
Persistence is Hard� Then You Die�

or

Compiler and Runtime Support for a Persistent

Common Lisp

J� H� Jacobs
M� R� Swanson
R� R� Kessler

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

January ��� ����

Abstract

Integrating persistence into an existing programming language is a serious undertaking� Pre�
serving the essence of the existing language� adequately supporting persistence� and main�
taining e	ciency require low�level support from the compiler and runtime systems� Pervasive�
low�level changes were made to a Lisp compiler and runtime system to introduce persistence�
The result is an e	cient language which is worthy of the name Persistent Lisp� �

�This research was sponsored by the Advanced Research Projects Agency �DOD�� monitored by the
Department of the Navy� O�ce of the Chief of Naval Research� under Grant number N���������J����	
 The
views and conclusions contained in this document are those of the authors and should not be interpreted as
representing o�cial policies� either expressed or implied� of the Defense Advanced Research Projects Agency
or the US Government




� Introduction

Integrating persistence 
i�e� long�lived values� into an existing programming language is a

formidable undertaking� Introducing persistence forces fundamental and far reaching changes

into the persistent language implementation� The issues which necessitate these changes very

often have no equivalent in the simpler world of volatile�value languages� So why even venture

into the strange world of persistent programming�

Programming has always been about manipulating information and the volume of in�

formation has been steadily increasing� Computer aided design and expert systems all use

data with life spans much longer than a couple of program executions 
perhaps even outliving

some programmers�� Thus� constructing programs to manipulate long lived data is becoming

an important task for software engineers� The tools available to programmers run from the

IO facilities of general purpose programming languages� through hybrid programs utiliz�

ing embedded database query language functions� on to persistent programming languages�

Using general purpose programming languages requires the programmer to be intimately

concerned with the low�level details of data access� Writing hybrid programs using a general

purpose programming language to host queries in a database query language 
e�g� embed�

ded SQL ���� allows the designer to escape some of the lower�level details of data access�

However� data must be explicitly brought in from the store and explicitly saved� also the

data must be translated between the representations of the database and the programming

language� For general purpose problems� the solution is a persistent programming language�

Only persistent programming languages provide a single� high�level tool for processing both

volatile and persistent data�

��� Design Goals for Persistent Languages

Shoehorning a few persistent features into an existing language does not produce a persistent

language� though it is a simpler and well travelled path� When introducing persistence into

a language we believe there are three guiding principles� conforming to the de�nition and

spirit of the base language� adequately supporting persistence and maintaining reasonable

performance�

����� Conformity

The resulting language should have the look and feel of the original� otherwise a new language

has been created� not a persistence�enhanced version of the original� Meeting this criteria

requires that persistence be integrated into the language as transparently as possible� First�

orthogonal persistence should be provided so that any data types a programmer would use

in the base language are available in the persistent language� Second� the value management

model of the language must guide the design of the persistent value management schema�

�



for example� languages with automatic storage management must support the automatic

creationdestruction of persistent values� Third� the language must automatically detect the

mutation of persistent values so that the changes will be properly persisted� relying on the

programmer to explicitly �ag all changes will lead to a lot of buggy programs�

����� Adequacy

Adequate support for persistent values must be provided� This includes atomic transac�

tions� for maintaining the consistency of persistent values� Without them a properly written

program cannot guarantee that only consistent sets of changes are allowed to persist� nor

can multiple programs concurrently share persistent values� Since the persistent store might

become quite large over time� a mechanism must be provided to allow a program to access

reasonably�sized subsets of the stored values without requiring huge virtual address spaces�

Lazy 
demand� loading is one way to accomplish this� Failure to provide these will hamper

the programmer trying to create well�crafted persistent programs�

����� E�ciency

Finally� the implementation must produce programs which are reasonably e	cient and com�

pact� If programs written in the persistent language are too slow or large� it may often bene�t

the programmer to use the original language and produce an ad hoc persistent program�

��� Existing Persistent Languages

Many well known programming languages have been enhanced with the ability to manipulate

persistent data� Algol ���� C�� ��� ���� ���� Smalltalk ���� ML ����� and Lisp ���� ���� ��� ���

���� The C�� based implementations of persistence have been reasonably successful from

a language design viewpoint� Their successful implementations have been due to the very

explicit nature of value management in C�� � C�� variables are all strongly and statically

typed� dynamically created values are explicitly allocated� C�� functions are second�class

values and are not persisted� eliminating the di	cult chore of persisting code� However�

the language features which allow the easy introduction of persistence into C�� may also

make the acceptance of persistent C�� more di	cult� Many programmers attracted to the

low�level of operations in C�� tend to pinch their bytes and cycles and are not willing to

tolerate any extra resource consumption�

Languages which provide automatic storage management and other high�level features

have a more di	cult time introducing persistence� To conform to the spirit of automatic

storage management� these languages must undertake automatic management of persistent

values� In both ML and Lisp� the �rst�class nature of functions require that they too be

�



persistable� The Lisp symbol data type is another source of di	culty because of the variety

of roles it serves�

None of the Lisp systems mentioned above conform to the three principles� With the

exception of LispO� ��� all of the systems forsake orthogonal persistence and limit persistence

to an object data type� one even requires that updated values be explicitly marked by the

programmer� LispO� provides a very limited transaction capability� Restricting the number

of persistent data types� or weakening the transaction construct greatly simpli�es the task of

the language implementor� but dilutes the power or performance of the resulting persistent

language�

��� UCL�P

UCL�P 
Utah Common Lisp � Persistence� takes these problems �head�on� to solve all

of the di	culties inherent in the three guiding principles presented above� A compilable�

persistent Lisp was designed and then major low�level modi�cations were made to the UCL

compiler and run time systems to e	ciently support it� We believe that we have produced

a language which is both persistent and still Common Lisp� We believe that our result is

signi�cant in and of itself� but also that our experiences will be helpful for others seeking to

craft persistent languages�

The remainder of this article is broken into three parts� The �rst presents the design

issues that necessitated modi�cations to the compiler� runtime system and data represen�

tations� The second part examines the changes made in those three areas� Finally� we

conclude with a size and performance comparison between a corresponding set of persistent

and volatile Lisp programs�

UCL�P is a large project and� while we would like to discuss all the interesting features�

it is not possible in the space allowed� We will provide enough detail about the overall

project so that the design and implementation can be put in context� However� we will not

be discussing the design of the persistent store� nor the details of the Lisp interface to it�

since they do not greatly a�ect the design and implementation of the language� Also missing

will be a fuller discussion of writing and using UCL�P programs� We hope to focus on these

areas in other forums�

� Design of a Persistent Lisp

Before we can look at the compiler and runtime changes made to support UCL�P� we must

�rst look at the design that resulted from applying the three principles de�ned above� The

design of an e	cient Persistent Lisp requires that we address several sometimes con�icting

concerns� First and foremost� Persistent Lisp must produce programs that are fairly resource

e	cient� or else no one will use it� We must also preserve both Lisp semantics and the

�



essence of the Lisp programming style� after all this is a Persistent Lisp� We provided

UCL�P with very transparent persistent value manipulation features to accommodate the

Lisp programming spirit� To support persistence itself� the atomic transaction was provided

so that correct programs will be assured of leaving the persistent store in a consistent state�

even in the event of system failure� In addition� since a set of persistent data can often

be quite large� the language should permit a program to access as much persistent data as

possible� within the constraints of the program�s virtual address space� Finally� the symbol

data type and the �rst class nature of functions require special attention� We will look at

each of these issues in detail as we describe the design of UCL�P�

��� Practicality� Lispness� and Transactions

Persistent Lisp programs must make e	cient use of both the CPU and memory if they are

to be practical� To accomplish this� production Lisp programs need to be compiled and so

the compiler must support persistence� In addition� the compiled code produced should be

as fast as possible so that resident values� both volatile and persistent� can be manipulated

at speeds comparable to volatile Lisp programs�

The software development process needs to be e	cient as well� By conforming to Lisp

semantics we make it easy for programmers to write persistent programs� The most impor�

tant semantic issue raised by the introduction of persistence is the preservation of sharing

since value sharing is pervasive in Lisp� occurring both intentionally and unintentionally�

Sharing occurs whenever a value is referenced by two or more other values� Maintaining

sharing semantics requires that all sharable data types be persistable 
i�e� orthogonal persis�

tence�� Implementations which limit sharing to objects or another subset of sharable values

cannot be faithful to the semantics of sharing�

Persistence introduces a semantic issue of its own� correct programs should always leave

the store in a correct state� Since stored values will outlive the execution of the program

an inconsistent result will have a very long lifetime 
one might say it becomes a persistent

problem�� A mechanism is needed so that minor system failures do not permanently corrupt

the store values� For example� an accounting program might need to transfer funds from one

account to another� This involves two steps� decrementing the �rst account and incrementing

the second account� If the store is to stay consistent� the updates to both accounts must be

stored� or neither� We have adopted a database construct� the atomic transaction� which is

used to collect a set of operations and make them all�or�nothing� When the transaction is

completed the changes are committed 
sent� to the store�

�



��� Transparency and Packages

A truly persistent language should provide transparent fetch and store of values so the

programmer and the code need not be conscious of whether a value is persistent or volatile�

UCL�P assures that all values are automatically present when needed� All mutated or

created values are stored at commit time� The detection of values that need to be written

back is performed implicitly by UCL�P� therfore� the programmer need not speci�cally mark

a value as �dirty� which is akin to explicit storage management and can be a source of subtle

and insidious bugs�

Requiring the programmer explicitly confer persistence on each value is also not compat�

ible with the philosophy of automatic storage management� The method most compatible

with Lisp is to dynamically confer persistence by reachability� all values 
except symbols

which are a special case� are initially volatile and become persistent when referenced by

a persistent value� Without this approach� unusable values containing dangling references

could be stored� Of course� some root values are required and Lisp symbols �ll this function�

In Common Lisp� symbols are associated with packages� a very simple container object�

UCL�P extends the package facility to allow the user to de�ne packages which are persis�

tent� any symbols contained within a persistent package are persistent and any nonsymbolic

values reachable from them are also persistent� Symbols are handled di�erently than other

values� In Lisp� symbols allow for dynamic binding to values and functions� Conferring

persistence by reachability onto symbols would constrain the late binding nature of symbols

and would not be consistent with the spirit of Lisp�

The package mechanism also partitions the persistent values into semi�independent en�

tities� A program can use any number of packages simultaneously and the packages may be

shared concurrently with other programs� Even though the persistent values may be parti�

tioned into separate packages� a single persistent package may be arbitrarily large� possibly

larger than the virtual address space of the program� This would make the package useless�

except that a program is unlikely to simultaneously 
within a single transaction� access the

entire contents of a large package� We have incorporated a lazy 
demand� loading mechanism

into UCL�P� thus enabling persistent programs to handle large packages�

��� Functions

Functions are �rst�class values in Lisp� they may be passed� stored� and evaluated� In

addition� Lisp provides for a special type of function� the closure� Closures are the pairing of

a function and a set of bindings� The �rst�class nature of functions requires that a persistent

compiled Lisp be able to store and restore compiled code� Because the compilation and

load process usually embeds information directly into machine instructions� persisting code

is more di	cult than saving the other data types�

�



� Compiler and Runtime Support

The design of UCL�P required signi�cant modi�cations to the compiler and runtime system�

The representation of data values had to be fundamentally altered� which in turn� necessi�

tated changes to the code generator and the runtime system� The need to persist compiled

code also required changes to the compiler�

��� Data Representation Changes

The data area of UCL 
original version� is broken up into three areas� the symbol table� the

heap and the function area� Most values reside in the heap which is garbage collected as

needed� Heap resident values are accessed via pointers contained in the symbol table� other

values� stack frames� or function bodies� UCL�P adds two more data areas� the persistent

heap and the persistent symbol table� All UCL�P values begin their lifetimes as volatile�

heap�resident values� When values become persistent they must be moved out of the volatile

heap and onto the persistent heap when the transaction completes� This is necessary so

that newly persistent values cannot be accessed when the program is not inside the scope of

a transaction� accessing mutable persistent values outside the body of a transaction would

violate the conditions necessary for correct transaction semantics� When the program is

not executing within the body of a transaction� the persistent heap and symbol table are

protected against access via operating system memory protection facilities 
e�g� MMAP on

BSD Unix�� OS facilities are also used to implement lazy loading� the runtime system uses

page faults on persistent heap accesses to trigger the loading of needed persistent values�

Because the newly persistent value might be referenced by other values� the relocation

of the value must not leave any existing references dangling� To support this� the direct

pointer reference mechanism was replaced with an indirect pointer reference 
i�e� pointer

to a pointer�� Reference slots in values now contain pointers to an entry in the Indirection

Vector 
IV�� The IV contains an entry for each heap resident value� Each IV entry contains

access �ags and the heap address of the value� With the IV mechanism a value can be

safely relocated by changing its heap address in the IV� Without this� the entire data area

would have to be searched so that all relevant pointers could be adjusted to follow the newly

persistent value� an operation equivalent in cost to performing a garbage collection� Another

approach would have been to keep the direct reference mechanism and perform a garbage

collection at the end of each transaction� The choice between the two methods is a tradeo�

between the time required to perform a garbage collection and the impacts of adding the IV

into the system� We selected our approach because it supports smaller grained transactions

than the �commit and garbage collect� approach�

Access detection is necessary to implement transaction semantics� The runtime system

must detect and record read and write accesses to all persistent values so that this information

�



can be passed on to the transaction validator at commit time� Part of the IV entry contains

a read �ag and a write �ag which are set if the value is read or written� When the transaction

commits� the IV and persistent symbol table are scanned to construct the access sets for the

transaction� An alternative implementation would be to make the access �ags a part of the

values themselves� but then it would be necessary to scan the entire heap for updated values�

which would be less e	cient�

When symbols are created� they are permanently contained in a single package� There�

fore symbols never change from volatile to persistent� so we can to use direct pointers to

access them� Because named functions are accessed through the function slot of the naming

symbol� using another level of indirection to get to the symbol would inevitably slow down

the function calling process� The symbol table already held slots for the attributes of a sym�

bol� value� function� property list� print�name� and package� Because symbols are directly

accessed a slot was added to the symbol itself to hold the access �ags�

Function references still use direct pointers� preserving the e	ciency of function calling�

Unlike other values� functions do not need to be relocated when the function completes�

This can be done while preserving transaction semantics because functions are immutable

and so do not produce inconsistent results when they are called outside a transaction� When a

function with state� a closure� is made persistent� its data part is relocated into the persistent

heap� but its code part is not�

��� Changes to Code Generation

Three major changes were made to the code generation portion of the UCL compiler� The

instructions generated by the compiler needed to support both the extra level of indirection

introduced by the IV and the access marking needed for transactions� The other change was

to enhance the compiler to produce position independent code when compiling application

functions�

����� Supporting Indirection and Access Detection

The UCL compiler uses a set of opencodes� These are e�ectively macros that expand into as�

sembly code during the code generation process� Among these opencodes are the instructions

for low�level Lisp primitive functions such as car� cdr� array access� etc� All of the opencodes

that access heap resident entities needed to be changed to use the IV and to record accesses�

The symbol accessing opencodes were modi�ed to incorporate access marking� The changes

were done in two steps� First the opencodes were modi�ed to use the IV and in the second

step the opencodes were changed to set the appropriate read or write bit for the value�

The UCL�P prototype system currently outputs ���x� machine code� The ���x� is a

CISC style processor with a large set of addressing modes� Most of the opencodes required

�



the addition of two instructions� The �rst instruction sets the appropriate read or write bit

associated with the value or symbol� The second instruction dereferences the �rst pointer

and leaves the heap address available for the rest of the opencode� Figure � shows the

UCL and UCL�P opencodes for car� If a RISC style processor had been the compiler

target it would have taken more instructions per opencode to support persistence� but the

opencodes themselves would also be longer� so the relative increase in opencode size should

be comparable to the CISC case�

UCL

moveal d��a� � move first arg to address register

movel a�������d� � move CAR value to result register

UCL�P

moveal d��a� � move first arg to address register

moveb ���a����	� � set read access flag in IV

moveal a�������a� � get heap pointer

movel a�������d� � move CAR value to result register

Figure �� UCL and UCL�P opencodes for car�

����� Persistable Compiled Code

Because UCL�P needs to store compiled code� it was necessary to modify the compiler to

optionally produce position independent code 
PIC�� PIC output has been prototyped on the

UCL compiler and we are in the process of integrating the PIC into the persistent compiler�

In our new PIC scheme a header was added to the compiled code for a function� The

header contains constants referenced by the function and references to symbols� By placing

the constants and symbol references in a linkage table� the task of storing and reloading

compiled functions became feasible� The cost for this capability is an increase in code size

and a decrease in performance� The performance decrease is due to the extra indirection

required for accessing symbols� a non�PIC symbol reference would use an immediate instruc�

tion to access the needed slot while the PIC code must indirect through the function header�

Fortunately� only application functions will need to be compiled with PIC� most runtime

system functions already �persist� as part of Lisp and need not be made storable�

�



��� Runtime System Modi�cations

With the changes to the data representation� both the allocation routines and the garbage

collector had to be enhanced� The allocators now have to provide both an IV entry for each

new value created� as well as heap space� If either is unavailable� the garbage collector needs

to be activated�

Adding the IV mechanism to UCL required that the garbage collector be modi�ed�

Since some Lisp programs can spend a considerable amount of time� perhaps as much as

one third ����� performing garbage collection� changes to the garbage collector can greatly

impact program performance� UCL uses a two�space� copying garbage collector� the collector

copies live values from the current half�heap to the spare half�heap� In UCL�P the collector

also reclaims dead IV entries� Since collection can be triggered by exhausting the IV table�

the collector must perform the copying without consuming any IV entries� This required

considerable care� Additionally� the collector must not leave any trace of its actions on the

access �ags of the values� If the collector were to leave any ��ngerprints� on the values� the

transaction commit mechanismwould be forced to deal with a large number of false accesses�

� Size and Performance of UCL�P programs�

After looking at the low�level modi�cations used to introduce persistence� we can look at how

they a�ected the programs produced by UCL�P� We compared the performance of programs

produced by UCL and UCL�P� The same source code was compiled by both compilers and

executed using the corresponding runtime system� The test programs did not actually use

the persistence mechanism� since we wanted to focus on the e�ects of the low�level changes

and not on the performance of the backing store�

��� Code Size

As described above� some of the opencodes used for code generation had two instructions

added to them� In the worst cases� this doubled the number of instructions� However� only a

third of the opencodes needed to be changed� To get a feel for how the modi�ed opencodes

a�ect the size of the compiler output we compiled and loaded a large Lisp program 
����

lines� using the UCL and UCL�P compilers� UCL produced ���KB of application code while

UCL�P output ���KB� a �� increase� The prototype version of the UCL PIC compiler

increases the code size by �� and is likely to have a similar e�ect when integrated with the

UCL�P compiler�

�



��� Data Size Impacts

The changes made to the data representation left the sizes of all stored values unchanged�

However� the data size has been increased by the introduction of the indirection vector�

Although each entry in the IV is very small 
� bytes�� one entry is required for every heap

resident value� The smallest heap allocated value in UCL is the cons cell� which takes �

bytes� while vectors� matrices and strings can be very large� By examining the heaps of the

runtime system� with and without the compilation routines� we get an average value size of

about �� bytes� 
The average value size depends heavily on the relative mix of data types

used in the program�� Based on this average value size and the fact that each IV entry takes

� bytes� the IV size should be about ��� of the half heap size 
active allocation occurs in

only one half of the heap at a time�� Therefore� the addition of the IV increases the storage

needed for heap resident values by about ����

Besides increasing the size of the program� the IV also alters the data reference patterns�

The IV entry must be touched before the value can be accessed which reduces the data

reference locality� Although we have not directly measured the e�ect� the loss of locality

likely impacts both virtual memory and cache performance�

��� Performance

As expected� adding support for transparent persistence slows down program execution� To

measure the change in code performance we utilized the Gabriel benchmark set ��� which

is tailored for Lisp programs� the results are shown in Table �� When the tests were run�

the runtime system used an IV that was ���� of the half heap size� The table also reports

the average of the CPU�time ratios over all tests 
Gabriel did not de�ne a single metric��

One disadvantage with the Gabriel benchmark set is its lack of programs that a modern

Lisp programming style might produce� Newer programs would make fairly extensive use of

structures and objects and would be less list intensive� We will extend the benchmark set

to include these programming styles�

The CPU�time ratios range from ��� and ���� Programs which make extensive use of

lists 
e�g� Boyer� Browse� su�er from the higher slowdowns� If the persistent and volatile

opencodes for a representative list operation� car� are examined 
Figure �� it is no surprise

that list intensive programs are the most a�ected by the compiler changes� Integer and

array intensive programs such as Puzzle and Triangle are the least a�ected by the changes�

Floating point intensive tests such as FFT and Frpoly are between the two extremes�

Fortunately� further performance optimizations are possible� For �oating point opera�

tions it should be possible to avoid marking them and bypass the IV since �oating point

numbers are immutable� For most other values� whenever a function accesses a single value

repeatedly� redundant pointer dereferences and access marking can be eliminated�

��



Our results do not include PIC coded routines� When PIC code is used throughout

the UCL runtime system and the application code� performance slowed down by about

���� However� there is no need for most runtime system functions to be PIC because they

are always present as part of the runtime system� Since ������ ���� of functions called

are runtime functions� very little of the PIC slowdown should show up in overall program

performance�

	 Conclusions

Producing a transparently persistent Lisp required fundamental changes to the UCL compiler

and runtime system� Any system which attempts to introduce persistence into Lisp without

resorting to such low�level changes must either sacri�ce language semantics� or su�er severe

performance penalties� After the changes were made the performance of the resulting system

showed that ��� more space was needed for storing data and �� more space was required�

overall� for storing application code� Program performance also su�ered with the language

enhancement� Volatile�value�only programs saw CPU times increase by about ��� for integer

intensive programs to around ��� for list intensive benchmarks� though we have identi�ed

some future enhancements to the compiler�s optimizer which should reduce the slowdown�

We have produced a Persistent Common Lisp which adheres to the three principles

de�ned in the introduction� While the e	ciency of UCL�P is currently less than we wanted�

the language conformity and adequacy of persistence goals have been unequivocably been

met� As it stands� the transparent integration of powerful persistent value support makes

UCL�P an optimal solution for constructing persistent programs using Common Lisp though

it is unlikely to become a general purpose replacement for UCL�

References

��� R� Agrawal and Gehani N� H� ODE �Object Database and Environment�� The language and
data model� In Proc� Int�l� Conf� on Management of Data� pages �	
��� Portland� Oregon�
MayJune ����� ACMSIGMOD�

��� Gilles Barbedette� LispO�� A persistent objectoriented LISP� In F� Bancilhon� C� Delobel�
and P� Kanellakkis� editors� Building an Object�Oriented Database System� The Story of O��
chapter ��� pages ���
���� Morgan Kaufmann� ����� Also in Proceeding of the �nd EDBT�

��� P� Broadbery and Burdorf C� Applications of Telos� Lisp and Symbolic Computation�
	���������
���� August �����

��� W� P� Cockshott� PS�ALGOL Implementations� Applications in Persistent Object�oriented

Programming� Ellis Horwood� �����

��� C� J� Date� An Introduction to Database Systems� Volume I� Fifth Edition� Addison Wesley�
�����

��



�	� S� Ford� J� Joseph� Langworthy D�� D� Lively� G� Pathak� E� Perez� R� Peterson� D� Sparacin�
S� Thatte� Wells D�� and S� Agarwala� Zeitgeist� Database support for objectoriented pro
gramming� In K� R� Dittrich� editor� Advances in Object�Oriented Database Systems� Springer
Verlag� �����

��� R� P� Gabriel� Perfomance and Evaluation of Lisp Systems� MIT Press� �����

��� A� L� Hosking� J� E� B� Moss� and C� Bliss� Design of an object faulting persistent Smalltalk�
Technical report� Univerity of Massachusetts� ����� UMCS��������

��� Charles Lamb� Gordon Landis� Jack Orenstein� and Dan Weinreb� The ObjectStore database
system� Communications of the ACM� ���������
	�� Oct �����

���� Arthur H� Lee� The Persistent Object System MetaStore� Persistence via Metaprogramming�
PhD thesis� University of Utah� Aug �����

���� S� M� Nettles and Wing J� M� Persistence � undoability � transactions� In Proceedings

of the Hawaii International Conference on Systems Science ��� ����� See also techreport
CMUCS������

���� A� Paepcke� PCLOS� A �exible implementation of CLOS persistence� In S� Gjessing and
K� Nygaard� editors� Proceedings of the European Conference on Object�Oriented Programming�
SpringerVerlag� �����

���� Joel E� Richardson� Michael J� Carey� and Daniel T� Schuh� The design of the E programming
language� Technical report� University of Wisconsin� ����� Tech Report ����

���� Robert A� Shaw� Empirical Analysis of A Lisp System� PhD thesis� Stanford University�
February �����

��



Name With IV With IV
� Marking

Boyer �
�� �
��	�
Browse �
��� �
����
CTAK �
��� �
����
Dderiv �
���� �
����
Deriv �
 �
���
Destructive �
�� �
���
Div�iter �
���� �
����
Div�rec �
���� �
	��
Fact ���� �
�	�� �
���
FFT �
��� �
�	�
Fprint �
��� �
��
Fread �
���� �
����
Frpoly Power�� r�x�y�z�� �
���� �
����
Frpoly Power�� r������r �
���� �
����
Frpoly Power�� r�x�y�z�� �
���� �
����
Frpoly Power�� r������r �
���� �
����
Frpoly Power�� r�r in �onums �
���� �
����
Frpoly Power��� r�x�y�z�� �
���� �
���	
Frpoly Power��� r������r �
���	 �
����
Frpoly Power��� r�r in �onums �
�� �
����
Frpoly Power��� r�x�y�z�� �
�	� �
���
Frpoly Power��� r������r �
���� �
�	�	
Frpoly Power��� r�r in �onums �
���� �
���
Puzzle �
���� �
��	�
STAK �
��� �
���	
TAK �
���� �
����
TAKL �
���� �
�
TAKR �
�	�� �
����
Tprint �
���� �

Traverse�init �
���� �
��	
Traverse �
��	 �
�	�
Triangle �
���� �
����

Average of Ratios �
��		 �
���

Table �� Results of running the Gabriel benchmarks� Shown are the ratios of CPU time used
relative to UCL program after adding indirection vector and after the addition of both IV
and access marking�

��


