (k+1)*delta)

else if(change == jplus)
if (++ j ≥ N) return false
uvc = Vector2((j+1)*delta, k*delta)

else if(change == kminus
if (−− k < 0) return false
uvc = Vector2((j+1)*delta, k*delta)

else if(change == kplus)
if (++ k ≥ N) return false
uvc = Vector2(j*delta, (k+1)*delta)

(c,cNormal) =GetPoint(uvc)

3.2 Initialization

The initialization phase of the algorithm must determine where in the grid the traversal
algorithm starts and ends. The volume through which the traversal takes place is shown

7

in Figure 5. The top and bottom of the space are bounded by triangles, the sides are
bounded by bilinear patches.

Before the start and end cells are determined, the subdivision amountN must be
found. This can either be fixed for the displacement map,N = C, or made adaptive,
based on projected screen area. We allow either, and compute the adaptive size based
on the area and an estimate of the distance to the camera, with a user definedNmax.

The initialization phase must determine the correct index(i, j, k) for starting the
traversal. In standard grid traversal algorithms the traversal may start anywhere inside
the grid. This clearly makes sense and would be ideal, but determining the index given
an arbitrary point is equivalent to determining the barycentric coordinates and displace-
ment (height) for the point. The computation involves solving a cubic equation, and the
method seemed to have numeric problems. Our solution is to treat the ray as an infinite
line and find the place where that line enters the volume and where it exits. This can
require a longer traversal than necessary, however unlike uniform space subdivision in
ray tracing, where the grid bounds the environment or a complex object, the displaced
triangle tends to occupy a relatively small fraction of the scene, so most rays will pass
completely through the volumes of most triangles.

The start and end points are the smallest and largest intersections of the ray with
the volume. If the intersection point is on one of the bilinear side patches, one of the
barycentric coordinates is zero, and theu parametric value found while intersecting the
side can be used directly to determine the other two. If the intersection point is on
one of the triangular end caps, the barycentric coordinates of the intersection point are
exactly what is needed. The index for the grid cell is then(bα ∗Nc, bβ ∗Nc, bγ ∗Nc).

The last part of the initialization is to determine which face of the cell the ray entered
from, so that the traversal algorithm can determine the appropriate next cell. This is
given if the intersection is on one of the bilinear sides, however it is not given for the
top or bottom boundaries. In this case, the bilinear walls of the cell can be checked. As
the ray entered either the top or the bottom, the side hit will be the side the ray leaves
from. It is valid to assume the ray entered from either of the other two sides. If the ray
does not hit any sides, then this cell is the end cell as well, so the parameter does not
matter.

3.3 Complications

There are some complications created in using a traversal algorithm to walk through
an irregular volume filled with many small triangles. The first and most significant is
that the sides of the volume are not planar and the ray may intersect one twice. This
means that the traversal may exit the grid without reaching the correct stop cell. More
importantly, the intersection with the surface may lie in the second interval within the
volume. The initialization code can be modified so that if the ray hits one of the bilinear
sides twice, and no intersection is found in the first interval, then the traversal is called
again with a new start cell determined by the second intersection point.

A second complication occurs due to the sides of the grid cells being non-planar.
The first way this could cause problems was briefly mentioned while discussing the
traversal. Geometrically, the ray can enter a cell briefly, and then quickly return to
the first cell. This does not happen in our algorithm because of the way the traversal
chooses the next cell; the ray passes on the same side of both point-normal pairs for
that side, so the ray never enters the cell. In terms of Figure 7, although the ray could
possibly intersect the bilinear patch along edgebc twice, our algorithm ignores the dou-
ble intersection and chooses the cell on the other side of edgeac. For certain extreme

8

Fig. 8. An icosahedron with a smoothing displacement that only uses the vertices and vertex
normals for the triangle being displaced forN = 1, 4, 100.

configurations, it is possible that the ray may actually intersect the microtriangle in the
missed cell. Because the cells in general do not exactly bound the microtriangles, it is
possible the ray should have hit the neighbor’s triangle even if the ray misses the bilin-
ear wall of the cell. Due to the small size of the microtriangles, and the significantly
smaller size of the potentially missed piece, we have not noticed any significant errors
caused by this problem. One solution would be to grow the triangle slightly in the
triangle intersection test, a solution sometimes used to prevent cracking in simple tri-
angle meshes. We chose not to do this because in our experience, expanding geometry
eventually causes it’s own set of problems.

A final issue to consider is that this method has the potential to create very small
triangles. Some of the standard triangle intersection tests use epsilons that may be not
be suitable for the size of the input. This can cause microtriangles to be falsely missed.

The intersection algorithm is implemented entirely using four byte floats. Although
there are occasional rays that miss the surface, these problems are about the same fre-
quency as those often found in ray tracers using simple polygonal objects.

4 A Smoothing Displacement Function

Since we have a mechanism to create images with displacements, it is useful to have a
displacement that creates a smooth mesh. This would allow rendering smoothed ver-
sions of tessellated models with or without additional displacements. To make the prob-
lem as local as possible, we assume the smoothing displacement only has knowledge of
a given triangle’s vertices and vertex normals. Knowledge about neighboring triangles
would allow a smoother surface, but we leave that as future work. Our goal is to create
a simple smoothing displacement as a proof of concept. Although examining how to
smooth triangle meshes has been examined by many researchers (e.g., [7]), our prob-
lem is different in that our function must have the algebraic form of a height function
in barycentric coordinates with respect to barycentric interpolated normals.

We would like the displacement to interpolate the triangle vertices, and have a
smooth tangent plane on the transition between two adjacent triangles. This implies
a number of constraints:

• the surface must depend only on the vertices and vertex normals,
• the surface must be smooth over the triangle,
• the surface must interpolate the vertices of the triangle,
• the surface normal at each vertex must match the prescribed vertex normals,
• the tangent plane along each edge of the surface must match that constructed on

an adjacent triangle, so that joined patches meet withG1 continuity.

9

The final requirement listed above is the one which is the most difficult to satisfy, be-
cause Hermite (derivative) interpolation is more difficult to enforce over a line than
at single points. We use the Coons patch approach to construct our surface. First,
boundary curves and prescribed tangent planes are constructed using ordinary Hermite
interpolation. Then we use transfinite interpolation to construct three surfaces which
interpolate the boundary curves and tangents along two of the edges. These three sur-
faces are blended in such a way as to preserve the derivatives and remove the “bad”
edges from the final surface. The surface will be constructed in terms of barycentric
coordinates. The approach applied to an icosahedron is shown in Figure 8.

Note that in our entire discussion the vertex normals are assumed to be outward
facing and unit-length. However, the interpolated normals are not necessarily unit-
length, i.e. they are not automatically renormalized.

4.1 Surface Construction

The general problem of determining the boundary curves and the surface curves are
special cases of the following interpolation problem: given two pointsp0 andp1, as
well as associated normalsn0 andn1, find a function of the form

p(t) = (1− t)p0 + tp1 + g(t) [(1− t)n0 + tn1] .

which interpolates surface pointsp0 andp1 with tangent normal ton0 andn1 at the
endpoints. Ifp(t) is to interpolate the endpoints, theng(0) = g(1) = 0. We compute
the required values forg′(t) at the endpoints and apply Hermite interpolation.

Derivative interpolation requires that the tangentsp′(0) andp′(1) lie in the plane
normal to then0 andn1, respectively, which amounts to requiringp′(0) · n0 = 0 and
p′(1) · n1 = 0. We have

p′(t) = p1 − p0 + g(t)(n1 − n0) + g′(t) [(1− t)n0 + tn1]

and consequently

g′(0) =
[p0 − p1 + g(0)(n0 − n1)] · n0

n0 · n0
= [p0 − p1] · n0 (1)

g′(1) =
[p0 − p1 + g(1)(n0 − n1)] · n1

n1 · n1
= [p0 − p1] · n1. (2)

The height functiong(t) is then constructed from the endpoint derivative values and the
Hermite basis functions:

g(t) = g′(0)H3
1 (t)− g′(1)H3

2 (t) (3)

whereH3
i are two of the cubic Hermite basis functions:

H3
1 (t) = (1− t)2t

H3
2 (t) = (1− t)t2.

4.2 Boundary Curves

The first step in the construction of the surface is to construct three boundary curves
which interpolate the endpoints and derivatives (from the vertex normals). The edges

10

of the triangle are parameterized in terms of a single barycentric coordinate as follows:

p0p1 ↔ (1− β, β, 0)
p1p2 ↔ (0, 1− γ, γ)
p2p0 ↔ (α, 0, 1− α).

Each is therefore a univariate function and the cubic Hermite interpolation described
in the previous section may be applied. The height function on the endpoints is neces-
sarily zero, and if we assume the vertex normals are unit vectors, the boundary height
functions have the clean formulation

h(1− β, β, 0) = n0 · (p0 − p1)(1− β)2β
− n1 · (p0 − p1)(1− β)β2 (4)

h(0, 1− γ, γ) = n1 · (p1 − p2)(1− γ)2γ
− n2 · (p1 − p2)(1− γ)γ2 (5)

h(α, 0, 1− α) = n2 · (p2 − p0)(1− α)2α
− n0 · (p2 − p0)(1− α)α2. (6)

We have used the same letterh for all three edges because in effect the above equations
represent the desired height function restricted to the boundaries. The Coons patch
approach “fills in” the rest of the surface function in a meaningful way. The actual
boundary curves are computed as

p(1− β, β, 0) = (1− β)p0 + βp1

+ h(1− β, β, 0) [(1− β)n0 + βn1] (7)
p(0, 1− γ, γ) = (1− γ)p1 + γp2

+ h(0, 1− γ, γ) [(1− γ)n1 + γn2] (8)
p(α, 0, 1− α) = αp0 + (1− α)p2

+ h(α, 0, 1− α) [αn0 + (1− α)n2] . (9)

4.3 Edge surface normals

To apply the Coons patch technique, the partial derivatives of the surface at the bound-
ary curves must be specified. We do this by constructing a surface normal along each
boundary curve, in a way which is dependent only on the two vertices and vertex nor-
mals of the edge so that the surface normal will be compatible with an adjacent triangle
sharing the edge and vertex normals.

By definition, the surface normals at the vertices are simply the corresponding ver-
tex normals. The surface normals along the edges, however, must be perpendicular to
the tangents of the boundary curves constructed in the previous section, but this still
leaves one degree of freedom. There are two obvious candidates for the surface normal:
the interpolated normal along the edge, and the boundary curve normal obtained from
the second derivative. But neither works. The interpolated normal does not generally
match the curve tangent along the edge, while the curve normal fails to match the the
vertex normals at the endpoints. So we use a normal constructed as

NS(α, β, γ) = [T(α, β, γ)×n(α, β, γ)]×T(α, β, γ) (10)

11

whereT is the tangent vector to the boundary curve, andn is the interpolated normal
on the edge. The tangent vector is simply the derivative of the boundary curve; in terms
of the expressions above, these derivatives are

∂p
∂β

(1− β, β, 0) = p1 − p0 + h(1− β, β, 0)(n1 − n0)

+
∂h

∂β
(1− β, β, 0) [(1− β)n0 + βn1]

∂p
∂γ

(0, 1− γ, γ) = p2 − p1 + h(0, 1− γ, γ)(n2 − n1)

+
∂h

∂γ
(0, 1− γ, γ) [(1− γ)n1 + γn2]

∂p
∂α

(α, 0, 1− α) = p0 − p2 + h(α, 0, 1− α)(n0 − n2)

+
∂h

∂α
(α, 0, 1− α) [αn0 + (1− α)n2]

where

∂h

∂β
(1− β, β, 0) = n0 · (p0 − p1)

[
3(1−β)2 − 2(1−β)

]

− n1 · (p0 − p1)
[
2β − 3β2

]

∂h

∂γ
(0, 1− γ, γ) = n1 · (p1 − p2)

[
3(1−γ)2 − 2(1−γ)

]

− n2 · (p1 − p2)
[
2γ − 3γ2

]

∂h

∂α
(α, 0, 1− α) = n2 · (p2 − p0)

[
3(1−α)2 − 2(1−α)

]

− n0 · (p2 − p0)
[
2α− 3α2

]
.

By construction, the boundary curve tangents are perpendicular to the vertex normals
at the vertices, so equation (10) matches the direction of the vertex normals. Also
by construction, the surface normal is smooth on the edges, and only depends on the
two incident vertices and vertex normals, so an adjacent triangle with the same vertex
normals will have matching edge normals. Substituting the appropriate derivative for
T in Equation 10 produces a viable surface normal on each edge. This construction
therefore provides a viable edge surface normal, as long as neither the tangent vector
nor the interpolated normal is zero.

4.4 Interpolated Surfaces

Given the boundary curves and associated surface normals, we can create a surface over
the triangle using the “loft” operator

P0h(α, β, γ) = H3
0 (t)h(α, 1− α, 0)

+ H3
1 (t)h1(α, 1− α, 0)

+ H3
2 (t)h1(α, 0, 1− α)

+ H3
3 (t)h(α, 0, 1− α)

12

1
−

α

α

α

1 − α

β + γ

p
0

p

γ

ββ + γ

1

p
2

2
p

1
p

0
p

Fig. 9. Left: Transfinite interpolation along a line of constantα. The parameter is eitherβ/(β +
γ) or γ/(β + γ), depending on the direction. Right: The resulting interpolated curves form a
surface on the triangle.

where
t =

γ

β + γ
.

The operator takes the boundary function and returns a surface (defined over the entire
triangle) formed by Hermite interpolation along lines of constantα, as shown in Fig-
ure 9. The values ofh1 are the directional derivatives ofh, in the direction of constant
α, and correspond to the derivativesg′ computed in equations (1) and (2). The normals
na andnb are the edge surface normalsns(α, 1−α, 0) andnS(α, 0, 1−α), respectively.

The surface functionP0h interpolates both the boundary curve and the surface nor-
mal on the two edgesp0p1 andp2p0, but only interpolates the curve on the edgep1p2.

SurfacesP1h andP2h are constructed similarly; eachPi has the proper interpola-
tion on the two edges adjacent to vertexi, but not on the opposite edge.

4.5 Blending

The traditional Coons patch approach is to combine the lofted surfacesPi using Boolean
sums in a way which enforces the correct interpolation on all three edges. An alterna-
tive approach, which we follow, is to blend the three surfaces using Hermite blending
functions. That is, the final height function is computed by blending the three surfaces

hb(α, β, γ) = b0(α, β, γ)P0h(α, β, γ)
+ b1(α, β, γ)P1h(α, β, γ)
+ b2(α, β, γ)P2h(α, β, γ) (11)

using appropriate blending functionsbi.
To see what blending functions are required, consider the edgep0p1 whereγ = 0.

The surfacesP0h andP1h have the proper behavior on this edge, butP2h does not. We
must therefore have both the blending functionb2, and its derivatives with respect toα
andβ, be zero forγ = 0. Again we are in the realm of Hermite interpolation; we blend
based on the function

f(t) = 3t2 − 2t3

which hasf(0) = 0, f(1) = 1, andf ′(0) = f ′(1) = 0. Furthermore,f satisfies the

13

symmetry relationf(1− t) = 1− f(t). Our blending functions are

b0(α, β, γ) =
f(α)

σ(α, β, γ)

b1(α, β, γ) =
f(β)

σ(α, β, γ)

b2(α, β, γ) =
f(γ)

σ(α, β, γ)

with σ(α, β, γ) = f(α)+f(β)+f(γ). (This denominator is included so that the blend-
ing functions always sum to 1, and remarkably enough, is necessary for the derivative
interpolation to remain valid.)

