
Towards A Veri�cation Technique for Large
Synchronous Circuits

Prabhat Jain� Prabhakar Kudva� and Ganesh Gopalakrishnan

Department of Computer Science�
University of Utah�

Salt Lake City� UT �����

Abstract� We present a symbolic simulation based veri�cation approach
which can be applied to large synchronous circuits� A new technique to
encode the state and input constraints as parametric Boolean expressions
over the state and input variables is used to make our symbolic simulation
based veri�cation approach e�cient� The constraints which are encoded
through parametric Boolean expressions can involve the Boolean con�
nectives 	��
���� the relational operators 	�������� ������ and logical
connectives 	����� This technique of using parametric Boolean expres�
sions vastly reduces the number of symbolic simulation vectors and the
time for veri�cation� Our veri�cation approach can also be applied for
e�cient modular veri�cation of large designs the technique used is to
verify each constituent sub�module separately� however in the context of
the overall design� Since regular arrays are part of many large designs� we
have developed an approach for the veri�cation of regular arrays which
combines formal veri�cation at the high level and symbolic simulation
at the low level	e�g�� switch�level�� We show the veri�cation of a circuit
called Minmax� a pipelined cache memory system� and an LRU array
implementation of the least recently used block replacement policy� to il�
lustrate our veri�cation approach� The experimental results are obtained
using the COSMOS symbolic simulator�

� Introduction

Most digital VLSI circuits are checked for correct operation through scalar valued

simulation� In this approach� scalar bit vectors�vectors over � and ��are used
as inputs to the circuit being simulated� As most real�world circuits require an
impracticably large number of scalar vectors to check for all possible execution
paths� scalar simulation alone is insu�cient to verify a digital VLSI circuit�

Several formal veri�cation approaches have been suggested for the veri�cation
of digital VLSI circuits� But� current formal hardware veri�cation approaches
cannot accurately model low�level circuit details �e�g�� charge sharing	� On the
other hand� formal veri�cation at the high level can provide useful information
�e�g�� circuit state invariants	 for e�cient symbolic simulation at the low level�
in addition to its other advantages� Since the simulators �e�g�� switch�level	 can
model low�level circuit details accurately� an approach combining the capabilities
of formal veri�cation at the high level and symbolic simulation at the low�level
can derive the advantages of both the approaches�

�

Bryant has proposed symbolic switch�level simulation for formal hardware
veri�cation
��� In
�� ��� it is shown that a symbolic simulator can be used to
verify �check for all possible execution paths	 many non�trivial circuits� His ver�
i�cation approach has been applied to verify a static RAM� data paths� and
pipelined circuits
� �� ��� Our veri�cation approach for datapath and control
circuits is based on a simple hardware speci�cation formalism called HOP
���
a parallel composition algorithm called PARCOMP� and a switch�level simula�
tor�COSMOS	� In the past� we have studied the problem of generating mini�
mally instantiated symbolic simulation vectors for non�regular designs� and also
developed techniques to integrate the formal veri�cation phase with the sym�
bolic simulation phase� The combination of formal veri�cation at the high�level
and symbolic simulation based veri�cation at the low�level has been proposed
in
��� ���� We have obtained encouraging results in this regard
��� ��� ����

In order to reduce the symbolic simulation e�ort� a new technique to encode
the state and input constraints as parametric Boolean expressions on the state
and input variables is incorporated in our veri�cation approach� This technique
of using parametric Boolean expressions vastly reduces the number of symbolic
simulation vectors and the time for veri�cation� and thus makes our veri�cation
approach applicable to large synchronous circuits� Parametric forms have also
been used in
�� �� for the veri�cation of �nite state machines�

Our veri�cation approach can be applied for e�cient modular veri�cation
of large designs� Parametric Boolean expressions can be used to encode the
input and state constraints of the sub�modules of the design� Each sub�module is
individually veri�ed� When verifying a sub�module� it is assumed that its context
operates correctly� and so the inputs expected by the sub�module are derived
directly from the input constraints of the sub�module� �The input constraints of
each sub�module are typically known to the designer �e�g� a certain internal bus
carries only unary values	� and can be proved to be a consequence of the design�
during high level veri�cation�	 The outputs of the sub�module being veri�ed are
not isolated from its context� and so the sub�module being veri�ed is subject to
the true electrical loadings�

Since regular arrays are part of many large designs� we have developed an
approach for the veri�cation of regular arrays which combines formal veri�ca�
tion at the high level and symbolic simulation at the low level�e�g�� switch�level	�
The veri�cation approach is based on a simple hardware speci�cation formalism
called HOP� a parallel composition algorithm for regular arrays called PCA� and
a switch�level symbolic simulator�COSMOS	� We illustrate our veri�cation ap�
proach on the Least Recently Used�LRU	 page replacement policy implemented
as a two�dimensional array of LRU cells in VLSI�

��� Outline of the Paper

In the following section� we present the basic idea of parametric Boolean expres�
sions and the encoding of the state and input constraints as parametric Boolean
expressions� In Section �� �� and we present our symbolic simulation based
veri�cation approach and the use of parametric Boolean expressions through

�

examples� In Section �� we show the veri�cation of a circuit called Minmax� In
Section �� we show the veri�cation of a pipelined cache memory system� In Sec�
tion � we present our veri�cation approach for regular arrays using an LRU
array as an example� In Section �� we summarize the results� report the ongoing
e�ort� and outline the future work�

� Parametric Boolean Expressions

We explain the idea of parametric Boolean expressions with the help of an ex�
ample� Suppose a circuit with four inputs in�� in�� in�� and in� has to obey the
constraint that exactly one of these inputs be a �� This constraint is captured
by the sum of products formula�

�in� � �in� � �in�� �in�	 � ��in� � in� � �in� � �in�	 �

��in� ��in� � in� � �in�	 � ��in� � �in� ��in� � in�	 ��	

Alternatively� this constraint is also captured by the formula�

� �b� b� � ��in� � b� � b�	 � �in� � b� � �b�	 �

�in� � �b� � b�	 � �in� � �b� � �b�		 ��	

Formula � is logically equivalent to formula �� However� formula � has the fol�
lowing advantage� the inputs in� through in� are expressed directly in terms
of parametric expressions over parametric variables b� and b�� These parametric
expressions cover all possible values of in� through in� which satisfy the required
constraint� Each permissible combination of in� through in� is obtained by ev�
ery value assignment to the parametric variables� By applying the parametric
expressions directly through input ports in� through in� during symbolic sim�
ulation� one symbolic simulation vector is tantamount to simulating the desired
combinations of in� through in� separately� Thus� the parametric form of input
constraints can be seen to e�ect a trade�o� between the number of symbolic
simulation vectors �which goes down exponentially	 and the number of extra
variables in symbolic input vectors �which goes up only by a logarithmic value�
at worst	� We �nd that this trade�o� can reduce the symbolic simulation time
signi�cantly�

Many automatic ways to obtain the parametric form are well known� e�g��
Boole�s and L�oewenheim�s procedures
��� We have improved these standard pro�
cedures in a number of ways� Some details are provided in section �� In the rest
of the paper� we focus on the applications of the parametric form� and not on
procedures for obtaining them per se�

Constraints on the State and Input Vectors

In many situations� it is convenient to express the constraints of a circuit as a
Boolean expression on the state and�or input bit�vectors� For example� a set�
associative cache would require all the tags �bit�vectors	 in a set to be di�erent

�

���	 for its correct operation� Here we consider the constraints which may involve
relational operators ����� ���� ����	 and logical connectives ����	� These con�
straints on the bit�vectors can also be expressed as Boolean expressions con�
taining individual bit�variables of the bit�vectors� and parametric Boolean ex�
pressions can be obtained for these individual bit�variables� However� the direct
generation of parametric Boolean expressions for bit�vectors� taking advantage
of the recursive nature of the relations on the bit�vectors �e�g� �� on an N bit
vector can be expressed using the xor function and �� on an N � � bit vector	
would be computationally more e�cient� Moreover� symbolic simulation is more
e�cient using the vectors generated by taking advantage of the recursive nature
of the relations on the bit�vectors�

a� � xab � yab
 p� b� � 	xab
 yab� � p�
a� � xab � yab
 p� b� � xab � yab � q�
 xab � p�
a� � xab � yab
 p� b� � xab � q�
 xab � yab � p�
a� � xab � yab
 p� b� � 	xab
 yab� � q�

Fig� �� Parametric Boolean Expressions for A � �a�� a�� a�� a�� � B � �b�� b�� b�� b��

To illustrate the generation of parametric Boolean expressions for the con�
straints involving bit�vectors� consider two ��bit vectors A �
a�� a�� a�� a�� and
B �
b�� b�� b�� b�� and the constraint A � B� The parametric Boolean expressions
for the bit�variables of these two vectors are shown in Figure �� The instantia�
tions of these variables result in minimally instantiated symbolicA and B vectors
which satisfy the constraint A � B� For example� with xab � � and yab � ��
we obtain A �
p�� p�� �� p�� and B �
p�� p�� �� q��� We call xab and yab control

parametric variables and pi�� � i � �	 and qj�� � j � �	 parametric Boolean
variables�

Boolean expressions on bit�vectors containing the logical connectives � and �
can be �rst simpli�ed into a disjunction of conjunctive�forms �or �cubes�	� Then�
the parametric Boolean expressions for each conjunctive�form can be obtained
and combined to get the parametric Boolean expression for the given Boolean
expression� The parametric Boolean expressions can be obtained using a Boolean
equation solving procedure
�� ��� but we are working on automating the gener�
ation of the parametric Boolean expressions for bit�vectors� taking advantage of
the recursive nature of the relations on the bit�vectors�

� Veri�cation of Minmax

In this section� we take a simple example that was also studied in
���� Minmax

�Figure �	
�� has three registers� MAXI� MINI� and LASTIN� It implements �ve
operations� Iclr�en� Iclr�dis� Idis� Ireset� and Ien� Here� we consider Ien

�

����������������������������
���������
�

����������������������������
���������
�����������������������������

���������
� ����������������������������

���������
�

��
����������
����������
�����������
����������
������

���
�����������
�����������
�����������
���

����������
����������
����������
����������
���

����������������������������
���������
� ����������������������������

���������
�

����������������������������
���������
� ����������������������������

���������
�

����������������������������
���������
� ����������������������������

���������
�

�������������������������������������
�

�������������������������������������
�

����������������������������
���������
� ����������������������������

���������
�

����������������������������
���������
�����������������������������

���������
�

����������������������������
���������
�

����������������������������
���������
�

��������������������������������������
��������������������������������������

������������������������������������
��

�����������������������������������
���

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

����������������������������
���������
�

�OUT

IN

LASTI MAXI MINI
mini�ld

maxi�ld

lasti�ld
Ireset

Iclr�en

Iclr�dis

Idis

Ien

i comparator h comparator

MUX MUX

ALU
 SHIFTER

MUX

MS
ms�ld

Osel

alu�sel

in�gt�maxi in�lt�mini

C
O
N

T
R
O
L
L
E
R

Fig� �� Schematic of Minmax

operation which reads the current input� updates MAXI and MINI� with the �run�
ning	 maximum value so far and the minimum value so far respectively� It also
causes an output equal to the average of the max�so�far and min�so�far to be
produced on the output port �OUT� A formal veri�cation of Minmax was carried
out using algebraic�equational reasoning techniques
����

��� Veri�cation with Minimally Instantiated Symbolic Vectors

Since every circuit requires some state and�or input constraints to be obeyed for
its correct operation� one needs to instantiate the symbolic state and input vec�
tors to the right degree so that the state and�or input constraints of the circuit

