Towards A Verification Technique for Large
Synchronous Circuits

Prabhat Jain, Prabhakar Kudva, and Ganesh Gopalakrishnan

Department of Computer Science,
University of Utah,
Salt Lake City, UT 84112

Abstract. We present a symbolic simulation based verification approach
which can be applied to large synchronous circuits. A new technique to
encode the state and input constraints as parametric Boolean expressions
over the state and input variables is used to make our symbolic simulation
based verification approach efficient. The constraints which are encoded
through parametric Boolean expressions can involve the Boolean con-
nectives (-, 4,), the relational operators (<, <,>, >,#, =), and logical
connectives (A,V). This technique of using parametric Boolean expres-
sions vastly reduces the number of symbolic simulation vectors and the
time for verification. Our verification approach can also be applied for
efficient modular verification of large designs; the technique used is to
verify each constituent sub-module separately, however in the context of
the overall design. Since regular arrays are part of many large designs, we
have developed an approach for the verification of regular arrays which
combines formal verification at the high level and symbolic simulation
at the low level(e.g., switch-level). We show the verification of a circuit
called Minmaz, a pipelined cache memory system, and an LRU array
implementation of the least recently used block replacement policy, to il-
lustrate our verification approach. The experimental results are obtained
using the COSMOS symbolic simulator.

1 Introduction

Most digital VLSI circuits are checked for correct operation through scalar valued
stmulation. In this approach, scalar bit vectors—vectors over 0 and 1—are used
as inputs to the circuit being simulated. As most real-world circuits require an
impracticably large number of scalar vectors to check for all possible execution
paths, scalar simulation alone is insufficient to verify a digital VLSI circuit.

Several formal verification approaches have been suggested for the verification
of digital VLSI circuits. But, current formal hardware verification approaches
cannot accurately model low-level circuit details (e.g., charge sharing). On the
other hand, formal verification at the high level can provide useful information
(e.g., circuit state invariants) for efficient symbolic simulation at the low level,
in addition to its other advantages. Since the simulators (e.g., switch-level) can
model low-level circuit details accurately, an approach combining the capabilities
of formal verification at the high level and symbolic simulation at the low-level
can derive the advantages of both the approaches.

Bryant has proposed symbolic switch-level simulation for formal hardware
verification [4]. In [4, 1], it is shown that a symbolic simulator can be used to
verify (check for all possible execution paths) many non-trivial circuits. His ver-
ification approach has been applied to verify a static RAM, data paths, and
pipelined circuits [5, 6, 7]. Our verification approach for datapath and control
circuits is based on a simple hardware specification formalism called HOP [9],
a parallel composition algorithm called PARCOMP, and a switch-level simula-
tor(COSMOS). In the past, we have studied the problem of generating mini-
mally instantiated symbolic simulation vectors for non-regular designs, and also
developed techniques to integrate the formal verification phase with the sym-
bolic simulation phase. The combination of formal verification at the high-level
and symbolic simulation based verification at the low-level has been proposed
in [11, 14]. We have obtained encouraging results in this regard [11, 13, 12].

In order to reduce the symbolic simulation effort, a new technique to encode
the state and input constraints as parametric Boolean expressions on the state
and input variables is incorporated in our verification approach. This technique
of using parametric Boolean expressions vastly reduces the number of symbolic
simulation vectors and the time for verification, and thus makes our verification
approach applicable to large synchronous circuits. Parametric forms have also
been used in [2, 8] for the verification of finite state machines.

Our verification approach can be applied for efficient modular verification
of large designs. Parametric Boolean expressions can be used to encode the
input and state constraints of the sub-modules of the design. Each sub-module is
individually verified. When verifying a sub-module, it is assumed that its context
operates correctly, and so the inputs expected by the sub-module are derived
directly from the input constraints of the sub-module. (The input constraints of
each sub-module are typically known to the designer (e.g. a certain internal bus
carries only unary values), and can be proved to be a consequence of the design,
during high level verification.) The outputs of the sub-module being verified are
not isolated from its context, and so the sub-module being verified is subject to
the true electrical loadings.

Since regular arrays are part of many large designs, we have developed an
approach for the verification of regular arrays which combines formal verifica-
tion at the high level and symbolic simulation at the low level(e.g., switch-level).
The verification approach is based on a simple hardware specification formalism
called HOP, a parallel composition algorithm for regular arrays called PCA, and
a switch-level symbolic simulator(COSMOS). We illustrate our verification ap-
proach on the Least Recently Used(LRU) page replacement policy implemented
as a two-dimensional array of LRU cells in VLSI.

1.1 Outline of the Paper

In the following section, we present the basic idea of parametric Boolean expres-
sions and the encoding of the state and input constraints as parametric Boolean
expressions. In Section 3,4, and 5 we present our symbolic simulation based
verification approach and the use of parametric Boolean expressions through

examples. In Section 3, we show the verification of a circuit called Minmaz. In
Section 4, we show the verification of a pipelined cache memory system. In Sec-
tion 5, we present our verification approach for regular arrays using an LRU
array as an example. In Section 6, we summarize the results, report the ongoing
effort, and outline the future work.

2 Parametric Boolean Expressions

We explain the idea of parametric Boolean expressions with the help of an ex-
ample. Suppose a circuit with four inputs ¢nl, in2, in3, and ind has to obey the
constraint that exactly one of these inputs be a 1. This constraint is captured
by the sum of products formula:

(inl A =in2 A =in3 A —ind) V (minl Ain2 A =in3 A —ind) v
(minl A =in2 Ain3 A —ind) V (minl A —in2 A —in3 A ind) (1)

Alternatively, this constraint is also captured by the formula:

= 36162 . ((inl = b1 Ab2) A (in2 = b1 A —b2) A
(in3 = —b1 A b2) A (ind = —b1 A =b2)) (2)

Formula 2 is logically equivalent to formula 1. However, formula 2 has the fol-
lowing advantage: the inputs inl through in4 are expressed directly in terms
of parametric expressions over parametric variables bl and #2. These parametric
expressions cover all possible values of inl through in4 which satisfy the required
constraint. Each permissible combination of inl through in4 is obtained by ev-
ery value assignment to the parametric variables. By applying the parametric
expressions directly through input ports ¢nl through in4 during symbolic sim-
ulation, one symbolic simulation vector is tantamount to simulating the desired
combinations of tnl through in4 separately. Thus, the parametric form of input
constraints can be seen to effect a trade-off between the number of symbolic
simulation vectors (which goes down exponentially) and the number of extra
variables in symbolic input vectors (which goes up only by a logarithmic value,
at worst). We find that this trade-off can reduce the symbolic simulation time
significantly.

Many automatic ways to obtain the parametric form are well known, e.g.,
Boole’s and Loewenheim’s procedures [3]. We have improved these standard pro-
cedures in a number of ways. Some details are provided in section 6. In the rest
of the paper, we focus on the applications of the parametric form, and not on
procedures for obtaining them per se.

Constraints on the State and Input Vectors

In many situations, it is convenient to express the constraints of a circuit as a
Boolean expression on the state and/or input bit-vectors. For example, a set-
associative cache would require all the tags (bit-vectors) in a set to be different

(#) for its correct operation. Here we consider the constraints which may involve
relational operators (<, <, >, >, #, =) and logical connectives (A, V). These con-
straints on the bit-vectors can also be expressed as Boolean expressions con-
taining individual bit-variables of the bit-vectors, and parametric Boolean ex-
pressions can be obtained for these individual bit-variables. However, the direct
generation of parametric Boolean expressions for bit-vectors, taking advantage
of the recursive nature of the relations on the bit-vectors (e.g. # on an N bit
vector can be expressed using the zor function and # on an N — 1 bit vector)
would be computationally more efficient. Moreover, symbolic simulation is more
efficient using the vectors generated by taking advantage of the recursive nature
of the relations on the bit-vectors.

a3 = Tap - Yab + p3 ba = (Tas + Yab) * P3
a2 = Tab - Yab + P2 b2 = Tab - Yab - ¢2 + Tab - P2
a1 =Tat " Yab+P1 b1 =Tat - q1 + Tab - Yab - P1
o =Tap Yab +Po bo = (Tab + Yar) - g0

Fig. 1. Parametric Boolean Expressions for A : [a3, a2, a1,a0] > B : [bs, b2, b1, bo]

To illustrate the generation of parametric Boolean expressions for the con-
straints involving bit-vectors, consider two 4-bit vectors A : [as, as, ay, ag] and
B : [b3, ba, by, bg] and the constraint A > B. The parametric Boolean expressions
for the bit-variables of these two vectors are shown in Figure 1. The instantia-
tions of these variables result in minimally instantiated symbolic A and B vectors
which satisfy the constraint A > B. For example, with z,, = 0 and y, = 1,
we obtain A : [ps,p2,1,po] and B : [ps, p2,0,q0]. We call x, and yu5 conirol
parametric variables and p;(0 < ¢ < 3) and ¢;(0 < j < 2) parametric Boolean
variables.

Boolean expressions on bit-vectors containing the logical connectives A and V
can be first simplified into a disjunction of conjunctive-forms (or “cubes”). Then,
the parametric Boolean expressions for each conjunctive-form can be obtained
and combined to get the parametric Boolean expression for the given Boolean
expression. The parametric Boolean expressions can be obtained using a Boolean
equation solving procedure [3, 8], but we are working on automating the gener-
ation of the parametric Boolean expressions for bit-vectors, taking advantage of
the recursive nature of the relations on the bit-vectors.

3 Verification of Minmax

In this section, we take a simple example that was also studied in [11]. Minmaz
(Figure 2) [15] has three registers, MAXI, MINI, and LASTIN. It implements five
operations, Iclr_en, Iclr_dis, Idis, Ireset, and Ien. Here, we consider Ien

IN

]

LASTI

|

in-gt-maxi

FHECEOWH 200

Ireset
Iclr-en
Iclr-dis
e
Idis

Ien
e

] v
MAXI MINT mini-ld
T maxi-l1d
asti-1d
y comparator (comparator
\l/]
Y
MUX %; MUX ;
in-1t-mini
ALU 4 SHIFTER
alu-sel

Fig. 2. Schematic of Minmaz

MUX 7 Osel

MS ms-1d

l 1OUT

operation which reads the current input, updates MAXI and MINI, with the (run-
ning) maximum value so far and the minimum value so far respectively. Tt also
causes an output equal to the average of the max-so-far and min-so-far to be
produced on the output port '0UT. A formal verification of Minmaz was carried

out using algebraic/equational reasoning techniques [10].

3.1 Verification with Minimally Instantiated Symbolic Vectors

Since every circuit requires some state and/or input constraints to be obeyed for
its correct operation, one needs to instantiate the symbolic state and input vec-
tors to the right degree so that the state and/or input constraints of the circuit

are satisfied in the symbolic simulation based verification of that circuit. We refer
to these vectors as minimally instantiated symbolic simulation vectors. In [11], we
approached the verification of Minmaz by enumerating minimally instantiated
symbolic simulation vectors; we used Prolog to generate the minimally instan-
tiated symbolic vectors for Minmaz. We generated symbolic simulation vectors
for each condition of a data dependent conditional branch, augmented with the
circuit invariant MINI < MAXI. Some of the sixteen vectors generated, for the
case IN > MAXI (also taking the circuit invariant MINI < MAXI into account) are
now listed:

MINT' [0,0,MINT1 MINTO], IN" [1,IN2,IN1,IN0], MAXT0 = [0,1,MAXI1,MAXI0]

0 = 0 = =
MINI'1 = [0,MINI2,0,MINIO], IN'1 = [1,IN2,IN1,IN0], MAXI'1 = [0,MINI2,1 MAXIO0]
MINI'2 = [0,MINI2 MINI1,0], IN'2 = [1,IN2]IN1,INO0], MAXI'2 = [0,MINI2 MINI1,1]

MINT'15 = [IN3,IN2IN1,0], IN'15 = [IN3,IN2,IN1,1], MAXI'15 = [IN3,IN2,IN1,0]

Here, MINI_i represents the ith vector to be loaded into the register MINI, and
so on for the other vectors. Verification time using this approach, for the cases
(IN > MAXI) and (MINI < IN < MAXI), are listed in Figure 5 under the circuit
name Minmax4 and the column “minimal instantiation” (this does not include
the time required to generate the minimally instantiated symbolic vectors).

3.2 Verification with Parametric Boolean Expressions

Verification of the Minmaz circuit for the Ien operation required the verification
of three transitions whose state and input constraints were: IN < MINI < MAXT,
MINI < IN < MAXI, and MINI < MAXI < IN. We generated parametric Boolean
expressions for the state and input vectors satisfying these three constraints to
verify the three transitions for Ien operation of the Minmaz circuit, using the
technique outlined in Section 2. The use of parametric Boolean expressions for
the verification of Minmaz reduced the number of symbolic simulation vectors to
1 for each of the three constraints mentioned above and it also reduced the veri-
fication time significantly. The verification time for Minmaz using this approach
is listed in Figure 5 under the column “Parametric Expressions” (this does not
include the time required to generate the parametric Boolean expressions).

4 Verification of A Pipelined Cache Memory System

In this section we consider the verification of a pipelined cache memory system
to illustrate our technique to verify large designs.

4.1 A Pipelined Cache Memory System

The pipelined cache memory considered here has a 2-way set-associative cache
with 4 sets in the cache. The size of a block in each set is one byte and the tag
associated with each block is 3 bits. A set is selected by the two higher-order
bits of the Read/Write address.

Lruout
least
reset
LRU v CACHE
use
e,
hit/miss2 82 2 ¢ [rex
— - = 2
hit/missl g ©
E E write
search I
CAM enter CONTROLLER reset
fe————
readhc Cachebusy »
Odataunavail |— g
‘ —
read | g
Address Bus l write g
decode add g
£
3
RDRAM busy/free
Data Bus

Fig.3. The Pipelined Cache Memory System

The least recently used(LRU) block replacement policy is used for the cache
miss on a Read or Write operation. Since each set has only two blocks, the
LRU policy is implemented by one flip-flop for each set; output of the flip-flop
indicates the least recently used block in the corresponding set. For higher set
sizes, an LRU array would be used to implement the LRU block replacement
policy. Verification of regular arrays, with LRU array as an example, is discussed
in Section 5.1.

The main memory is updated using the write-through policy (i.e., for a Write
operation, the data 1s written into the main memory and the cache at the same
time). Since it takes more time to write the data into the main memory than
into the cache for a Write operation, pipelining can be achieved by allowing more
operations on the cache, while the data is being written into the main memory.
In our pipelined cache system design, pipelining is achieved by allowing one or
two Read operations (two Read operations, if the first Read operation following
the Write operation results in a hit in the cache), while the data is being written
into the main memory for a Write operation.

The block diagram of the pipelined cache memory system is shown in Fig-
ure 3. The pipelined cache system design consists of four main modules, as shown

in Figure 3. The CACHE module stores the data part of all the blocks in the
cache. The LRU module contains the data storage and the logic necessary to
implement the LRU block replacement policy. The CAM module stores the tag
part of the addresses currently in the cache. It also contains the logic necessary
to implement set selection and parallel search for the tag part of the address of
a Read/Write operation. The CONTROLLER module controls the operation of
the pipelined cache memory system. This pipelined cache memory system was
implemented on a Tiny Chip (about 5,700 transistors) and the simulation files
necessary for switch-level symbolic simulation in COSMOS were derived from
the NET description of the design.

4.2 Verification Using Parametric Boolean Expressions

Symbolic simulation cannot be naively applied to verify the entire cache memory
system. For example, if symbolic vectors are applied as the address inputs and
the memory is asked to Read, all the locations covered by the symbolic address
are “simultaneously read”; this can cause conflicting drives of values on the data
output. Therefore, we resort to the technique of separately verifying the sub-
modules of the cache memory. Specifically, the following sub-modules have to
be separately verified: (a) the CACHE; (b) the DRAM; and (c¢) all remaining
units treated as the third submodule. Notice that the DRAM and the CACHE
modules of the pipelined cache memory system can be separately verified using
the switch-level verification techniques outlined in [5].

To verify the pipelined cache memory system, we wrote the behavioral and
structural description for the design in HOP. The inferred behavior of the de-
sign from the structural description by PARCOMP was used to determine the
Read/Write operation sequences necessary to verify the pipelined cache memory
system. Since our example cache memory system is pipelined, it is necessary to
verify its operation over the sequences of Reads and Writes listed in the middle
of Figure 5. Verification is separately carried out for each of these Read/Write
sequences. For a particular sequence, the tags in the CAM are initialized to sym-
bolic expressions that satisfy the CAM invariant (i.e., no two tags in a set have
the same value). The Read/Write addresses are then set to symbolic expressions
that cause the particular scenario (e.g. “Write Miss — Read Hit — Read Miss”)
to manifest.

In our first attempt, we used Prolog to encode the constraint among the tags
of the CAM (captured by the CAM invariant) and the constraints on Read/Write
addresses required to make each scenario manifest, and ran the Prolog descrip-
tion to generate minimally instantiated symbolic values that satisfied the con-
straints. An impracticably large number of symbolic vectors were obtained (e.g.,
the operation sequence Write Miss — Read Hit — Read Hit resulted in 191232
symbolic vectors).

We then explored the idea of using parametric Boolean expressions by gen-
erating the tags in the CAM and the Read/Write addresses satisfying the con-
straints as described above. The constraints involved the # relation and the logi-
cal connective A. The use of parametric Boolean expressions reduced the number

of symbolic vectors required for verification to one for all the Read/Write op-
eration sequences beginning with a Write Hit operation and to eight for rest
of the Read/Write operation sequences beginning with a Write Miss operation.
The reason why eight symbolic vectors were required for each Read/Write op-
eration sequence beginning with a Write Miss operation is the following: since
a Write Miss operation would write the address tag in the CAM and the data
in the CACHE, the set part of the Write address and the LRU value for the
corresponding set were required to be instantiated to scalar values; there are
four possible sets, and for each set, there are two possible LRU values. The sym-
bolic simulation and verification times required for all the Read /Write operation
sequences are shown in Figure 5.

We verified the pipelined cache memory system by supplying (using the
freeze command in COSMOS symbolic simulator) the expected inputs from
the DRAM and the CACHE module during the symbolic simulation of the
Read/Write operation sequences, assuming that the DRAM and CACHE op-
erate correctly.

4.3 Verification of Large Cache Sizes

We believe that the technique of using parametric Boolean expressions can be
applied for the verification of large cache sizes. If the number of symbolic vari-
ables which can be used in the COSMOS symbolic simulator is a limitation for
the verification of large cache sizes, the technique of using parametric Boolean
expressions can be applied in the following way. The set part of the Write oper-
ation’s address in an operation sequence can be instantiated to the scalar value
and the tags of CAM for the sets in which addresses of the Read/Write op-
eration sequence map to can be initialized to contain the parametric Boolean
expressions satisfying the required constraints; the tags in all the other sets can
be kept to the unknown value X. This would reduce the number of symbolic vari-
ables required in the verification of an operation sequence, but would increase
the number of symbolic vectors required in the verification of the operation se-
quence. The number of symbolic vectors required would be proportional to the
number of sets in the cache.

5 Verification of Regular Arrays

Regular arrays form an important class of VLSI circuit designs, and with
regular array designs being employed in numerous applications, the verification
of regular arrays becomes an important step in their design and implementation
as VLSI circuits. Also, it is important to develop efficient ways to handle state
and input constraints for the verification of regular arrays, because many regular
arrays are designed to operate under input constraints (e.g., “inputs must be
unary”). In this section, we show our verification approach for regular arrays
and show the application of parametric Boolean expressions in the verification
of regular arrays. The hardware implementation of LRU page replacement policy

COL
ROW
D
Q
>
IN oUT
COL
—= — — — —
—= — — — =

ROW
IN — T T T — 0UT (LRU)

Algorithm: Set row; reset col; find row with all zeros

Fig.4. LRU Cell and its HOP state diagram; LRU Array

which we consider here maintains an array of n x n bits, initially all zeros, for a
machine with n page frames. Whenever page k is referenced, the hardware sets
all the bits of the row k£ to 1 and sets all the bits of the column & to 0. At any
instant, the row with all bits set to 0 indicates the least recently used row, hence
the least recently used page frame.

5.1 The LRU Array

The LRU array is realized as a two-dimensional regular array of LRU cells. Each
LRU cell of the regular array consists of a state bit which can be set to 1 by

keeping the ROW input to 1 and COL input to 0; the state bit can be set to 0 by
keeping the COL input to 1. On rising edge of the clock, the state bit of the LRU
cell 1s set to 0 or 1 depending upon ROW and COL inputs. On falling edge of the
clock, the output OUT is computed as logical OR of IN input of the cell (which
is OUT output of the previous cell) and the state bit of the LRU cell. The output
of each row is logical OR of the state bits of the LRU cells in the row.

The functionality of an LRU cell is shown in Figure 4(a). A 4 x4 LRU array
is shown in Figure 4(c). The operation of the LRU array relies on the input
constraint that only the ith (0 < ¢ < 3) ROW bit and the ith COL bit are 1, when
page ¢ 1s referenced.

The LRU array implementation of the LRU policy is verified at two levels.
At the first level, the LRU regular array behavior determined by PCA (a par-
allel composition algorithm for regular arrays) is verified against the abstract
specification of the LRU array algorithm. The formal verification at this level
is based on the homomorphism relation between states of the inferred behavior
and the states of the abstract specification. We are skipping the details of this
proof in this paper.

At the second level, the transistor level implementation of the LRU array
corresponding to the structural description in HOP is verified against the be-
havior inferred by PCA. However, the PCA-inferred behavior cannot directly be
used as the reference specification because PCA does not take into account the
input constraints. Therefore, we first obtain the PCA-inferred behavior and then
substitute into it the input and initial state values applied during the transistor
level symbolic simulation; this forms the reference specification.

5.2 Verification with Parametric Boolean Expressions at the Inputs

The LRU array was verified for all combinations of row and column input values,
which satisfied the input constraint for the LRU array. Each cell in the LRU
array was initialized to a distinct symbolic variable, to verify the LRU array
for all possible state values. (this is possible as the LRU array does not have
any non-trivial circuit invariants.) We illustrate our technique to handle the
input constraint on the 4 x 4 LRU array, and report the results for higher sizes.
We first used scalar values on the row and column inputs, satisfying the input
constraint, and verified the resulting new state and output values against the
expected values. It required four symbolic simulation vectors to verify the 4 x 4
LRU array.

Then, we encoded the input constraint as parametric Boolean expressions
on the row and column inputs, with two parameter Boolean variables b1 and
b2 as described in in Section 2. With the use of this technique, the number
of symbolic simulation vectors reduced from four to one. In general, log, n
parametric Boolean variables are required to encode the input constraint of an
n x n LRU array. In the LRU array verification, this technique reduces the
number of symbolic simulation vectors to one, independent of the size n of the
LRU array. Symbolic simulation and verification times for various sizes of the
LRU array are shown in Figure b under “parametric expressions as inputs”.

No. of IN > MAXI MINT < IN < MAXI
Circuit |Transistors| Minimal Parametric Minimal Parametric
Name Instantiation || Expressions || Instantiation || Expressions

No. of [Total|| No. of |Total|| No. of |Total|| No. of |Total

Vectors| time ||Vectors| time ||Vectors| time ||Vectors| time

Minmax4 1232 16 4.83 1 2.42 21 6.13 1 3.07
Operation Sequence No. of Vectors|Total time
Write Hit — Read Miss 1 12.40
Write Hit — Read Hit 1 9.58
Write Hit — Read Hit — Read Hit 1 15.0
Write Hit — Read Hit — Read Miss 1 17.90
Write Miss — Read Miss 8 70.65
Write Miss — Read Hit 8 70.0
Write Miss — Read Hit — Read Hit 8 185.75
Write Miss — Read Hit — Read Miss 8 222.03

No. of Scalar Input [|Parametric Expressions
Transistors Values as Inputs
Circuit Name No. of | Total || No. of Total
Vectors| time ||Vectors time
LRU 4 x 4 448 4 0.63 1 0.27
LRU 8 x 8 1792 8 6.93 1 2.29
LRU 16 x 16 7168 16 134.63 1 34.68

Fig. 5. Experimental Results’ for Minmax, LRU array, and Pipelined Cache Memory
System

The improvement in the symbolic simulation and verification time, with the use
of parametric Boolean expressions, is significant for the large LRU array sizes.
We find that the use of parametric Boolean expressions can lead to significant
reduction in the number of symbolic vectors and the verification time in the
symbolic simulation based verification of regular arrays.

6 Conclusions and Future Work

Symbolic simulation based verification is a powerful approach for the verification
of hardware designs, which can complement formal verification using theorem
provers. There is considerable incentive to make symbolic simulation based veri-
fication scale up to large circuits, as this would provide digital system designers
with a familiar tool (a simulator) to verify the designs almost automatically.
Results reported in this paper indicate that the symbolic simulation based ver-
ification approach can scale up to large circuit sizes in many cases. The main

! Total user time is shown in seconds.

motivation of our work has been to discover techniques that would help expand
the class of circuits, and the circuit sizes that can be verified by the symbolic
simulation based verification approach. One of the main observations is that the
parametric Boolean expressions can be used in variety of ways for efficient sym-
bolic simulation based verification of large synchronous circuits. Even though
the generation of the parametric Boolean expressions can involve some com-
putational effort, the parametric Boolean expressions, once generated, can be
re-used during the debugging of the circuit being verified. In all the circuits we
have verified, the use of parametric Boolean expressions enhanced the speed of
the symbolic simulation process, mainly through a favorable tradeoff between
the the number of simulation vectors (which is very much reduced) and the av-
erage number of symbolic variables per vector (which goes up only by a small
amount).

We have automated our method for the generation of parametric Boolean
expressions for the state and input constraints. We have also implemented two
known methods, namely, Boole’s and Lowenheim’s method, to generate para-
metric Boolean expressions for comparison with our method. The comparison of
our method with these methods shows that our method generates smaller para-
metric Boolean expressions which result in more efficient symbolic simulation.
By studying more examples, we hope to get further insight into the technique(s)
that would work best for a given example.

References

1. Derek L. Beatty, Randal E. Bryant, and Carl-Johan H.Seger. Synchronous circuit
verification by symbolic simulation: An illustration. In Sixth MIT Conference on
Advanced Research in VLSI, 1990. MIT Press, 1990.

2. Christian Berthet, Olivier Coudert, and Jean-Christophe Madre. New ideas on
symbolic manipulations of finite state machines. In Proceedings of the ICCD,
1990, pages 224-227, 1990.

3. F. M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

4. Randal E. Bryant. A methodology for hardware verification based on logic sim-
ulation. Technical Report CMU-CS-90-122, Computer Science, Carnegie Mellon
University, March 1990. Accepted for publication in the JACM.

5. Randal E. Bryant. Formal verification of memory circuits by switch-level simula-
tion. IEEE Transactions on Computer-Aided Design, 10(1):94-102, January 1991.

6. Randal E. Bryant, Derek L. Beatty, and Carl-Johan H. Seger. Formal hardware
verification by symbolic ternary trajectory evaluation. In Proc. ACM/IEEE 28th
Design Automation Conference, pages 397-402, June 1991.

7. Randal E. Bryant and Carl-Johan H. Seger. Formal verification of digital circuits
using ternary system models. Technical Report CMU-CS-90-131, School of Com-
puter Science, Carnegie Mellon University, May 1990. Also in the Proceedings of
the Workshop on Computer-Aided Verification, Rutgers University, June, 1990.

8. Olivier Coudert, Christian Berthet, and Jean-Christophe Madre. Verification of
sequential machines using boolean functional vectors. In Proceedings of the IMEC-
IFIP Workshop on Applied Formal Methods for Correct VLSI Design, Leuven,
Belgium, pages 179-196, November 1989.

10.

11.

12.

13.

14.

15.

. Ganesh Gopalakrishnan. Hop: A formal model for synchronous circuits using com-

municating fundamental mode symbolic automata. Technical Report UUCS-TR-
92-006, Dept. of Computer Science, University of Utah, Salt Lake City, UT 84112,
1992. Submitted to ” Formal Methods in System Design”.

Ganesh Gopalakrishnan and Prabhat Jain. A practical approach to synchronous
hardware verification. In Proc. VLSI Design '91: The Fourth CSI/IEEFE Interna-
tional Symposium on VLSI Design, New Delhi, India, January 1991.

Ganesh Gopalakrishnan, Prabhat Jain, Venkatesh Akella, Luli Josephson, and
Wen-Yan Kuo. Combining verification and simulation. In Carlo Sequin, editor, Ad-
vanced Research in VLSI : Proceedings of the 1991 University of California Santa
Cruz Conference. The MIT Press, 1991. ISBN 0-262-19308-6.

Prabhat Jain and Ganesh Gopalakrishnan. Some techniques for efficient symbolic
simulation based verification. Technical Report UUCS-TR-91-023, University of
Utah, Department of Computer Science, October 1991.

Prabhat Jain, Ganesh Gopalakrishnan, and Prabhakar Kudva. Verification of regu-
lar arrays by symbolic simulation. Technical Report UUCS-TR-91-022, University
of Utah, Department of Computer Science, October 1991.

Carl-Johan H. Seger and Jeffrey Joyce. A two-level formal verification methodol-
ogy using HOL and COSMOS. Technical Report 91-10, Dept. of Computer Science,
University of British Columbia, Vancouver, B.C., June 1991.

D. Verkest and L. Claesen. The minmax system benchmark, November 1989.

