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ABSTRACT

C’s volatile qualifier is intended to provide a reliable link between
operations at the source-code level and operations at the memory-
system level. We tested thirteen production-quality C compilers
and, for each, found situations in which the compiler generated
incorrect code for accessing volatile variables. This result is dis-
turbing because it implies that embedded software and operating
systems—both typically coded in C, both being bases for many
mission-critical and safety-critical applications, and both relying
on the correct translation of volatiles—may be being miscompiled.
Our contribution is centered on a novel technique for finding
volatile bugs and a novel technique for working around them. First,
we present access summary testing: an efficient, practical, and au-
tomatic way to detect code-generation errors related to the volatile
qualifier. We have found a number of compiler bugs by performing
access summary testing on randomly generated C programs. Some
of these bugs have been confirmed and fixed by compiler develop-
ers. Second, we present and evaluate a workaround for the com-
piler defects we discovered. In 96% of the cases in which one of
our randomly generated programs is miscompiled, we can cause the
faulty C compiler to produce correctly behaving code by applying
a straightforward source-level transformation to the test program.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation, volatile

1. INTRODUCTION

A C program’s connection to its underlying memory subsystem is
tenuous: optimizing compilers are free (and in fact try very hard)
to cache values in registers, to reorder computations, and to elimi-
nate useless and redundant computations. The volatile qualifier
is intended to provide a reliable anchor between variables and the
memory system. Briefly stated, when a storage location is marked
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as volatile, the C compiler must ensure that every use (read or write)
of that location in the source program is realized by an appropriate
memory operation (load or store) in the compiled program. Ac-
cesses to volatiles are considered to be side-effecting operations,
and they are therefore part of the observable behavior of a program
that must not be changed by an optimizing compiler. Embedded
software commonly relies on volatile variables in order to access
memory-mapped I/O ports, to communicate between concurrent
threads or processes, and to communicate between interrupt han-
dlers and the main computation.

To see why volatiles are special, notice that memory-mapped 1/O
registers may have semantics very different from RAM. For exam-
ple, a register that reflects sensor values may produce a different
value each time is it loaded, and may not support stores at all. Ad-
ditionally, both stores to and loads from a memory-mapped regis-
ter may be side-effecting operations. Consider, for instance, the
following C code for a function that resets a watchdog timer in a
hypothetical embedded system:

/* linker will map to the proper I/0 register */
extern volatile int WATCHDOG;

void reset_watchdog() {
WATCHDOG = WATCHDOG; /* load, then store */
}

This function is called periodically by the embedded control pro-
gram to signal that it is still running. Watchdog timers are com-
monly used in safety-critical software as a guard against software
faults; if the timer expires, the software must have crashed or be-
come wedged, and a system restart is forced. The action required to
reset a watchdog timer is determined by hardware designers. Here
we assume that it is a load from a hardware register belonging to
the watchdog subsystem, followed by a store to the same register.

Regardless of optimization level, a correct compiler must turn
the function above into object code that loads and then stores the
WATCHDOG register. Recent versions of GCC for IA32 emit correct
assembly code:

reset_watchdog:
movl WATCHDOG, %eax
movl Yieax, WATCHDOG
ret

On the other hand, the latest version of GCC’s port to the MSP430
microcontroller compiles the code into the following assembly:

reset_watchdog:
ret
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The function is a nop and applications that rely on it to reset
the watchdog timer will not work. Although the symptoms of this
compiler bug—spurious periodic reboots due to failure to reset the
watchdog timer—may be relatively benign, the situation could be
worse, for example, if the hardware register were used to lower con-
trol rods, cancel a missile launch, or open the pod bay doors. Most
compilers based on GCC 3.x, including the version of GCC’s port
to the AVR microcontroller that is currently used by TinyOS [9],
generate similar incorrect output for this trivial example.

We have found that compiler bugs of this type are not the ex-
ception: instead, they are disturbingly common. When we first
came across these bugs, we created a small suite of test programs
similar to the watchdog example above. We found that many com-
pilers produced visibly incorrect object code for one or more of our
tests. To investigate the extent of volatile-access problems more
thoroughly, we decided to employ random testing. We developed
an appropriate C program generator and compiler test harness, and
we used them to automatically generate test cases, automatically
find bugs in compiling accesses to volatiles, and investigate the pos-
sibility of automatically working around compiler defects through
program transformation.

The contributions of our paper are the following:

1. We show that problems implementing C’s volatile quali-
fier are widespread. All compilers that we examined, includ-
ing a number of production-quality compilers for embedded
systems, produce incorrect object code for at least one input.

2. We present a technique for randomly generating nearly strictly
conforming C programs that must perform the same compu-
tation across a broad class of platforms and compilers.

3. We describe access summary testing, our technique for ef-
fectively and automatically detecting miscompilation of ac-
cesses to volatile variables.

4. We show that in many cases, the impact of compiler bugs
can be mitigated by introducing small helper functions into a
program. We evaluate the costs of this refactoring.

5. Based on our findings, we provide concrete recommenda-
tions for application developers and compiler developers.

2. WHAT DOES VOLATILE MEAN?

We answer this question in two parts. The first provides a practical
and intuitive explanation, and is a sufficient basis for understand-
ing the rest of this paper. The second addresses some additional
subtleties found in the C standard.

2.1 Practical answer

The proper behavior of a volatile-qualified variable is this:

For every read from or write to a volatile variable that
would be performed by a straightforward interpreter
for C, exactly one load from or store to the memory lo-
cation(s) allocated to the variable must be performed.

For example, if a variable i is declared as volatile int:
e i++ must result in a load from i and then a store to it.
e (x || i) mustresultin aload from i iff x evaluates to false.
e *p = 5 must result in a store to i, provided that p points to
i and has type volatile int *.
A compiler may not move accesses to volatile variables across
sequence points.! No guarantees are made about the atomicity of

1According to Section 3.8 of the C FAQ [18], “A sequence point is a point
in time at which the dust has settled and all side effects which have been
seen so far are guaranteed to be complete. The sequence points listed in
the C standard are at the end of the evaluation of a full expression (a full

any given volatile access, about the ordering of multiple volatile
accesses between two consecutive sequence points, or about the
ordering of volatile and non-volatile accesses. For example, the
following code illustrates a common mistake in which a volatile
variable is used to signal a condition about a non-volatile data struc-
ture, perhaps to another thread:

volatile int buffer_ready;
char buffer[BUF_SIZE];

void buffer_init() {
int i;
for (i=0; i<BUF_SIZE; i++)
buffer[i] = 0;
buffer_ready = 1;
¥

The for-loop does not access any volatile locations, nor does it
perform any side-effecting operations. Therefore, the compiler is
free to move the loop below the store to buffer_ready, defeating
the developer’s intent. Making the buffer volatile would prevent
this transformation. (A better solution would be to avoid using
volatile to implement inter-thread communication, and instead
to use synchronization primitives that contain compiler and hard-
ware memory barriers.)