�

are satis�ed in the symbolic simulation based veri�cation of that circuit� We refer
to these vectors asminimally instantiated symbolic simulation vectors� In
���� we
approached the veri�cation of Minmax by enumerating minimally instantiated
symbolic simulation vectors� we used Prolog to generate the minimally instan�
tiated symbolic vectors for Minmax� We generated symbolic simulation vectors
for each condition of a data dependent conditional branch� augmented with the
circuit invariant MINI � MAXI� Some of the sixteen vectors generated� for the
case IN � MAXI �also taking the circuit invariant MINI � MAXI into account	 are
now listed�

MINI�� � �����MINI��MINI�	� IN�� � ���IN��IN��IN�	� MAXI�� � �����MAXI��MAXI�	
MINI�� � ���MINI����MINI�	� IN�� � ���IN��IN��IN�	� MAXI�� � ���MINI����MAXI�	
MINI�� � ���MINI��MINI���	� IN�� � ���IN��IN��IN�	� MAXI�� � ���MINI��MINI���	
���
MINI��
 � �IN��IN��IN���	� IN��
 � �IN��IN��IN���	� MAXI��
 � �IN��IN��IN���	

Here� MINI i represents the ith vector to be loaded into the register MINI� and
so on for the other vectors� Veri�cation time using this approach� for the cases
�IN � MAXI� and �MINI � IN � MAXI	� are listed in Figure under the circuit
name Minmax� and the column �minimal instantiation��this does not include
the time required to generate the minimally instantiated symbolic vectors	�

��� Veri�cation with Parametric Boolean Expressions

Veri�cation of the Minmax circuit for the Ien operation required the veri�cation
of three transitions whose state and input constraints were� IN � MINI � MAXI�
MINI � IN � MAXI� and MINI � MAXI � IN� We generated parametric Boolean
expressions for the state and input vectors satisfying these three constraints to
verify the three transitions for Ien operation of the Minmax circuit� using the
technique outlined in Section �� The use of parametric Boolean expressions for
the veri�cation ofMinmax reduced the number of symbolic simulation vectors to
� for each of the three constraints mentioned above and it also reduced the veri�
�cation time signi�cantly� The veri�cation time for Minmax using this approach
is listed in Figure under the column �Parametric Expressions��this does not
include the time required to generate the parametric Boolean expressions	�

� Veri�cation of A Pipelined Cache Memory System

In this section we consider the veri�cation of a pipelined cache memory system
to illustrate our technique to verify large designs�

��� A Pipelined Cache Memory System

The pipelined cache memory considered here has a ��way set�associative cache
with � sets in the cache� The size of a block in each set is one byte and the tag
associated with each block is � bits� A set is selected by the two higher�order
bits of the Read�Write address�

�

LRU CACHE

CAM CONTROLLER

RDRAM

least

reset

use

read

write

reset

busy/free

decode add

write
read

readhc

enter

search

hit/miss1

hit/miss2

re
ad

w
ri

te

m
at

ch
1

m
at

ch
2

Address Bus

Data Bus

d
at

aa
va

il/
u

n
av

ai
l

Cachebusy

Odataunavail

Lruout

Fig� �� The Pipelined Cache Memory System

The least recently used�LRU	 block replacement policy is used for the cache
miss on a Read or Write operation� Since each set has only two blocks� the
LRU policy is implemented by one �ip��op for each set� output of the �ip��op
indicates the least recently used block in the corresponding set� For higher set
sizes� an LRU array would be used to implement the LRU block replacement
policy� Veri�cation of regular arrays� with LRU array as an example� is discussed
in Section ���

The main memory is updated using the write�through policy �i�e�� for a Write
operation� the data is written into the main memory and the cache at the same
time	� Since it takes more time to write the data into the main memory than
into the cache for a Write operation� pipelining can be achieved by allowing more
operations on the cache� while the data is being written into the main memory�
In our pipelined cache system design� pipelining is achieved by allowing one or
two Read operations �two Read operations� if the �rst Read operation following
the Write operation results in a hit in the cache	� while the data is being written
into the main memory for a Write operation�

The block diagram of the pipelined cache memory system is shown in Fig�
ure �� The pipelined cache system design consists of four main modules� as shown