There is a great deal of repetitive computation in the above exposition. In our im-
plementation, we have a single function which, when passed two vertices and corre-
sponding unit normals, returns the height function of the interpolated curve. A similar
function returns the surface normal. Another function effects theP0h surface func-
tion by evaluating the boundary curves at(α, 1 − α, 0) and(α, 0, 1 − α) and applying
Hermite interpolation. This function is called three times, each time with the vertices
“cycled”, and the resulting three height values are blended according to the blending
function.

The Hermite interpolation was done with respect to the contrived edge surface nor-
mal NS in this exposition, but that surface normal could be anything, as long as it
matches the vertex normals. For example, if one of the edges of the triangle were part
of a “crease” in a mesh, the edge surface normal could be different than that of the
adjacent triangle.

5 Results

We evaluated our system on models with a large number of displaced triangles. Ad-
ditionally, we wanted to verify the robustness of the algorithm under fairly extreme
displacements. All scenes were rendered in parallel on an SGI O2K with 250 MHZ
R1000K processors using a fairly standard Monte Carlo path tracer in order to capture
shadows and indirect lighting effects.

The image in Figure 1 shows an icosahedron with high frequency displacements of
roughly half the sphere radius. Without a smoothing displacement, the outline of the
icosahedron would be visually obvious.

The second example is a piece of pottery containing 4680 initial triangles. The final
displaced pottery is shown in Figure 10. For this sceneN was fixed at 80. The 4680
initial triangles would have generated 30 million triangles if the geometry had been
represented explicitly. Note that instancing would not have helped here. The image
shows global illumination and shadowing effects on the grooves that would not have
been possible either with bump mapping in a ray tracer, or without a global illumination
framework. The 640x480 image was rendered using 256 paths of length 4 per pixel, and
took roughly 24 CPU hours to run.

The final example is a small section of terrain data consisting of roughly 55,000
thirty meter cells. The resulting 110,000 triangles have been displacement mapped with
an expensive displacement function based on several uses of the turbulence function[11]
and is shown in Figure 11. The viewpoint is set near the ground, roughly at eye height
for a person. The amount of subdivision was determined adaptively for each triangle.

14

Fig. 10. A vase modeled with 4860 triangles showing interreflection effects. Generating all
displaced microtriangle would have resulted in 30,000,000 triangles.

Fig. 11. A terrain dataset with 110,000 initial polygons shown without displacements on the left.
Right, withNmax = 3162 and a procedural displacement map. Instantiating all the geometry
would have resulted in more than 1,000,000,000,000 triangles.

Because of the view, the foreground must be subdivided a large amount. We setNmax =
3162, resulting in ten million potential microtriangles per input triangle (approximately
1cm wide microtriangles). The maximumN is achieved and needed for the left quarter
of the image, where some facets can still be seen. Storing all1012 triangles would
have required about 100 terabytes. Our implementation requires roughly 10 megabytes
for the terrain data. The 1200x900 image was generated with 36 paths of length 2
per pixel. Total CPU time was 43 hours. We believe that optimizing the algorithm
and displacement function could reduce this time, as could changing the assumption
in the ray tracer that object intersections are cheap, so testing objects multiple times is
acceptable.

15

6 Discussion

The algorithm presented in this paper can produce ray traced images of displacement
mapped geometry without resorting to explicitly stored tessellation or numerical root-
finding. The goal of our system is to be able to render models with large amounts of
displaced geometry. If the resulting displaced geometry is small, explicitly generating
all polygons and putting them into a general acceleration scheme should prove faster.
Our approach benefits from processor speeds continuing to grow faster than memory
speeds and sizes, and provides a viable alternative to geometry caching schemes and
numerical root finding.

We view this work as a proof-of-concept. There are potential numeric stability
problems with the traversal. There are many areas where efficiency could be improved.
Adaptively determining the subdivision amount,N , provides some performance bene-
fits, however, there are two problems that can occur. Changing the level of subdivision
for two adjacent pixels may cause some tearing. We are conservative in choosing the
subdivision level, and haven’t seen any artifacts due to this. A potentially more seri-
ous problem occurs when the displacement maps are used to represent surfaces such
as brushed or scratched metal. Reducing the subdivision level can result in significant
changes in appearance, even if the geometry itself is subpixel. In this case, we would
like to carefully replace geometry with BRDF as discussed by Becker and Max [2].

Our current spline-based smoothing displacement function ensures that the base
tessellations can be converted to smooth surfaces. The smooth surface is not always
desirable, particularly in regions of high curvature or where the triangles have poor
aspect ratios. It may take more information about the surface than we allowed in the
restrictions from Section 4 to eliminate these problems. A more global interpolation
scheme could ensure higher orders of continuity or a more intuitive fit to the data.

Acknowledgments

Thanks to Michael Ashikmin, Mark Bloomenthal, Elaine Cohen and Simon Premoze
for helpful discussions. Thanks to Alias|Wavefront for their donation of Maya. This
work was supported by NSF grants CDA–96–23614, 97–96136 and 97–31859.

Appendix: Proof of Smoothing Properties

To prove that the blending does create the proper surface function, lethb be the blended
height function defined in equation (11), and supposeh is an arbitrary height function
with the desired boundary derivatives (consistent with the surface normal given in equa-
tion (10).) We show the derivatives ofhb match those ofh. We will restrict attention to
the edge withγ = 0, and the other edges will follow from symmetry. For simplicity, we
write hi for Pih, and leave off the explicit dependence on the barycentric coordinates
in all expressions.

On the edgeγ = 0 we haveα+β = 1 and asf(β) = f(1− α) = 1− f(α) we have
f(α) + f(β) = 1 andσ(α, β, 0) = 1. Thusb0 = f(α), b1 = f(β) andb2 = f(γ) = 0.

16

Consequently, we have

hb = b0h0 + b1h1

= f(α)h0 + f(β)h1

= [f(α) + f(β)] h
= h

the last equality coming from the fact bothh0(α, β, 0) andh1(α, β, 0) interpolate the
boundary height function on the edge.

We prove the derivative interpolation by showing all the directional derivatives of
the blendedhb surface match those of the boundary surfaceh itself. In barycentric
coordinates, a directional derivative in the directiond = (dα, dβ , dγ) (where the com-
ponents sum to zero) is

hd = dα
∂h

∂α
+ dβ

∂h

∂β
+ dγ

∂h

∂γ

It therefore suffices to show the partials of the blended height functionhb are equal to
those of the boundary height partials. (The partials of the boundary functionh have not
been explicitly formulated, only implicitly in terms of the edge surface normal, but their
explicit values are not needed to show that they match those of the blended functionhb.)

The partials of the blended surface evaluate to

∂hb

∂α
= b0

∂h0

∂α
+

∂b0

∂α
h0 + b1

∂h1

∂α
+

∂b1

∂α
h1 + b2

∂h2

∂α
+

∂b1

∂α
h2

∂hb

∂β
= b0

∂h0

∂β
+

∂b0

∂β
h0 + b1

∂h1

∂β
+

∂b1

∂β
h1 + b2

∂h2

∂β
+

∂b1

∂β
h2

∂hb

∂γ
= b0

∂h0

∂γ
+

∂b0

∂γ
h0 + b1

∂h1

∂γ
+

∂b1

∂γ
h1 + b2

∂h2

∂γ
+

∂b1

∂γ
h2

The partials of the blending functions on the edge are

∂b0

∂α
=f ′(α) − f(α)f ′(α)

∂b1

∂α
=−f(β)f ′(α)

∂b2

∂α
=0

∂b0

∂β
=−f(α)f ′(β)

∂b1

∂β
=f ′(β) − f(β)f ′(β)

∂b2

∂β
=0

∂b0

∂γ
=0

∂b1

∂γ
=0

∂b2

∂γ
=0.

Substitution, combined with the identitiesf(α) + f(β) = 1, and the observation that
the relevant partials ofh0 andh1 are equal to those ofh on the edge (by construction)
it follows that

∂hb

∂α
=

∂h

∂α
,

∂hb

∂β
=

∂h

∂β
,

∂hb

∂γ
=

∂h

∂γ

and thus the blending produces the proper surface.

References

1. ALIAS|WAVEFRONT. Maya v. 1.5. Toronto, Canada, 1998.

17

2. BECKER, B. G.,AND MAX , N. L. Smooth transitions between bump rendering algorithms.
In Computer Graphics (SIGGRAPH ’93 Proceedings)(Aug. 1993), J. T. Kajiya, Ed., vol. 27,
pp. 183–190.

3. COOK, R. L., CARPENTER, L., AND CATMULL , E. The reyes image rendering architecture.
Computer Graphics (SIGGRAPH ’87 Proceedings)(July 1987), 95–102. Held in Anaheim,
California.

4. GRITZ, L., AND HAHN, J. K. BMRT: A global illumination implementation of the render-
man standard.Journal of Graphics Tools 1, 3 (1996), 29–47. ISSN 1086-7651.

5. HEIDRICH, W., AND SEIDEL, H.-P. Ray-tracing procedural displacement shaders.Graph-
ics Interface ’98(June 1998), 8–16. ISBN 0-9695338-6-1.

6. KAJIYA , J. T. New techniques for ray tracing procedurally defined objects. InComputer
Graphics (SIGGRAPH ’83 Proceedings)(July 1983), vol. 17, pp. 91–102.

7. KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth surfaces to dense polygon meshes.
In SIGGRAPH 96 Conference Proceedings(Aug. 1996), H. Rushmeier, Ed., Annual Con-
ference Series, ACM SIGGRAPH, Addison Wesley, pp. 313–324. held in New Orleans,
Louisiana, 04-09 August 1996.

8. LOGIE, J. R.,AND PATTERSON, J. W. Inverse displacement mapping in the general case.
Computer Graphics Forum 14, 5 (December 1995), 261–273.

9. MUSGRAVE, F. K. Grid tracing: Fast ray tracing for height fields. Technical Report
YALEU/DCS/RR-639, Yale University Dept. of Computer Science Research, 1988.

10. PEDERSON, H. K. Displacement mapping using flow fields. InProceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994)(July 1994), A. Glassner, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, ACM Press, pp. 279–286. ISBN
0-89791-667-0.

11. PERLIN, K., AND HOFFERT, E. M. Hypertexture. InComputer Graphics (SIGGRAPH ’89
Proceedings)(July 1989), J. Lane, Ed., vol. 23, pp. 253–262.

12. PHARR, M., AND HANRAHAN , P. Geometry caching for ray-tracing displacement maps.
Eurographics Rendering Workshop 1996(June 1996), 31–40. ISBN 3-211-82883-4. Held in
Porto, Portugal.

13. PHONG, B.-T. Illumination for computer generated pictures.Communications of the ACM
18, 6 (June 1975), 311—317.

14. STANDER, B. T., AND HART, J. C. Guaranteeing the topology of an implicit surface poly-
gonization for interactive modeling. InSIGGRAPH 97 Conference Proceedings(Aug. 1997),
T. Whitted, Ed., Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 279–
286. ISBN 0-89791-896-7.

15. VEACH, E., AND GUIBAS, L. J. Metropolis light transport. InSIGGRAPH 97 Conference
Proceedings(Aug. 1997), T. Whitted, Ed., Annual Conference Series, ACM SIGGRAPH,
Addison Wesley, pp. 65–76. ISBN 0-89791-896-7.

18