Although a bit nonintuitive, variables qualified as both const
and volatile make sense and are useful. In a system where a
communication variable is written by thread A and read by thread B,
thread B’s code might mark the variable as const volatile in
order to turn accidental writes into compile-time errors. Similarly,
const volatile is a good model for a hardware register whose
value may change unpredictably, but that should not be written to.

2.2 Subtleties of the C standard
In Section 6.7.3 the C99 standard [7] says:

An object that has volatile-qualified type may be mod-
ified in ways unknown to the implementation or have
other unknown side effects. Therefore any expression
referring to such an object shall be evaluated strictly
according to the rules of the abstract machine, ....
Furthermore, at every sequence point the value last
stored in the object shall agree with that prescribed by
the abstract machine, except as modified by the un-
known factors mentioned previously. What constitutes
an access to an object that has volatile-qualified type is
implementation-defined.

A footnote in the same section elaborates:

A volatile declaration may be used to describe an
object corresponding to a memory-mapped input/output
port or an object accessed by an asynchronously inter-
rupting function. Actions on objects so declared shall
not be “optimized out” by an implementation or re-
ordered except as permitted by the rules for evaluating
expressions.

Although the intended semantics of volatile are clear, the lan-
guage in the standard is vague on two important points (neither of
which is a concern for this paper).

expression is an expression statement, or any other expression which is not
a subexpression within any larger expression); at the | |, &&, 7:, and comma
operators; and at a function call (after the evaluation of all the arguments,
and just before the actual call).”



First, it is not apparent to what extent—if any—the compiler
must use memory barriers, non-cacheable memory regions, or sim-
ilar mechanisms to ensure that accesses to volatile objects are com-
mitted to RAM in the specified order. A strict reading of the stan-
dard would seem to require the insertion of memory barriers at se-
quence points before and after volatile accesses, but in practice few
compilers do this. Rather, a programmer must manually insert the
necessary hardware operations.

The second problem is the language “what constitutes an ac-
cess. .. is implementation-defined.” This part of the standard ad-
mits the possibility of a conforming C implementation that entirely
ignores the volatile qualifier (provided that this is documented).
However, such an implementation would be utterly useless for sys-
tems programming and we will not consider this possibility further.
Based on a USENET post from one of the C standards commit-
tee members [5], it seems that the offending sentence is a poorly
worded reflection of the fact that some hardware platforms have a
minimum access width. For example, on a machine that supports
only 32-bit memory operations, an access to a volatile byte will
unavoidably access the other three bytes in the same word, even if
one or more of these is also volatile. Modern computer architec-
tures generally support memory operations at byte granularity.

3. GENERATING PROGRAMS TO TEST
VOLATILE CORRECTNESS

By writing simple tests by hand, we discovered that many C com-
pilers have bugs when it comes to implementing the semantics of
volatile variables. Hand-written tests, however, are inherently lim-
ited in both number and complexity. Random testing, on the other
hand, uses automatically generated inputs to test a piece of soft-
ware. Therefore, to “scale up” our discovery of bugs, we decided
to use a random program generator to find problems in the ways
that C compilers handle volatile variables.

The key question that needs to be answered before using a ran-
dom program generator to find compiler bugs is: How can we gen-
erate programs in a sufficiently constrained way that their behavior
with respect to volatile objects must be the same across all compil-
ers and sets of compiler options? The solution is to generate pro-
grams that avoid behaviors that the C standard leaves unspecified,
undefined, or implementation-defined. As we explain below, this
required a surprising amount of work and involves both compile-
time and run-time restrictions on program behavior.

3.1 Overview of randprog

Our random C program generator is called randprog; it is a sig-
nificantly enhanced and tailored version of a program generator
written by Bryan Turner [21]. The output of our new generator
is arandom C program that manipulates volatile variables. In other
words, every time randprog is run, it produces a (probably) unique
C program. Each of these is a potential test case for the C compilers
that we study. By running randprog over and over, we can quickly
produce thousands of test cases. Furthermore, we can script the
production and evaluation of test cases, yielding a fully automatic
procedure to search for compiler bugs.

randprog creates C programs that perform computations over
signed and unsigned integer variables with various ranges: 8, 16,
and 32 bits. (Our current tests do not use characters, arrays, point-
ers, structures, unions, or floating-point values.) Within these lim-
its, our goal is to generate programs with a wide range of behaviors
and characteristics. Each generated program has three parts:

o The first is a set of randomly generated global variables. Each
is explicitly initialized to a constant value (randomly chosen by

randprog). Some of the globals may be declared const, some may
be declared volatile, and some may be const volatile.

e The second is a set of randomly created functions. Each ac-
cepts some number of (integer-typed) arguments and returns an in-
teger value. Each function body contains local (non-volatile) vari-
able declarations, assignments, if-then-else statements, for-loops,
function invocations, and returns. Expressions are made from ac-
cesses to global and local variables; uses of built-in arithmetic,
logical, and bitwise operators; and invocations of other generated
functions. The randomly generated expressions can be quite com-
plicated. However, assignment operators occur only at statement
level and within the initialization and increment parts of for-loops.

The generated functions may be mutually recursive. randprog
does not guarantee that functions will terminate, but in fact, most
generated programs do terminate in a short amount of time.

e The third part is a small amount of runtime support, including
the program’s main function. The task of the main function is to in-
voke the “topmost” randomly generated function and then compute
a checksum as described below.

The C programs created by randprog are both closed and nearly
strictly conforming. These two properties allow us to determine
the expected outcome of a test case, as we describe in Section 4.
A closed program is simply one that takes no inputs; all of the
program data is contained within the program source code. It is
simple to ensure that the programs created by randprog satisfy this
property. A strictly conforming program, as defined by the C lan-
guage standard, is a program whose output does not depend on any
unspecified, undefined, or implementation-defined behavior.> En-
suring this property of our generated programs requires some care
within the generator, and it is (almost completely) enforced using a
combination of code-generation constraints and runtime support.

3.2 “Nearly strictly conforming”

To understand why our random programs are nearly strictly con-
forming, note that “strictly conforming” is a property over a pro-
gram’s output. The programs created by randprog have two kinds
of output. The first is a checksum over the program’s global vari-
ables, which is computed just before the program terminates. De-
pending on the target computing platform, the program either prints
the checksum to standard output or stores it into a well-known
memory location. The second output is a sequence of reads and
writes to the program’s volatile variables. This sequence is an out-
put because—in addition to being the behavior we study in this
work—accesses to volatile variables are defined by the C standard
to be side-effecting operations.

As described more fully in Section 4, for each test program, we
judge the correctness of a compiler by executing the compiled ver-
sion of the test and examining the test program’s outputs. We then
need to decide if the outputs are right or wrong. To make this
decision tractable, it is important that the outputs of the test pro-
gram be well defined. In particular, the outputs must not depend on
the compiler, compiler options, or hardware platform in use. If a
generated program performs operations whose results are unspeci-
fied, undefined, or implementation-defined, the data calculated by

ZAn unspecified behavior is one for which the C standard allows multiple
possibilities without restricting how the choice is made. An example is the
order of evaluation for function arguments, which may vary across compil-
ers, across compiler options, or even across the function calls within a single
program. An implementation-defined behavior is an unspecified behavior,
where each compiler must document the behavior that it actually imple-
ments. An undefined behavior is the outcome of a nonportable construct or
a programming error, such as division by zero. The standard imposes no
requirements on undefined behaviors.



the program may vary—based on numerous factors—thus leading
to different executed paths and ultimately to varying program out-
puts. In the rest of this section, we detail how randprog produces
programs that behave consistently (or else reveal compiler bugs!)
across all our tested compilers and platforms.

Static assurances. We have designed randprog so that many
potential sources of inconsistent behavior are eliminated statically,
i.e., by the nature of the code that is output by the code generator.
For example, our generated programs:

e use integer types of defined size (e.g., int32_t), not integers
with implementation-defined sizes (e.g., int);

e always initialize local variables; and

e always specify a return value (i.e., return ezpr) when re-
turning from a function with a non-void return type.

Dynamic checks. Many not-well-defined behaviors, however,
are difficult to avoid statically because they depend on the dynamic
(run-time) values within the program. For example, if i is a signed
integer variable that currently holds a negative value, then the result
of (i >> 1) is undefined by the C standard. The result is defined,
however, when i holds a non-negative value.

Therefore, we rely on dynamic checks in our generated programs
to avoid operations that would (potentially) affect the data values
that are computed. These checks are implemented by functions in
a small runtime library, which randprog includes in each generated
program. For example, to right-shift a signed integer value i by a
signed value n, our program generator does not output (i >> n)
but instead outputs rshift_s_s(i, n). The rshift_s_s func-
tion (right-shift, signed, signed) checks the values of its arguments.
If the result of i>>n is well defined, the function returns that value,
and otherwise it simply returns i. We implement a family of inlin-
able wrappers for shifts, division, and modulus.

Allowed implementation-defined behaviors. We have chosen
to allow certain constructs in our generated programs whose be-
havior is not completely specified by the C standard. We make this
choice when both (1) avoiding the behavior would unduly constrain
our random program generator, and (2) the unspecified behavior
does not matter in practice for our testing. For example, C pro-
grams commonly use expressions that combine arithmetic and bit-
wise operators. The representation of integers is implementation-
defined in C, so a bitwise operation on the result of an arithmetic
expression could technically have differing results across compilers
or platforms. In practice, however, all of the platforms in our study
use two’s-complement integer representations, so we expect that
mixing arithmetic and bitwise operators will never lead to vary-
ing program behaviors. Moreover, disallowing such expressions
would remove a practically interesting set of test programs from
our study. We also allow signed integer overflow and underflow—
behaviors that are undefined by the C standard—because the GCC-
based compilers that we test (Section 6) accept a flag that defines
signed overflow as “wrapping around” using two’s-complement be-
havior. We judged that statically guarding against signed overflow
was too difficult, and that dynamically guarding against it would
overly constrain program behavior.

The rules for integer promotions also introduce implementation-
defined behaviors into our test programs. A promotion is a con-
version from an integer type to either an int or unsigned int.
These occur at many points in the evaluation of C expressions—
e.g., for the operands of shifts—and are not avoidable in our gen-
erated programs. Promotions potentially cause implementation-
defined behavior because the size of an int or unsigned int is
implementation-defined. The result is that some of our generated
tests produce different results across the platforms we use. This
is not a problem for our testing, however, because we do not re-

quire that the output of a test program be the same across different
architectures (Section 6.1).

Dealing with unspecified order of evaluation. Our program
generator deals specially with two of the most significant unspec-
ified behaviors in C programs: the order in which the parts of an
expression are evaluated, and the order in which the arguments to
a function call are evaluated. Of course, programmers deal with
this problem by writing C programs carefully, using only expres-
sions and function calls whose results are independent of the order
in which their subparts are evaluated. Breaking this coding rule is a
well-known source of bugs. Our randprog generator enforces this
coding style on the programs that it creates.

As randprog constructs an expression, it tracks the read/write
effect of the (partial) expression that has been built. This effect
is described by (1) the set of variables that may be read during
the evaluation of the expression; (2) the set of variables that may
be written during evaluation; and (3) a flag that is set if any of
the may-read or may-write variables are volatile. For example, the
read-set of (x || y) is x and y, although the read of y depends
on the dynamic value of x. If either x or y is volatile, then the flag
in the read/write effect of the expression will be true, indicating
that evaluation will potentially cause a side-effect through a volatile
variable access. It is straightforward to construct the effect of an
expression by taking the union of the effects of its parts. Similarly,
the effect of a function call is the union of (1) all the effects of the
actual arguments and (2) the summary effect of the function itself,
as described below.

When randprog wants to extend an existing expression expr by
incorporating a new (randomly generated) expression elem, it first
checks the effect of elem for conflicts with the effect of expr. A
conflict occurs when:

e clem may read a variable that is possibly written by expr;

e clem may write a variable that is possibly read or written by

expr; or

e clem and expr each have a volatile access (read or write).
If a conflict is found, the new element is discarded and randprog
makes a different random choice. The rules for detecting conflicts
are loosened when the operator that combines expr and elem estab-
lishes a well-defined evaluation order, as in (ezpr || elem).

The process of tracking effects ensures that no subpart of an ex-
pression can store data to a variable that some other subpart might
read or write. Therefore, the value of the expression is indepen-
dent of the order in which its subparts are evaluated. Our program
generator uses the same effect-tracking approach to ensure that the
arguments to function calls are independent of evaluation order. Fi-
nally, randprog tracks the overall effect of every function that it
generates. Each function is associated with its visible effect, which
is the sets of global variables that may be read and written as a re-
sult of a call to the function, and a flag that is set when any of the
accessed variables are volatile. Function effects are used, of course,
to detect conflicts when a function call is considered for inclusion
in some larger expression.

To recap, our effect-tracking system ensures that within our gen-
erated test programs, the order of accesses to volatile variables
does not depend on unspecified order-of-evaluation behavior. In
any context where the order of evaluation is unspecified, randprog
allows at most one volatile access (read or write). This is a conser-
vative model: in practical software, it may be acceptable for some
volatile accesses to occur in an unspecified order relative to each
other. Nevertheless, our model is well suited to compiler testing
and effective for exposing numerous compiler defects in practice,
as we describe next.



4. TESTING FOR VOLATILE CORRECT-
NESS

In Section 3 we showed how to randomly generate closed, “nearly
strictly conforming” C programs that use volatile variables. A bit
of additional work is needed to turn these programs into a usable
compiler-testing technique.

The technique we developed is called access summary testing,
which works as follows. For each randomly generated C program
(i.e., each test case):

1. Compile the program using the compiler and compiler op-
tions that are being tested.

2. Run the compiled program in an instrumented execution en-
vironment that logs all memory accesses to global variables.

3. Map accesses in the log to program variables, and filter out
all accesses that are not to volatile variables.

4. Create an access summary by applying a summarization func-
tion to the log of volatile variable accesses.

5. Compare the observed access summary with the correct ac-
cess summary for the test case.

The first step—compilation—is generally straightforward, though
we found that some of the programs generated by randprog would
cause one or more of the C compilers in our study to crash. As we
describe later in Section 6.1, we exclude these test cases from our
experimental results.

Test case execution. Assuming that the test program was com-
piled successfully, we need to determine if it was compiled cor-
rectly according to some metric of correctness. Our metrics are
based on the output behavior of the compiled program, where the
outputs include both a computed data value and a sequence of ac-
cesses to volatile variables (Section 3.2). To observe these outputs,
we execute the compiled program within an instrumented environ-
ment that allows us to capture the program’s memory behavior. We
developed two such environments that are tailored for access sum-
mary testing.

The first is based on Valgrind [15], an open-source binary instru-
mentation platform. Using Valgrind, we created a tool that adds
instrumentation to every memory access within a program. We call
this tool volcheck, and we use it to monitor IA32 binaries running
atop Linux.

The Valgrind platform manages the instrumentation and execu-
tion of the test program that is being examined. As new parts of the
(binary) program are reached during execution, Valgrind invokes
volcheck to instrument the binary code fragments. Valgrind’s API
allows our tool to add instrumentation to the test program with-
out affecting the test program’s behavior. At every (static) mem-
ory access in the binary, volcheck inserts a call to an event-tracing
function. After running our tool, Valgrind executes the newly in-
strumented code, which causes the event-tracing function to be in-
voked. That function then records the memory access: address,
access size (in bytes), and type (read or write). Information about
each access is printed to stdout as the accesses occur. This includes
the data described above, as well as the name of the accessed vari-
able (if known) and the source program location (if known).

Our second execution environment for access summary testing is
based on Avrora [20], a cycle-accurate simulator for wireless sen-
sor networks. It is highly extensible and, in fact, it comes with a
“memory monitor”: an extension for logging the total number of
loads and stores made to each memory location by the program(s)
being simulated. Thus, performing access summary testing using

Avrora is straightforward. We only needed to write a program
to turn Avrora’s memory monitor output into access summaries.
To terminate a simulation in Avrora, an AVR-specific function in
randprog’s runtime code places the checksum into a well-known
location and then executes the processor’s “break” instruction. The
break instruction is intercepted by a small Avrora extension that we
wrote, which prints the checksum to stdout and then exits.

As described in Section 3.1, the test programs created by rand-
prog are not guaranteed to terminate. Therefore, when we execute
a test program within our testing procedure, we impose a timeout.
If a program runs too long, we abort it and exclude it from our
experimental results.

Summarization. From the log produced by either of our execu-
tion platforms, we can easily produce a summary of the volatile-
variable access patterns of a test program. We inspect the program
source code to find the volatile variables, and we inspect the object
code to find the variable addresses. Using this information, we filter
the execution log to produce the summary we want. The summary
is the primary measure that we use to decide if the volatile-access
behavior of a test case is right or wrong. (We also check the value
of the output checksum, as described in Section 6.)

The summarization function that we use computes the total num-
ber of loads from and stores to each volatile location across the en-
tire execution of the program. We believe this to be a good choice
because summaries are compact and they are independent of the
order of accesses. Recall from Section 2 that a C compiler may
reorder volatile accesses that occur between sequence points. Our
randprog generator avoids producing code that would be subject
to such reordering, but the metric is chosen to be general and to
accommodate future changes to our test program generator.

It would be possible to use more abstract summarization func-
tions: for example, mixing loads and stores, or mixing accesses to
multiple variables. Increasing abstraction may lead to more effi-
cient testing but risks missing bugs. Similarly, more concrete sum-
marization functions could also be used: e.g., splitting out results
by function, by basic block, or even by sequence point. Increasing
concretization adds complexity to the program instrumentation and
may result in large summaries, but potentially catches more bugs.

Determining correct volatile-access behavior. For hand-written
test cases, we usually know what the access summary should look
like. In contrast, for randomly generated programs, we do not know
how many times each volatile variable should be loaded and stored.
In practice this is not a problem since we have many compilers to
choose from and many combinations of optimization flags for each
compiler. We can compute access summaries for many different
versions of a given program and then use a voting scheme to iden-
tify the summary that is most likely correct.

When we discover an access summary with an incorrect volatile-
access pattern, we have found a test case that shows a volatile error,
which may be due to a volatile bug in the compiler under test.

S. WORKING AROUND VOLATILE BUGS

Our hypothesis was that volatile accesses are more likely to be
compiled correctly if they are hidden (or partially hidden) behind
function-call boundaries. The intuition is that we can replace an ac-
tion that compilers empirically get wrong by a different action—a
function call—that compilers can get right.

To test our hypothesis, we devised a way to rewrite programs
so that volatile variables are accessed through type-specific helper
functions. For example, suppose that x is a volatile integer, y is a
pointer to volatile integer, and z is a volatile pointer to integer. Our
program transformation would then rewrite this code:



X = X;
y= 5
*y = *y;
z = z;
*zZ = *Zz;
into this code:
*vol_id_int(&x) = vol_read_int(&x);
y= 5y
xvol_id_int(y) = vol_read_int(y);

*vol_id_intptr(&z) = vol_read_intptr(&z);
*vol_read_intptr(&z) = *vol_read_intptr(&z);

Note that the second line does not require rewriting: a pointer to
volatile is not itself volatile.
The bodies of the integer helper functions are:

int vol_read_int(volatile int *vp) {
return *vp;

}

volatile int *vol_id_int(volatile int *vp) {
return vp;

}

The helper for reading from a volatile integer does exactly what
one would expect: it dereferences the pointer and returns the value
read. However, in order to simplify program transformation, we do
not have a helper function for writing to the volatile. Rather, we
“trick” the compiler by passing the target address of the write to
an identity function that merely returns its argument. Because the
helper function is opaque, the compiler treats the returned pointer
as fresh and—for all compilers that we tested—reliably derefer-
ences it. The alternative of performing the store-to-volatile in the
helper is not difficult, but it is syntactically more intrusive.

Note that it is critical that the helper functions are not inlined.
If inlining is performed, the resulting code (after straightforward
optimizations) is precisely the same as if the function call had never
been introduced in the first place.

We have two implementations of this transformation. First, we
modified randprog to optionally wrap all accesses to volatiles in
the programs that it creates. Second, we implemented an automatic
source-to-source transformation using CIL [14] that wraps accesses
to volatile variables in arbitrary C programs. In both of our imple-
mentations, the transformation and the generated helper functions
are nearly identical to the example code shown above.

6. EXPERIMENTAL RESULTS

We now describe our experiments in testing production-quality C
compilers for bugs related to accesses of volatile variables. By
hand, and using access summary testing, we found defects in all of
the thirteen compilers we tested. We present the benefits and costs
of working around volatile-access bugs by introducing helper func-
tions. In our experience, the use of helper functions is extremely ef-
fective for avoiding volatile errors. We detail three compiler defects
that we found using access summary testing. Finally, we present
recent improvements in one of the compilers in our study.

6.1 Methodology

We selected thirteen C compilers for our experiments: nine ver-
sions of GCC [3] and one version each of LLVM-GCC [12], Intel’s
C compiler [6], the Sun Studio C compiler [19], and Freescale’s

CodeWarrior Development Studio C compiler [4]. The versions
and target platforms of these compilers are shown in Table 1. Code-
Warrior was hosted on Windows XP; all of the other compilers were
hosted on Ubuntu Linux 7.04.

We first tested these compilers by hand, using a small set of func-
tions resembling the reset_watchdog function shown in Section 1.
We inspected the assembly outputs of the compilers by hand to find
errors in the handling of volatile variables.

We then tested nine compilers more thoroughly: we generated
random test programs via randprog and applied access summary
testing. We generated and tested C programs until we had 250,000
valid test cases, where a valid test case is one that:

e caused no compiler to crash or run for more than 30 seconds,

e terminated within 15 seconds, and

e accessed at least one volatile variable at least one time (out-
side the checksum computation).

We classify a valid test case as a volatile error for a compiler if
the volatile-variable access summary of the program changes when
the program is compiled at different levels of optimization. We
classify a valid test case as a functional error for a compiler if the
checksum computed over the program’s global variables changes
when the program is compiled at different levels of optimization.
In other words, a functional error indicates a case in which the
compiled program computes the wrong result. A single test case
can be both a volatile error and a functional error.

For classifying errors, we did not require that the access sum-
maries or checksums for a test case agree across compilers. Rather,
we counted a test case as an error for a compiler when the output of
the test case varies across that one compiler’s optimization levels.
It would be desirable to check outputs across compilers, but we did
not do so for three reasons. First, we have no automated way to
decide which compiler is at fault when there is disagreement. Sec-
ond, across compilers and platforms, some differences are due to
implementation-defined behaviors that we cannot reasonably avoid
(Section 3.2). Third, in our experience, our intra-compiler metric
is sufficient and effective for finding compiler defects.

For each GccC-based compiler (including LLVM-GCC, which uses
GCC’s front end), we tested five optimization options: -00, -01,
-02, -03, and -0s. The -0s option is commonly used when com-
piling embedded software as it is intended to minimize the size of
the generated code. We also passed the -fwrapv option to GCC
and LLVM-GCC, which instructs these compilers to provide two’s-
complement semantics when signed integers overflow or under-
flow. As explained in Section 3.2, this reduces the need for guard
functions within the randomly generated test programs.

To study the impact of adding helper functions, we measured the
object code sizes of the compiled, randomly generated programs.
For each program, we took its code size for a given compiler to be
the smallest size across all of the program’s compiled versions. (No
single optimization level consistently produces the smallest code.)

6.2 Volatile errors

The “volatile errors” column in Table 1 shows that no compiler that
we tested was free from defects: no compiler was able to always
create executables that produce the same access summary across
all optimization options. From this data, one cannot conclude that
the percentage of generated programs that elicit buggy compiler
behavior is correlated with either:
e the number of bugs in that compiler, or
o the likelihood that that compiler will miscompile real embed-
ded applications.
An interesting trend in Table 1 is the apparent increasing buggi-
ness of the sub-versions of GCC version 4 for IA32. Our (entirely



volatile volatile | vol. errors | avg. code size

errors errors w/ fixed by | increase due to | functional
compiler version target (%) | helpers (%) | helpers (%) helpers (%) | errors (%)
GCC 34.6 [1A32 1.228 0.300 76 1.5 0.004
GCC 4.04 1A32 0.038 0.018 51 2.3 0.031
GCC 4.1.2 [1A32 0.195 0.016 92 34 0.025
GCC 424 1A32 0.766 0.002 100 35 0.003
GCC 431 [1A32 0.709 0.000 100 4.0 0.003
LLVM-GCC 2.2 IA32 | 18.720 0.047 100 2.1 0.126
GCC 343 AVR 1.928 0.434 77 0.2 0.391
GCC 4.1.2 AVR 0.037 0.033 10 0.8 0.254
GCC 422 AVR 0.727 0.021 97 0.8 0.214
CodeWarrior 6.4.0.6 | Coldfire volatile access errors verified
GCC 3.2.3 | MSP430 volatile access errors verified
Intel 10.1.012 1A32 volatile access errors verified
Sun 5.9 1A32 volatile access errors verified

Table 1: Results from applying access summary testing to randomly generated C programs. For the last four compilers listed in
the table, we have verified at least one instance of incorrect code generation, but we either lack results from random testing (on
architectures other than IA32 and AVR) or cannot provide details due to license restrictions.

unsubstantiated) hypothesis is that because GCC 4.0 represented a
major revision of the basic infrastructure (it was the first version to
be based on SSA), it was a clean design that was largely capable of
compiling accesses to volatile variables. Subsequent sub-versions
of GCC 4 implemented increasingly aggressive optimizations, pos-
sibly leading to more and more bugs in accessing volatile variables.

6.3 Impact of helper functions

We evaluate the effect of introducing volatile-access helper func-
tions by answering several questions.

Does the introduction of helper functions improve code cor-
rectness? Aggregating across all compilers for which we present
quantitative results, 96% of all the volatile errors we found are fixed
through the introduction of helper functions.

Why are helper functions not always successful in working
around volatile bugs? In our experience, when a volatile error is
not fixed by our refactoring, the problem is due to functional bug
that manifests as a volatile error. A functional bug is a compiler de-
fect that causes a program to compute incorrect data—e.g., control-
flow bugs. We discuss these further in Section 6.4. We investigated
several cases where helper functions failed to fix a volatile error,
and in each case, the root cause was a functional bug.

What is the overhead of introducing helper functions? The
“average code size increase” column in Table 1 shows that for our
generated programs, the average code size overhead of helper func-
tions was not more than 4% for any compiler that we tested.

To determine the overhead of helper functions for real embedded
software, we used CIL to wrap all accesses to volatiles for a col-
lection of applications based on TinyOS 2 [9], a popular software
platform for wireless sensor network devices. We evaluate the im-
pact in terms of code size and duty cycle—the fraction of time that
anode’s CPU is active. Duty cycle is a good efficiency metric be-
cause the CPU uses much more power when it is active, and low
energy usage is a typical requirement for wireless sensor nets.

For very small applications such as “Blink,” which uses a timer
to flash a node’s LEDs, the code-size overhead was around 70% and
duty-cycle overhead around 25%. For larger applications such as
“MViz” and “MultihopOscilloscope,” the code-size overhead was
in the 10-15% range but the duty-cycle overhead was 70-80%. We
believe these rather high overheads are due to the fact that sensor-
network applications are extremely low-level and spend much of
their time interacting with memory-mapped peripherals.

6.4 Causes and effects

Compilers have two distinct kinds of code generation bugs that af-
fect our study: volatile bugs and functional bugs. A volatile bug
may result in an executable that violates the access requirements
of volatile variables (i.e., exhibits a volatile error), but that will
never cause our generated test programs to be functionally incor-
rect. A functional bug may result in an executable that computes
the wrong checksum (i.e., a functional error) and may also change
the volatile-access behavior of the generated code (a volatile error),
for example by taking the wrong branch of a conditional.

The following table describes the relationship between compiler
bugs and observed errors in our randomly generated test programs:

... may result in

a compiler crash | functional | volatile no
defect. .. or hang error error | symptom
functional bug v v v v
volatile bug ‘ ‘ ‘ v ‘ v ‘

An observed functional error implies that a functional bug exists.
However, an observed volatile error does not imply that a volatile
bug exists: the error may stem from a functional bug. Finding a
volatile bug, therefore, requires examining the compiler’s source
code. In general, we have found it fruitful to investigate test cases
that are volatile errors but not functional errors. As the data in
Table 1 show, such test cases are generally not difficult to find. In
our test suite, for most compilers, the number of volatile errors is
much greater than the number of functional errors.

6.5 Example volatile bugs

To illustrate the character of bugs found by access summary test-
ing of randomly generated C programs, we describe in detail two
volatile bugs in GCC 4.3.0 and one in LLVM-GCC 2.2. These bugs
manifest on IA32, the compilers’ most important and most heavily
tested target, and do not require exotic compiler flags or code con-
structs. All three bugs have been reported to the respective com-
pilers’ developers, and two of them have been confirmed and fixed.
The C functions presented in Figures 1-3 are subsets of randomly
generated programs that were flagged as volatile errors by our au-
tomated testing framework.



const volatile int x; foo:
volatile int y; movl $0, y
void foo(void) { movl X, heax
for (y=0; y>10; y++) jmp .L2
{ .L3:
int z = x; movl y, heax
} incl fheax
} movl %heax, y
L2:
movl y, heax
cmpl $10, %eax
ig .L3
ret

Figure 1: At the -Os optimization level, GCC 4.3.0 for 1A32
compiles the C code at left to the assembly at right. The com-
piler output is wrong: the access to volatile-qualified vari-
able x should not be hoisted out of the loop.

extern int qux(); bar:
volatile int w; subl $12, Yesp
int bar(void) { call qux
if (qux()) cmpl $1, Jeax
return O; sbbl Yheax, heax
else andl w, heax
return w; addl $12, Yesp
} ret

Figure 2: At the -0 optimization level, GCcC 4.3.0 for IA32 com-
piles the C code at left to the assembly at right. The com-
piler output is wrong: it unconditionally accesses volatile-
qualified variable w.

GCC bug #1. This bug is shown in Figure 1.> The source code
clearly specifies that x should be loaded on each loop iteration.
However, GCC incorrectly recognizes x as loop-invariant and hoists
the load out of the loop. In the object code, x is loaded once instead
of ten times (or however many times the loop ends up executing, if
volatile y does not behave as a normal variable).

We reported this bug to the GCC developers, who rapidly fixed
it. The problematic code was in a file called loop-invariant.c,
which contained the following check to determine if it is safe to
hoist a load from a constant memory location out of a loop:

if (MEM_READONLY_P(x))
The fixed code reads as follows:
if (MEM_READONLY_P(x) && 'MEM_VOLATILE_P(x))

GCC bug #2. This bug is shown in Figure 2. The correct be-
havior of this function with respect to volatile variable w is clear: if
bar returns zero then a single load to w should be issued, and oth-
erwise w should not be touched. In fact, the code emitted by GCC
loads from w regardless of the return value of bar. The fact that w
is always loaded is obvious from the lack of branches in this code.

The compiler is being clever in order to create straight-line object
code from conditional source code. The sbbl (subtract with bor-
row) instruction is used to subtract eax from itself, which clears
the register unless the carry bit flag is set, in which case eax is set
to —1, i.e., all ones. Either way, the subsequent bitwise-and of the
value found in w with eax causes the proper value to be returned
from this function. The bug in GCC is that the machine-specific

3To get the assembly code shown in Figures 1-3, we passed the compiler
the -fomit-frame-pointer flag to make the assembly code easier to
read. The bugs are all independent of this flag.

volatile int a; baz:

void baz(void) { movl a, heax
int i; leal 7 (heax) , hecx
for (i=0; i<3; i++) movl Yecx, a
{ leal 14 (%ieax), %hecx
a+=7; movl Yecx, a
} addl $21, %eax
¥ movl Yheax, a
ret

Figure 3: At the -02 optimization level, LLVM-GCC 2.2 for IA32
compiles the C code at left to the assembly at right. The com-
piler output is wrong: it loads from a once instead of three
times.

optimization pass that creates the control-flow-free code is insuffi-
ciently respectful of w’s volatile qualification. We reported this
bug to the GCC developers, but as of this writing, it has not yet been
confirmed or fixed.

An LLVM-GCC bug. Figure 3 illustrates a problem in compil-
ing a C function with a loop. The loop executes three times and
increments a volatile location by seven on each loop iteration. The
compiler completely unrolls the loop, which is fine, but a subse-
quent optimization pass improperly caches the incremented value
of a in a register instead of reloading it.

We reported the bug to the LLVM developers and they rapidly
fixed it. As with the GCC bug above, the problem was a missed
condition in an optimization safety check. The buggy compiler
code contains this test:

if (LD->getExtensionType() == ISD::NON_EXTLOAD)

It was fixed by adding a condition:

if (LD->getExtensionType() == ISD::NON_EXTLOAD &&

1LD->isVolatile())
6.6 Toward zero volatile bugs

We ran an experiment to see how low we could drive the volatile-
error rate of a compiler. We chose LLVM as our target because the
developers were very responsive to our reports, fixing most bugs
within a few days. Between March and July 2008 the LLVM team
fixed five volatile bugs and eight functional bugs we reported. Mea-
sured by our 250,000 test cases, the improvements are as follows:

LLVM-GCC || volatile volatile errors

for IA32 errors errors w/ fixed by | functional

version (%) | helpers (%) | helpers (%) | errors (%)
18.720 0.047 100 0.126

r53339 H 0.002 0.002 ‘ 0 0.009 ‘

LLVM 2.2 was released on February 11, 2008, and LLVM r53339
is a snapshot of the source code from July 9, 2008. We employ a
snapshot rather than a released version of LLVM because, as of this
writing, no release incorporates fixes to all of the bugs we reported.

The correctness of LLVM-GCC increased dramatically in just a
few months: functional errors were reduced by a factor of 14 and
volatile errors by a factor of more than 9,300. Of course, during the
interval between the two versions, the LLVM developers fixed many
bugs besides the ones that we reported. Although it would have
been possible to isolate the changes that were in response to our bug
reports by manually backing out selected compiler patches, in prac-
tice these patches were sometimes entangled with other changes
and we judged that isolating the effects of our bug reports was too
difficult. Our experiment is ongoing and we expect that within the
foreseeable future, LLVM-GCC will be effectively free of volatile
and functional bugs for the programs emitted by randprog.



7. DISCUSSION

‘We now discuss some of the broader implications of our findings.

7.1 Why are compilers so buggy?

Our educated guess is that there are several reasons why problems
in compiling volatiles are so widespread. First, volatile is in ten-
sion with optimizations. Compiler writers are always under pres-
sure to produce better code, and a broad class of optimizations
can result in violations of volatile semantics if care is not taken.
Second, without a technique such as access summary testing, the
compilation of volatiles is hard to test, and hence compiler bugs in
translating volatile accesses are not easy to notice. Third, compilers
tend to be tested by compiling themselves, benchmark suites, and
so on. Desktop applications interact with the OS entirely through
the system call interface, which stresses a compiler’s handling of
function calls but not its handling of volatile accesses.

It is interesting that random testing showed that the nine compil-
ers we tested extensively all contain functional bugs for integer pro-
grams. Compilers are large, complex artifacts and must be tested
aggressively.

7.2 Why can volatile bugs be overcome
through helper functions?

We believe that the answer is simple: the rules for optimizing ac-
cesses to volatile variables are quite unlike the rules for optimizing
accesses to non-volatile variables, but are similar to the rules for
optimizing external function calls. In other words, calls to external
functions, like accesses to volatile variables, must not be dupli-
cated, eliminated, or moved around very much. The machinery in a
typical compiler for making the right number of function calls, and
for making them in the right order, tends to be thoroughly tested—
or else the compiler would not work even in a basic way. Asso-
ciating volatile accesses with helper functions reuses this heav-
ily tested machinery, as opposed to using the (empirically) much
weaker logic that protects volatile accesses from optimizations.

7.3 Recommendations for application
developers

We recommend that the developers of mission-critical or safety-
critical embedded software that is written in C and that relies on
volatile take one or more of the following steps:

e Manually validate the compiler’s output for functions that rely
importantly on proper compilation of accesses to volatile variables.

e Develop specific tests to ensure that the compiler generates
proper code for the kinds of volatile accesses found in the software
of interest.

e Factor accesses to volatiles into small helper functions, if the
overhead of this can be tolerated.

o Compile functions that critically rely on volatile with opti-
mizations turned off, if the overhead of this can be tolerated. Our
belief (based on observations, but unsupported by systematic data)
is that code emitted by compilers for accessing volatiles is gener-
ally correct when optimizations are turned off. It is folklore among
embedded software researchers that in many cases, safety-critical
embedded software for applications such as commercial avionics is
always compiled without optimizations.

7.4 Recommendations for compiler
developers
Our first recommendation is for C compiler developers to perform

access summary testing as part of the compiler’s regular test plan.
The main requirement for performing this kind of testing is the abil-

ity to compute access summaries. This is easy, given the large num-
ber of simulators, emulators, and binary translators that are avail-
able for common platforms.

Our second recommendation is that compiler developers should
look for ways to reuse the dependency infrastructure surrounding
function calls in order to avoid miscompiling accesses to volatile
storage locations. This would seem to provide a way to avoid the
optimization safety checks that were seen in Section 6.5 to be miss-
ing in mature, high-quality compilers.

7.5 Recommendations for the C standards
committee

First, the C standard states: “What constitutes an access to an object
that has volatile-qualified type is implementation-defined.” This is
a mistake. A strong fix would be to require compilers to generate
an error if the minimum memory-access granularity forces an ac-
cess to one volatile object to improperly access a second volatile
object. Statically detecting this condition at link time should be
straightforward.

Second, the interaction of volatile with weak memory mod-
els should be clarified. In particular, if a conforming compiler is
required to insert barrier instructions at sequence points in order
to force volatile accesses to commit to RAM in the proper order
and in a timely fashion, this should be made explicit. Boehm and
Maclaren [1] have addressed this and related issues.

7.6 Future work

We would like to develop a static version of access summary test-
ing, perhaps called access summary analysis. This would be an
abstract interpretation of object code that computes a conservative
access summary.

As far as we know, a formal model of the behavior of volatile
variables has never been constructed. Adding such a model to an
existing semantics for C would be a useful step towards verifying
compilations of embedded software.

8. RELATED WORK

Although the correctness of systems software relies critically on it,
the volatile qualifier has received almost no attention from the
academic compiler community.

In fact, only one testing effort that we know of—NULLSTONE
for C [16]—addresses the correctness of volatile at all. The
NULLSTONE for C Web site states that in a 1995 study, “eleven
out of twelve commercially-available C compilers failed one or
more NULLSTONE volatile conformance tests.” NULLSTONE
employs a fixed test suite, whereas we use random testing. Our ex-
perience is that both techniques are useful and effective for finding
compiler defects. Moreover, both should be used regularly: our re-
sults show that volatile problems are at least as widespread today
as NULLSTONE reported them to be in 1995. We are not aware of
any previous work on automated, random testing of C compilers’
implementations of the volatile qualifier.

Embedded C [8] is a proposed set of extensions to C, intended to
support embedded systems programming. It defines a suite of I/0
hardware access functions, in <iohw.h>, that abstract over many
common uses of volatile variables in embedded systems. On the
surface this seems similar to our wrappers (Section 5). However,
the goal of our wrappers is not to provide an architectural abstrac-
tion for programmers: it is simply to “trick” existing compilers into
producing correct code. Furthermore, the Embedded C draft shows
how to implement its <iohw.h> interfaces via macros, in a way
that results in inlined code. In contrast, for our wrappers to have



the desired effect on volatile correctness, it is important that they
not be inlinable by the compiler.

Previous work shows that both random and non-random pro-
gram generation can be effective for finding defects in C compil-
ers. Lindig [10], for instance, used randomly generated programs to
find several compiler bugs related to calling conventions. McKee-
man [13] described the benefits of differential testing in conjunc-
tion with random program generation. Two or more C compilers
are compared with each other over a series of random programs:
any differences in the behaviors of the compilers or the compiled
test programs are indicators of bugs. Sheridan [17] described a
similar method, in which multiple compilers are compared over
non-randomly generated inputs. Both McKeeman and Sheridan re-
port that their approaches uncovered numerous bugs in production-
quality compilers. The testing methodology we use is most similar
to McKeeman’s, but our work is targeted toward a specific class of
bugs (similar to Lindig’s).

There are a number of random C program generators (e.g., [11,
21]) and C compiler testing frameworks (e.g., [2]) available on the
Web. To our knowledge, however, only ours is tailored for finding
defects in the handling of volatile objects.

9. CONCLUSION

A code generation bug in a compiler used for embedded software
and operating systems represents a very serious problem, poten-
tially placing many mission- and safety-critical systems on an un-
sound foundation. This paper has shown that the foundation is in-
deed not solid: all thirteen production compilers that we tested had
problems in translating C code for accessing volatile-qualified
objects. Low-level C code relies on the volatile qualifier to ac-
cess memory-mapped I/O devices and to implement communica-
tion between concurrent threads and interrupts.

Our main contribution is a method for automatically detecting
bugs in compiling accesses to volatile objects. First, we developed
a way to randomly generate closed and “nearly strictly conforming”
C programs that are useful and effective test cases for C compilers.
The important property of these programs is that they must—with
a few exceptions as suggested by “nearly”—perform the same se-
quence of accesses to volatile objects, regardless of compiler, target
platform, or optimization level. Second, we developed access sum-
mary testing, which detects violations of these programs’ required
volatile-access patterns. A secondary contribution of our paper is
the result that, over the randomly generated programs in our study,
96% of the failing test programs could be made to succeed (i.e.,
be correctly compiled) by inserting small helper functions into the
test program source. Based on our findings, we developed a collec-
tion of recommendations for application developers, for compiler
developers, and for the C standards committee.

Software. The software that we developed for this work is avail-
able at http://www.cs.utah.edu/ eeide/emsoft08/.
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