�

in Figure �� The CACHE module stores the data part of all the blocks in the
cache� The LRU module contains the data storage and the logic necessary to
implement the LRU block replacement policy� The CAM module stores the tag
part of the addresses currently in the cache� It also contains the logic necessary
to implement set selection and parallel search for the tag part of the address of
a Read�Write operation� The CONTROLLER module controls the operation of
the pipelined cache memory system� This pipelined cache memory system was
implemented on a Tiny Chip �about ���� transistors	 and the simulation �les
necessary for switch�level symbolic simulation in COSMOS were derived from
the NET description of the design�

��� Veri�cation Using Parametric Boolean Expressions

Symbolic simulation cannot be naively applied to verify the entire cache memory
system� For example� if symbolic vectors are applied as the address inputs and
the memory is asked to Read� all the locations covered by the symbolic address
are �simultaneously read�� this can cause con�icting drives of values on the data
output� Therefore� we resort to the technique of separately verifying the sub�
modules of the cache memory� Speci�cally� the following sub�modules have to
be separately veri�ed� �a	 the CACHE� �b	 the DRAM� and �c	 all remaining
units treated as the third submodule� Notice that the DRAM and the CACHE
modules of the pipelined cache memory system can be separately veri�ed using
the switch�level veri�cation techniques outlined in
��

To verify the pipelined cache memory system� we wrote the behavioral and
structural description for the design in HOP� The inferred behavior of the de�
sign from the structural description by PARCOMP was used to determine the
Read�Write operation sequences necessary to verify the pipelined cache memory
system� Since our example cache memory system is pipelined� it is necessary to
verify its operation over the sequences of Reads and Writes listed in the middle
of Figure � Veri�cation is separately carried out for each of these Read�Write
sequences� For a particular sequence� the tags in the CAM are initialized to sym�
bolic expressions that satisfy the CAM invariant �i�e�� no two tags in a set have
the same value	� The Read�Write addresses are then set to symbolic expressions
that cause the particular scenario �e�g� �Write Miss� Read Hit� Read Miss�	
to manifest�

In our �rst attempt� we used Prolog to encode the constraint among the tags
of the CAM �captured by the CAM invariant	 and the constraints on Read�Write
addresses required to make each scenario manifest� and ran the Prolog descrip�
tion to generate minimally instantiated symbolic values that satis�ed the con�
straints� An impracticably large number of symbolic vectors were obtained �e�g��
the operation sequence Write Miss � Read Hit � Read Hit resulted in ������
symbolic vectors	�

We then explored the idea of using parametric Boolean expressions by gen�
erating the tags in the CAM and the Read�Write addresses satisfying the con�
straints as described above� The constraints involved the �� relation and the logi�
cal connective �� The use of parametric Boolean expressions reduced the number

�

of symbolic vectors required for veri�cation to one for all the Read�Write op�
eration sequences beginning with a Write Hit operation and to eight for rest
of the Read�Write operation sequences beginning with a Write Miss operation�
The reason why eight symbolic vectors were required for each Read�Write op�
eration sequence beginning with a Write Miss operation is the following� since
a Write Miss operation would write the address tag in the CAM and the data
in the CACHE� the set part of the Write address and the LRU value for the
corresponding set were required to be instantiated to scalar values� there are
four possible sets� and for each set� there are two possible LRU values� The sym�
bolic simulation and veri�cation times required for all the Read�Write operation
sequences are shown in Figure �

We veri�ed the pipelined cache memory system by supplying �using the
freeze command in COSMOS symbolic simulator	 the expected inputs from
the DRAM and the CACHE module during the symbolic simulation of the
Read�Write operation sequences� assuming that the DRAM and CACHE op�
erate correctly�

��� Veri�cation of Large Cache Sizes

We believe that the technique of using parametric Boolean expressions can be
applied for the veri�cation of large cache sizes� If the number of symbolic vari�
ables which can be used in the COSMOS symbolic simulator is a limitation for
the veri�cation of large cache sizes� the technique of using parametric Boolean
expressions can be applied in the following way� The set part of the Write oper�
ation�s address in an operation sequence can be instantiated to the scalar value
and the tags of CAM for the sets in which addresses of the Read�Write op�
eration sequence map to can be initialized to contain the parametric Boolean
expressions satisfying the required constraints� the tags in all the other sets can
be kept to the unknown value X� This would reduce the number of symbolic vari�
ables required in the veri�cation of an operation sequence� but would increase
the number of symbolic vectors required in the veri�cation of the operation se�
quence� The number of symbolic vectors required would be proportional to the
number of sets in the cache�

� Veri�cation of Regular Arrays

Regular arrays form an important class of VLSI circuit designs� and with
regular array designs being employed in numerous applications� the veri�cation
of regular arrays becomes an important step in their design and implementation
as VLSI circuits� Also� it is important to develop e�cient ways to handle state
and input constraints for the veri�cation of regular arrays� because many regular
arrays are designed to operate under input constraints �e�g�� �inputs must be
unary�	� In this section� we show our veri�cation approach for regular arrays
and show the application of parametric Boolean expressions in the veri�cation
of regular arrays� The hardware implementation of LRU page replacement policy

�	

��������������
����������
���������
�����������
��������

�������������
������������������

������������������������������

��
����������������
����

���������������������������
����������
����������
������������
�������������������

�������������
����������
���������
�����������
������

�������������
������������������

����������������������������

��������������������������������������
������������������

���������������

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

������������������������������������
��

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

�������������������������������������
�

����������������������������
���������
� ����������������������������

���������
� ����������������������������

���������
� ����������������������������

���������
�

������������������������������������
��

�������������������������������������
�

������������������������������������
��

�������������������������������������
�

������������������������������������
��

�������������������������������������
�

�������������������������������������
�

����������������������������
���������
�

�������������������������������������
�

������������������������������������
��

������������������������������������
��

�������������������������������������
�

�������������������������������������
�

�����������������������������������
���

������������������������������������
��

COL

ROW

OUT �LRU�IN

Algorithm� Set row� reset col� find row with all zeros

QD

COL

ROW

IN OUT

Fig� �� LRU Cell and its HOP state diagram LRU Array

which we consider here maintains an array of n	 n bits� initially all zeros� for a
machine with n page frames� Whenever page k is referenced� the hardware sets
all the bits of the row k to � and sets all the bits of the column k to �� At any
instant� the row with all bits set to � indicates the least recently used row� hence
the least recently used page frame�

��� The LRU Array

The LRU array is realized as a two�dimensional regular array of LRU cells� Each
LRU cell of the regular array consists of a state bit which can be set to � by

��

keeping the ROW input to � and COL input to �� the state bit can be set to � by
keeping the COL input to �� On rising edge of the clock� the state bit of the LRU
cell is set to � or � depending upon ROW and COL inputs� On falling edge of the
clock� the output OUT is computed as logical OR of IN input of the cell �which
is OUT output of the previous cell	 and the state bit of the LRU cell� The output
of each row is logical OR of the state bits of the LRU cells in the row�

The functionality of an LRU cell is shown in Figure ��a	� A �	 � LRU array
is shown in Figure ��c	� The operation of the LRU array relies on the input
constraint that only the ith �� � i � �	 ROW bit and the ith COL bit are �� when
page i is referenced�

The LRU array implementation of the LRU policy is veri�ed at two levels�
At the �rst level� the LRU regular array behavior determined by PCA �a par�
allel composition algorithm for regular arrays	 is veri�ed against the abstract
speci�cation of the LRU array algorithm� The formal veri�cation at this level
is based on the homomorphism relation between states of the inferred behavior
and the states of the abstract speci�cation� We are skipping the details of this
proof in this paper�

At the second level� the transistor level implementation of the LRU array
corresponding to the structural description in HOP is veri�ed against the be�
havior inferred by PCA� However� the PCA�inferred behavior cannot directly be
used as the reference speci�cation because PCA does not take into account the
input constraints� Therefore� we �rst obtain the PCA�inferred behavior and then
substitute into it the input and initial state values applied during the transistor
level symbolic simulation� this forms the reference speci�cation�

��� Veri�cation with Parametric Boolean Expressions at the Inputs

The LRU array was veri�ed for all combinations of row and column input values�
which satis�ed the input constraint for the LRU array� Each cell in the LRU
array was initialized to a distinct symbolic variable� to verify the LRU array
for all possible state values� �this is possible as the LRU array does not have
any non�trivial circuit invariants�	 We illustrate our technique to handle the
input constraint on the �	 � LRU array� and report the results for higher sizes�
We �rst used scalar values on the row and column inputs� satisfying the input
constraint� and veri�ed the resulting new state and output values against the
expected values� It required four symbolic simulation vectors to verify the �	 �
LRU array�

Then� we encoded the input constraint as parametric Boolean expressions
on the row and column inputs� with two parameter Boolean variables b� and
b� as described in in Section �� With the use of this technique� the number
of symbolic simulation vectors reduced from four to one� In general� log� n
parametric Boolean variables are required to encode the input constraint of an
n 	 n LRU array� In the LRU array veri�cation� this technique reduces the
number of symbolic simulation vectors to one� independent of the size n of the
LRU array� Symbolic simulation and veri�cation times for various sizes of the
LRU array are shown in Figure under �parametric expressions as inputs��

��

No� of IN� MAXI MINI � IN � MAXI

Circuit Transistors Minimal Parametric Minimal Parametric
Name Instantiation Expressions Instantiation Expressions

No� of Total No� of Total No� of Total No� of Total
Vectors time Vectors time Vectors time Vectors time

Minmax� ���� �� ���� � ���� �� ���� � ����

Operation Sequence No� of Vectors Total time
Write Hit � Read Miss � �����
Write Hit � Read Hit � ����
Write Hit � Read Hit � Read Hit � ����
Write Hit � Read Hit � Read Miss � �����
Write Miss � Read Miss � �����
Write Miss � Read Hit � ����
Write Miss � Read Hit � Read Hit � ������
Write Miss � Read Hit � Read Miss � ������

No� of Scalar Input Parametric Expressions
Transistors Values as Inputs

Circuit Name No� of Total No� of Total
Vectors time Vectors time

LRU �� � ��� � ���� � ����
LRU �� � ���� � ���� � ����
LRU ��� �� ���� �� ������ � �����

Fig� �� Experimental Results� for Minmax� LRU array� and Pipelined Cache Memory
System

The improvement in the symbolic simulation and veri�cation time� with the use
of parametric Boolean expressions� is signi�cant for the large LRU array sizes�
We �nd that the use of parametric Boolean expressions can lead to signi�cant
reduction in the number of symbolic vectors and the veri�cation time in the
symbolic simulation based veri�cation of regular arrays�

� Conclusions and Future Work

Symbolic simulation based veri�cation is a powerful approach for the veri�cation
of hardware designs� which can complement formal veri�cation using theorem
provers� There is considerable incentive to make symbolic simulation based veri�
�cation scale up to large circuits� as this would provide digital system designers
with a familiar tool �a simulator	 to verify the designs almost automatically�
Results reported in this paper indicate that the symbolic simulation based ver�
i�cation approach can scale up to large circuit sizes in many cases� The main

� Total user time is shown in seconds�

��

motivation of our work has been to discover techniques that would help expand
the class of circuits� and the circuit sizes that can be veri�ed by the symbolic
simulation based veri�cation approach� One of the main observations is that the
parametric Boolean expressions can be used in variety of ways for e�cient sym�
bolic simulation based veri�cation of large synchronous circuits� Even though
the generation of the parametric Boolean expressions can involve some com�
putational e�ort� the parametric Boolean expressions� once generated� can be
re�used during the debugging of the circuit being veri�ed� In all the circuits we
have veri�ed� the use of parametric Boolean expressions enhanced the speed of
the symbolic simulation process� mainly through a favorable tradeo� between
the the number of simulation vectors �which is very much reduced	 and the av�
erage number of symbolic variables per vector �which goes up only by a small
amount	�

We have automated our method for the generation of parametric Boolean
expressions for the state and input constraints� We have also implemented two
known methods� namely� Boole�s and L�owenheim�s method� to generate para�
metric Boolean expressions for comparison with our method� The comparison of
our method with these methods shows that our method generates smaller para�
metric Boolean expressions which result in more e�cient symbolic simulation�
By studying more examples� we hope to get further insight into the technique�s	
that would work best for a given example�

References

�� Derek L� Beatty� Randal E� Bryant� and Carl�Johan H�Seger� Synchronous circuit
veri�cation by symbolic simulation� An illustration� In Sixth MIT Conference on
Advanced Research in VLSI� ����� MIT Press� �����

�� Christian Berthet� Olivier Coudert� and Jean�Christophe Madre� New ideas on
symbolic manipulations of �nite state machines� In Proceedings of the ICCD�
����� pages �������� �����

�� F� M� Brown� Boolean Reasoning� Kluwer Academic Publishers� �����
�� Randal E� Bryant� A methodology for hardware veri�cation based on logic sim�

ulation� Technical Report CMU�CS�������� Computer Science� Carnegie Mellon
University� March ����� Accepted for publication in the JACM�

�� Randal E� Bryant� Formal veri�cation of memory circuits by switch�level simula�
tion� IEEE Transactions on Computer�Aided Design� ��	���������� January �����

�� Randal E� Bryant� Derek L� Beatty� and Carl�Johan H� Seger� Formal hardware
veri�cation by symbolic ternary trajectory evaluation� In Proc� ACM�IEEE ��th
Design Automation Conference� pages �������� June �����

�� Randal E� Bryant and Carl�Johan H� Seger� Formal veri�cation of digital circuits
using ternary system models� Technical Report CMU�CS�������� School of Com�
puter Science� Carnegie Mellon University� May ����� Also in the Proceedings of
the Workshop on Computer�Aided Veri	cation� Rutgers University� June� �����

�� Olivier Coudert� Christian Berthet� and Jean�Christophe Madre� Veri�cation of
sequential machines using boolean functional vectors� In Proceedings of the IMEC�
IFIP Workshop on Applied Formal Methods for Correct VLSI Design� Leuven�
Belgium� pages �������� November �����

��

�� Ganesh Gopalakrishnan� Hop� A formal model for synchronous circuits using com�
municating fundamental mode symbolic automata� Technical Report UUCS�TR�
������� Dept� of Computer Science� University of Utah� Salt Lake City� UT ������
����� Submitted to �Formal Methods in System Design��

��� Ganesh Gopalakrishnan and Prabhat Jain� A practical approach to synchronous
hardware veri�cation� In Proc� VLSI Design
��� The Fourth CSI�IEEE Interna�
tional Symposium on VLSI Design� New Delhi� India� January �����

��� Ganesh Gopalakrishnan� Prabhat Jain� Venkatesh Akella� Luli Josephson� and
Wen�Yan Kuo� Combining veri�cation and simulation� In Carlo Sequin� editor� Ad�
vanced Research in VLSI � Proceedings of the ���� University of California Santa
Cruz Conference� The MIT Press� ����� ISBN �������������

��� Prabhat Jain and Ganesh Gopalakrishnan� Some techniques for e�cient symbolic
simulation based veri�cation� Technical Report UUCS�TR�������� University of
Utah� Department of Computer Science� October �����

��� Prabhat Jain� Ganesh Gopalakrishnan� and Prabhakar Kudva� Veri�cation of regu�
lar arrays by symbolic simulation� Technical Report UUCS�TR�������� University
of Utah� Department of Computer Science� October �����

��� Carl�Johan H� Seger and Je�rey Joyce� A two�level formal veri�cation methodol�
ogy using HOL and COSMOS� Technical Report ������ Dept� of Computer Science�
University of British Columbia� Vancouver� B�C�� June �����

��� D� Verkest and L� Claesen� The minmax system benchmark� November �����

