
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Real-time Skeletal Animation

by

Ladislav Kavan

A doctoral thesis submitted to

the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Computer Science and Engineering

June 2007

Thesis Supervisor:
Doc. Ing. Jǐŕı Žára, Csc.
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo náměst́ı 13
121 35 Prague 2
Czech Republic

Copyright c© 2007 by Ladislav Kavan

iii

Abstract and Contributions

Skeletal animation is a popular technique in real-time virtual reality applications. It is used
to obtain believable yet efficiently computable deformations of 3D objects, such as virtual
humans or animals. This thesis aims to study skeletal animation from both practical and
theoretical viewpoints. The goal is to provide foundations for next-generation skeletal
animation sub-systems, offering more realistic deformations, direct support of collision
detection and compression of arbitrary animations.

Specifically, the contributions of this thesis consist of:

1. Spherical blend skinning [A.6], a new skin deformation algorithm delivering more
realistic skin deformation while retaining run-time performance comparable to the
classical method (linear blend skinning).

2. Study of rigid transformation blending algorithms and comparison of their mathe-
matical properties [A.8, A.2], with the goal of finding an optimal blending algorithm
for skinning. We demonstrate how such a blending algorithm can be derived using
dual quaternions.

3. Collision detection algorithm for models deformed by linear blend skinning [A.1]. The
presented algorithm is able to achieve a sublinear time complexity (with respect to the
number of vertices), outperforming previous collision detection methods significantly.

4. Collision detection for spherical blend skinning [A.4], generalizing the previous algo-
rithm from linear to spherical blending. Even though the case of spherical blending
is more complex, the resulting algorithm is again sublinear and almost as fast as the
previous linear version.

5. An algorithm to automatically construct skinned approximations of an arbitrary
animation [A.3, A.9]. This enables to exploit the benefits of skinned animations (i.e.,
data reduction and efficient rendering) for a broader class of 3D objects, including,
e.g., cloth.

Keywords:

skeletal animation, skinning, collision detection, linear blending, spherical blending, dual
quaternions, animation compression, skinning approximation

iv

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, Doc. Ing. Jiř́ı
Žára, CSc., for being a constant source of encouragement and insight during my research.
Thanks must also go to my supervisors at Trinity College Dublin, Prof. Carol O’Sullivan
and Dr. Steven Collins. I’m indebted to them not only for inviting me to their lab where I
spent one wonderful year but also for their endless support, motivation and patience with
my English.

I have been fortunate to carry out the research for this dissertation in a very friendly
environment of my colleagues. This work would not be possible without the help of students
and staff of the Computer Graphics Group at the Czech Technical University in Prague
and Interaction, Simulation and Graphics Lab at Trinity College Dublin. I especially
appreciate the numerous inspiring discussions I had with my friends and colleagues, Ing.
Daniel Sýkora and Dr. Simon Dobbyns.

Besides my co-workers, I would like to acknowledge the external computer graphics experts
who provided me with mentorship: Prof. RNDr. Adolf Karger, DrSc., Doc. Dr. Ing.
Ivana Kolinerová and RNDr. Josef Pelikán, CSc., just to name three of them. I am
equally grateful to Dr. Doug L. James and Dr. Christopher D. Twigg for their extensive
support with Chapter 7 and for providing example animations. I also thank the anonymous
reviewers for pointing out flaws of my papers.

My work has been supported by the Ministry of Education, Youth and Sports of the Czech
Republic under research programs No. Y04/98:212300014, MSM-6840770014 (Research
in the area of information technologies and communications) and LC-06008 (Center for
Computer Graphics). I would like to thank the staff of our department and especially
Doc. RNDr. Josef Kolář, CSc. and Prof. Ing. Pavel Tvrd́ık, CSc., for taking care of my
financial support and for providing a pleasant working environment. I am also grateful to
IITAC and Higher Education Authority or Ireland for providing funding during my stay
at Trinity College Dublin.

Finally, I’d like to express my deepest thanks to my family and especially my parents for
their continuous support and motivation during my studies.

v

Dedication

To my parents.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Realistic Skin Deformation . 2

1.3 Collision Detection . 3

1.4 Authoring Skeletal Animations . 5

1.5 Related Work . 6

1.5.1 Real-time Skin Deformations . 6

1.5.2 Collision Detection . 7

1.5.3 Skinning as Data Reduction . 8

1.6 Organization of the Thesis . 8

2 Background and State-of-the-art 10

2.1 Preliminaries . 10

2.1.1 Quaternions . 11

2.1.2 Dual Quaternions . 13

2.2 Skin Deformation . 17

2.2.1 Matrix Palette Skinning . 18

2.2.2 Example Based Methods . 20

2.2.3 Advanced Blending . 22

2.2.4 Other Skin Deformation Methods 23

2.3 Collision Detection . 24

2.3.1 Static Collision Detection . 25

2.3.2 Deformable Collision Detection . 27

2.3.3 Other Problems in Collision Detection 29

2.4 Skinning Mesh Animations . 30

3 Spherical Blend Skinning 32

3.1 Beyond Linear Blending . 32

3.2 Rotation Blending . 35

3.3 Algorithm Overview . 38

vii

3.4 Results and Comparison . 40

4 Dual Quaternion Skinning 44

4.1 Properties of Spherical Blending . 44

4.2 Optimal Rigid Transformation Blending for Skinning 49

4.3 Dual Quaternion Blending . 50

4.4 Comparison with Other Methods . 57

4.5 Application in Skinning . 58

5 Collision Detection for Linear Blend Skinning 61

5.1 Sphere Tree Construction . 61

5.2 On-demand Sphere Refitting . 62

5.2.1 Optimized Sphere Refitting . 63

5.3 Algorithm Overview . 68

5.4 Results and Comparison . 70

6 Collision Detection for Spherical Blend Skinning 75

6.1 Problem Decomposition . 75

6.2 Bounding the Linear Part . 76

6.3 Bounding the Spherical Part . 77

6.4 Putting the Bounds Together . 84

6.5 The Final Algorithm . 84

6.6 Results . 85

7 Skinning Arbitrary Deformations 89

7.1 Automatic Rigging . 90

7.2 Fitting of Skinning Transformations . 92

7.2.1 Affine Transformation Fitting . 92

7.2.2 Rigid Transformation Fitting . 93

7.2.3 Discussion . 95

7.3 Adding Fine Details . 95

7.4 Experiments and Comparison . 97

viii

8 Summary and Conclusions 103

8.1 Our Contribution in Skinning . 103

8.2 Our Contribution in Collision Detection 104

8.3 Future Work . 105

8.3.1 Collision Detection for Dual Quaternion Blending 105

8.3.2 Analysis of Dual Quaternion Iterative Blending 105

8.3.3 Blending of Non-rigid Transformations 105

8.3.4 Rendering Performance and Visual Quality 106

8.3.5 Adaptive Skinning Arbitrary Deformations 106

8.4 Conclusion . 106

Bibliography 108

A Detailed Proofs 120

A.1 Difference between DLB and ScLERP . 120

A.2 Log-matrix Blending Is Not Constant Speed 123

A.2.1 Background on Log-matrix Blending 123

A.2.2 Log-Matrix Blending in Maple . 124

B Acronyms and Symbols 128

ix

List of Figures

1.1 Example of skeletally deformable objects 3

1.2 Collisions in virtual environments . 4

1.3 Skeletal animation of cloth . 5

1.4 Automatically computed skeletal approximation of a skirt animation 6

2.1 Right-handed coordinate system . 10

2.2 Quaternion antipodality . 14

2.3 Screw motion . 17

2.4 Matrix palette skinning . 19

2.5 Shoulder twist: an example of the candy wrapper artifact 20

2.6 Sphere tree example . 26

3.1 Shoulder twist: solution by spherical blending 32

3.2 The interpolation domain of linear and spherical blending 33

3.3 Center of rotation in spherical blending . 34

3.4 Linear quaternion blending compared with SLERP 37

3.5 3D models used for testing . 41

3.6 Comparison of linear and spherical blend skinning 42

4.1 Problems of spherical blend skinning . 44

4.2 Artifacts of log-matrix blending . 48

4.3 The DIB algorithm . 55

4.4 Run-time skinning performance . 59

4.5 Comparison of dual quaternion skinning with previous methods 60

5.1 Bounding volumes in linear blend skinning 64

5.2 Standard and generalized convex hull . 68

5.3 A sphere tree example . 71

5.4 Sphere refitting in a collision situation . 72

5.5 Torture test of collision detection for linear blending 72

5.6 Scalability test of our collision detection algorithm 73

5.7 Crowd collision detection experiment . 74

x

6.1 Example of a cap . 79

6.2 Construction of a bounding cap . 81

6.3 Smallest enclosing sphere of a cap . 84

6.4 Refitting of bounding spheres in spherical blend skinning 86

6.5 Torture test of collision detection for spherical blending 88

7.1 Overview of our method for skinning arbitrary deformations 90

7.2 Example of proxy-joints distribution . 91

7.3 The principle of skinning corrections . 96

7.4 Recovering small details . 97

7.5 Approximation error vs. number of proxy-joints 99

7.6 Efficiency of skinning corrections . 100

7.7 Example of skinning corrections . 100

7.8 Performance test: 1000 high-detailed models 101

7.9 Example of rest-pose editing . 101

A.1 The speed of log-matrix blending . 127

xi

List of Tables

3.1 Complexities of example models (testing of spherical blend skinning) . . . 42

3.2 Run-times of linear and spherical blend skinning 43

4.1 Properties of rigid transformation blending algorithms 57

5.1 Complexities of example models (testing of collision detection) 70

5.2 Radii of refitted spheres for linear blend skinning 70

5.3 Performance of collision detection for linear blend skinning (scalability test) 74

6.1 Radii of refitted spheres for spherical blend skinning 87

6.2 Performance of collision detection for spherical blend skinning 87

7.1 Performance of skinning arbitrary deformations (SAD) 98

7.2 Comparison of SAD with SMA . 98

xii

List of Algorithms

2.1 Construction of a bounding volume hierarchy 26

2.2 Collision detection using a bounding volume hierarchy 27

3.1 Spherical blend skinning . 41

4.1 Dual quaternion iterative blending . 54

4.2 Dual quaternion skinning . 58

5.1 Bounding sphere of spheres . 69

5.2 Sphere refitting for linear blend skinning 69

6.1 Sphere refitting for spherical blend skinning 85

xiii

CHAPTER 1. INTRODUCTION 1

1 Introduction

This thesis studies real-time animation of skeletally deformable objects, which is an im-
portant topic in computer animation and virtual reality. We present new algorithms for
realistic skin deformation, fast and accurate collision detection and automatic authoring
of skeletal animations. While the proposed algorithms are designed for practical use, we
pay an equal attention to the related theoretical background.

1.1 Motivation

In the past decades, the research in 3D computer graphics focused mainly on rendering
of high-fidelity images. Less attention has been paid to the problems related to motion
and simulation. As a result, contemporary visualization methods perform very well in
rendering still images. Overstating only a little bit, some experts claim even that “In
rendering still images, we are done” [21]. This indicates that a new research challenge in
computer graphics is to obtain this level of realism also for animation.

A description of motion is relatively simple for rigid objects, i.e., those having constant,
unchanging shape. In this case, any instantaneous motion is a screw motion [68], which is
fairly well studied, especially thanks to the field of robotics. However, objects in the real
world are seldom rigid. An everyday example of motion is the motion of human beings or
animals, which is not rigid at all – not even approximately. Obviously, motion of organic
entities is far more complex than motion of a rigid object.

It would be of course possible to focus on one specific class of objects, such as human
figures, and study their animation in detail. This would enable us to exploit an a priori
knowledge, e.g., of the human anatomy. On the other hand, this approach is too restrictive
and in this thesis, we therefore follow a different way. We focus on a specific deformation
model, instead of a specific class of objects from the real world. Generally, deformation
model is a mathematical description of how the model’s shape changes with respect to a
given set of parameters (controls). The deformation model we study in this thesis is known
as skeletal animation (or skinning, skeletal subspace deformation, matrix palette skinning
or simply enveloping). This model has been originally proposed for the animation of virtual
humanoids, but practice has shown its much wider applicability. Skeletal deformation can
be advantageously used to animate also various kinds of animals (not only vertebrates, as
the name could suggest), plants, cloth etc.

The importance of skeletal deformation is not only in the fact that it accommodates a wide
range of objects from the real world. Another big motivation is its industrial importance –
many modern 3D computer games use skeletal deformation to animate avatars and other
inhabitants of virtual worlds. As a result, commodity graphics hardware is designed in
order to efficiently support skeletal animation [58].

2 CHAPTER 1. INTRODUCTION

The computer games industry would itself be a compelling justification to investigate
skeletal animation. However, videogames are not the only possible application: the same
model can be used, e.g., in architectonical studies for crowd simulation, distributed virtual
environments or emergency training [92]. Apart from its importance in practice, skinning
raises also interesting theoretical questions, which have not been explicitly addressed before.

1.2 Realistic Skin Deformation

A deformation model, such as skeletal animation, is an abstract description of how the
shape of a 3D object changes with respect to a small number of control parameters. There
does not exist only one skeletal deformation technique: skeletal animation embraces a whole
class of related methods. However, the basic structure of a skeletally controlled model is
always the same. The object to be deformed is specified by its boundary representation,
i.e., a triangular mesh with an arbitrary connectivity. Alternative representations are also
possible, such as volumetric or point-based, but the boundary representation is by far the
most common one.

In general, skeletal animation could theoretically refer to any technique that computes
shape of the skin for a given skeletal posture. However, the term skeletal animation is
usually used only when there exists a direct geometric relationship between the skeleton
and skin – in this thesis, we will also adhere to this meaning. In our case, the defor-
mation structure, i.e., the parameters controlling the deformation, is simply a list of 3D
transformations (often represented by matrices, which explains the synonym matrix palette
skinning). Traditionally, these transformations describe the actual position and orienta-
tion of the joints in the animated skeleton. However, as has been pointed out recently [63],
skeleton is actually not necessary for skinning – the transformations alone are sufficient.

Typically, only the joints important to achieve the desired animation effects are modelled,
see Figure 1.1 (note for example the simplification of the spine). Of course, such simple
control structures cannot be expected to model deformations of human skin accurately.
However, this is not the goal of skeletal animation: its goal is to provide a reasonable
approximation with minimal computational complexity. This is what is often required in
practical real-time applications.

Obviously, there is a trade-off between visual quality of the deformed skin and run-time
efficiency of the algorithm. This thesis focuses on real-time animation, i.e., on algorithms
which are able to deliver results within tens of milliseconds on a commodity hardware.
With this time budget, it is quite challenging to create a realistic deformation – especially
for the human body, where everyone immediately notices even small artifacts. Nevertheless,
the constraints of real-time applications are strict. In fact, artifacts in the skin deformation
are more acceptable than a slow-down of the rendering process, which results in lagging –
an even more disturbing shortcoming. This explains why the skeletal animation algorithms
used in the industrial practice indeed produce artifacts at certain circumstances.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Typical skeletally deformable objects.

However, this raises a question: are such compromises really necessary because of the very
nature of the problem? Specifically, we might ask whether it is not possible to design a skin
deformation algorithm with reasonable time complexity, but avoiding most of the artifacts.

Our first alternative skinning algorithm, spherical blend skinning, is presented in Chap-
ter 3. This algorithm resolves most artifacts of the previous standard solution (linear
blend skinning). This is achieved at small overhead in computational complexity and no
overhead at all in model creation (our method works with the same input data as linear
blend skinning). Unfortunately, this algorithm is not easy to implement because it in-
volves a complicated algorithm as a subroutine (singular value decomposition). Also, the
skin deformation produced by spherical skinning is still not 100% artifact free.

Therefore, in Chapter 4, we isolate the geometrical problems arising in skinning and for-
mulate the properties of an optimal blending algorithm for skinning. We review previous
rigid transformation blending methods and compare their properties, concluding that no
previous algorithm is optimal for skinning. Therefore, we propose new methods based on
dual quaternions, which enable us to obtain an artifact free skinning with a very simple
and efficient GPU implementation.

1.3 Collision Detection

Realistic skin deformation, discussed in the previous section, is not the only problem with
simulation of inhabited virtual environments. Skeletally deformable models typically in-

4 CHAPTER 1. INTRODUCTION

teract with other models, either rigid or also deformable ones. The first step in handling
these interactions is to detect geometric interpenetrations (or collisions, see Figure 1.2). In
the case of skeletally deformable objects, collision detection is strongly influenced by the
chosen skin deformation algorithm.

colliding area

Figure 1.2: A collision of two virtual characters.

The strict time budget of real-time applications applies to this problem as well. It would
be of course possible to neglect the fact that the objects are deformed by an underlying
skeleton, and apply a general collision detection algorithm. However, this is not the most
efficient approach. If we exploit the knowledge about the actual deformation algorithm,
we can obtain faster collision detection.

In practice, the high computational complexity of collision detection is typically resolved
by considering only a rough approximation of the true shape, i.e., working only with a
substitute collision object. This substitute geometry is usually very simple and thus allows
very efficient collision detection queries. However, this of course introduces artifacts: some
interpenetrations can be missed or the objects can be reported to collide before they
actually do.

We can ask ourselves whether this approximation – even though being a common practice
– is really necessary. One possible way to achieve exact but efficient collision detection is to
focus on a specific deformation model and exploit its special properties [81, 62]. We pursue
this idea first for the case of linear blend skinning (Chapter 5), subsequently generalizing to
spherical blend skinning (Chapter 6). In both cases, we obtain a significant speedup over
general collision detection methods, while still supporting a very rich class of 3D objects.

CHAPTER 1. INTRODUCTION 5

1.4 Authoring Skeletal Animations

In recent years, 3D animators have demonstrated that skeletal animation can be used
not only for virtual humanoids, but also for various other kinds of creatures, animals,
plants and even cloth – see Figure 1.3. However, the effort the animators invest into the
creation of such skeletally deformable models is remarkable – authoring of one skeletal
model requires hours or even days of labor (this can, however, be ameliorated using more
advanced tools, such as those presented in [103]). The process is more intuitive for objects
which naturally possess skeleton, such as human or animal figures. For other objects,
however, the animators must use a lot of imagination to place the joints in appropriate
locations (in fact anticipating the most probable prospective deformations).

Figure 1.3: Lord of the Rings videogame (c©2004 Electronic Arts). Skeletal animation is
used to animate also the wizard’s cloak, besides the character itself.

Of course, it is more convenient to animate the objects made of cloth or highly elastic
materials by other techniques than skeletal animation. For the case of cloth, specialized
tools are available in professional software [9, 10]. Animations created with this software
are very realistic, but when exported, they consume a lot of memory and are thus hard to
manipulate with. This is one of the reasons why animators are concerned with creation of
skinned approximations. Other reason is that practically all 3D engines natively support
skeletal animation (unlike other data reduction methods).

It would be advantageous to have a tool for an automatic conversion from general de-
formable animation (such as the output from a cloth simulator) to a skeletal one. This
would remove the burden of constructing skeletal approximations by hand. Such a tool
has been presented by James and Twigg [63] for the class of quasi-articulated objects (e.g.,
those of human or animal figures).

Our algorithm is based on a different principle and is able to construct efficient skinned
approximations of arbitrary deformations, including highly deformable ones, such as those
of cloth or elastic materials, see Figure 1.4.

6 CHAPTER 1. INTRODUCTION

Figure 1.4: A skirt model deformed by skeletal animation (left: reference pose, right:
deformed one). The skinning is computed automatically by our method.

1.5 Related Work

This section presents a brief summary of previous work, focusing on the methods most
closely related to this thesis. Please refer to Chapter 2 for a more detailed background,
covering also other important yet not so closely related approaches.

1.5.1 Real-time Skin Deformations

The idea of controlling the shape of a model using an underlying set of joints was pioneered
by Magnenat-Thalmann et al. [90]. The first skeletal animation algorithms used in real-
time applications were very simple, such as the most popular linear blend skinning [76, 77].
The artifacts of linear blend skinning were discovered soon in the game development com-
munity [134]. A trick was suggested how to alleviate the artifacts, based on introduction of
auxiliary bones. At the same time, acceleration of linear blend skinning by programmable
graphics hardware was proposed [87] (without any treatment of the artifacts).

A natural way to combat the artifacts is by using more example skins, not just one. This
is the idea of example based methods [85, 120]. However, the amount of memory necessary
to store the example meshes can be an issue. Memory consumption can be improved by
applying principal component analysis, as shown in [74]. Another example-based method
attacking the linear blend skinning artifacts was developed by researchers from Industrial
Light and Magic [132]. Their method is based on a more general blending scheme, with
parameters optimized in order to minimize the least squares distance from example meshes.
The example based method presented in [99] solves the artifacts by adding auxiliary joints
and automatically derives blending weights from example meshes. This enables also the
simulation of muscle bulging effects within the framework of skeletal animation.

CHAPTER 1. INTRODUCTION 7

The example based methods are able to produce a very realistic skin deformation – limited
only by the number of example skins. Unfortunately, the authoring of example skins is
costly, because each of them must be itself a realistic 3D model. Therefore, cheaper ways of
fixing the skinning artifacts were sought. A useful tool is presented in [100]. Even though
it does not solve the artifacts, it simplifies the design of skeletally animated models and
visualizes the range of possible deformations. An interesting technique to overcome the
linear blend skinning artifacts is presented in [89, 28]. This method is based on a more
sophisticated matrix blending algorithm [3]. The big advantage of this approach is that
it does not require any extra data or example skins – it works with the same input as
linear blend skinning. However, the drawback is in the higher computational complexity,
stemming from the advanced matrix blending method [3]. An algorithm with similar
features, but based on a different concept was introduced in [56]. This solution is based on
quaternion blending, which is more computationally efficient. Unfortunately, the method
presented in [56] is not applicable to all skeletally deformable objects, but only to those
satisfying a simplifying assumption.

In summary, all alternative geometric skinning algorithms presented so far successfully
combat the artifacts of linear blend skinning, but also introduce trade-offs to consider.
Therefore, many practical applications still opt for the simple linear blend skinning.

1.5.2 Collision Detection

The problem of collision detection is very well studied for the case of rigid objects
[59, 39, 72, 54, 65, 33]. This is because rigid objects lend themselves to pre-processing,
exploiting the obvious fact that their shape does not change during simulation. However,
this is not the case of deformable objects – collision detection of deformable objects is thus
more challenging and remains an active research area. A nice survey of recent deformable
collision detection algorithms presents Teschner et al. [124].

One possible approach to deformable collision detection is based on spatial hashing [123].
More literature is devoted to image-space techniques [70, 55, 44, 42, 43]. Image-space meth-
ods do not require any pre-processing and therefore are naturally suitable for deformable
collision detection. They can also take advantage of the programmable graphics hardware.
However, in most cases, the accuracy of image-space techniques is limited by the resolution
of the projection plane.

Another approach to deformable collision detection is to adapt previous established al-
gorithms for rigid objects, especially those based on bounding volume hierarchies. The
first articles on this topic consider axis aligned bounding boxes [128, 80] and spheres [20].
These approaches are based on refitting of complete bounding volume hierarchy whenever
the object deforms. A more efficient way is to perform refitting in an on-demand way,
which however works only for specific deformation models [81, 62]. Such algorithms are
very fast, with speed comparable to rigid body collision detection [62]. Another way to
speed up deformable collision detection is by exploiting spatial coherency [82].

8 CHAPTER 1. INTRODUCTION

Special attention has been devoted to the problem of collision detection for moving cloth
[130, 107, 129, 97, 28], which is especially challenging due to frequent self-collisions. A
rather brute force GPU algorithm has been proposed by Choi at el. [25]. Recently, a more
efficient algorithm based on chromatic decomposition has been presented by Govindaraju
et al. [41]. Even better results can be achieved by more advanced decomposition methods
[40]. The idea of the mesh decomposition is to convert the self-collision detection problem
to an easier n-body collision detection.

An important class of collision detection algorithms are so called time-critical algorithms,
which can be interrupted and asked for an approximate solution. These algorithms are
relatively well studied for the case of rigid objects [59, 17, 18]. Recently, one time-critical
algorithm has been proposed also for deformable objects [95].

1.5.3 Skinning as Data Reduction

The approximation of general deformable animations by skinning, as discussed in Sec-
tion 1.4, can be regarded as a method of data reduction. The problem of animation
compression has been opened by the pioneering work of Lengyel [84]. A number of more
sophisticated algorithms has been proposed subsequently [4, 69, 49, 115]. These methods
apply the usual data compression techniques: principal components analysis (global or
clustered), linear prediction coding and decorrelation based on wavelets.

An interesting alternative approach to animation compression is to encode the mesh into
2D geometry images [47] and apply standard video compression methods [19].

A method resembling the skeletal approximation is construction of a rigid transformation
basis [27]. The difference is that no blending of transformations is performed with rigid
transformation basis, which sometimes results in non-smooth shapes. Construction of full
skeletal approximations has first been discussed in the context of clothed virtual humans
[102, 28]. A more general technique appeared recently [63]. This method works by iden-
tifying approximately rigid components and creating proxy-bones accordingly. Impressive
animation of a huge number of running animals have been presented, but the technique
falls short to capture highly deformable models, such as cloth.

1.6 Organization of the Thesis

Chapter 2 discusses the essential background, notation and conventions. It also provides
short tutorials on quaternions and dual quaternions – algebras important in the subsequent
chapters. Furthermore, a broader summary of previous work on skin deformation and
collision detection is provided.

Chapter 3 presents our first contribution to real-time skin deformation: spherical blend
skinning. Although it is still not a perfect solution, it is a considerable improvement over
previous methods. Even though a better solution is proposed in Chapter 4, spherical blend

CHAPTER 1. INTRODUCTION 9

skinning still can be useful in certain situations (e.g., when an efficient collision detection
is needed).

Chapter 4 discusses the shortcomings of spherical blend skinning and formulates the ideal
properties of rigid transformation blending for skinning. With the aid of dual quaternions,
new algorithms for rigid transformation blending are developed and applied to skinning.

Chapter 5 tackles the problem of collision detection for models deformed by linear blend
skinning. A new collision detection algorithm is described, achieving considerably higher
run-time performance than previous methods.

Chapter 6 discusses how the collision detection algorithm from Chapter 5 can be adapted for
spherical blend skinning. This is done by considering rotational bounds in the space of unit
quaternions. The result is an algorithm for collision detection between models deformed
by spherical blend skinning with speed comparable to the algorithm from Chapter 5.

Chapter 7 presents our algorithm to construct skinning approximations of arbitrary an-
imations. In contrast to previous work, our method facilitates also highly deformable
animations, such as those of cloth and elastic materials.

Chapter 8 concludes the thesis with a summary of our contributions and suggestions for
future work.

The Appendix contains two proofs that are important for the thesis, but too long to be
included within the text of the previous chapters. Some symbolic computations involved
in these proofs are carried out using Maple (source code listings included).

10 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2 Background and State-of-the-art

The purpose of this chapter is twofold: first, we recapitulate the mathematical and graph-
ical tools that will be important in the following chapters. Second, we present a broader
body of related work, discussing also alternative approaches to skinning and collision de-
tection.

2.1 Preliminaries

This section summarizes our notation, conventions and the most frequently used short-
hands. The set of integer numbers is denoted as Z, the set of real numbers as R, and the
d-dimensional Euclidean space as Rd. If not stated otherwise, we assume R3. Scalars are
written in lower case italics, vectors as well as quaternions in lower case boldface and
matrices in upper case ITALICS. Therefore, for example, x0, x1, x2 means components of
a vector x, while x0,x1,x2 is a list of three vectors. A closed real interval is denoted as
[a, b] = {x ∈ R : a ≤ x ≤ b} (we do not introduce any special notation for open or semi-
open intervals – we will use explicit expressions instead).

Vectors are by default considered column, for example, the formula Mx = y should be
interpreted as ⎛

⎝ m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞
⎠
⎛
⎝ x0

x1

x2

⎞
⎠ =

⎛
⎝ y0

y1

y2

⎞
⎠

Due to this convention, the product MN means that N is applied before M , which is in
accordance with the OpenGL library conventions [118].

Coordinate systems in R3 are assumed to be right-handed, i.e., when viewed from the
positive direction of the z-axis, the rotation from the x-axis to the y-axis runs counter-
clockwise, see Figure 2.1. This corresponds with the common 3D rotation convention: a
rotation given by an axis a ∈ R3 and an angle α means a counter-clockwise rotation when
viewed from the positive direction of axis a [32].

x

y

z

Figure 2.1: Right-handed coordinate system

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 11

Any R3 vector can be represented in homogeneous coordinates by an R4 vector:

⎛
⎝ x

y
z

⎞
⎠ ≡

⎛
⎜⎜⎝

xh
yh
zh
h

⎞
⎟⎟⎠

where h ∈ R \ {0}. More information about homogeneous coordinates can be found in
[15] or in the classical book [34]. A transformation in homogeneous coordinates can be
expressed by a homogeneous matrix, which has, by convention, the following structure⎛

⎜⎜⎝
m00 m01 m02 t0
m10 m11 m12 t1
m20 m21 m22 t2
0 0 0 1

⎞
⎟⎟⎠ =

(
M t
0 1

)

where the matrix M is the original R3 linear transformation and t is a translation vector.
We do not introduce a different notation for R3 vectors and their homogeneous R4 counter-
parts with the last coordinate equal to 1 (even though this, strictly speaking, should not be
considered as homogeneous coordinates, it is the common practice in computer graphics).
An analogical convention is used also for matrices. The group of rotations is sometimes
called SO(3) and the group of rigid transformations SE(3), as is usual in literature [101].

The identity matrix is denoted as I, and the transpose of a matrix by superscript T . The
standard basis vectors of Rd are denoted as e1 = (1, 0, . . . , 0)T , . . . , ed = (0, . . . , 0, 1)T . We
denote the dot product of two vectors v1,v2 as 〈v1,v2〉 and the norm ‖v1‖ as a shortcut
for

√〈v1,v1〉.
The convex hull of set A ⊆ Rd, i.e., the smallest convex set containing A, is denoted as
CH(A). In order to simplify the notation of convex combinations, we introduce the set of
convex weights

Wd = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0,
d∑

i=1

xi = 1}

In order to distinguish between single and multi-parameter interpolation, we use the term
blending for interpolation with more than one independent parameter and reserve the term
interpolation for single-parametric interpolation (i.e., essentially, for interpolation curves).

2.1.1 Quaternions

This thesis often makes use of quaternion algebra, discovered by W. R. Hamilton [50].
The quaternion representation of 3D rotations is important, because it is singularity-free
and has the minimal number of coordinates to achieve this (four). Other popular repre-
sentations, such as Euler angles, axis-angle or exponential coordinates [46] use only three

12 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

coordinates, but do therefore contain a singularity. A matrix representation of rotations
is also singularity free, but requires nine coordinates (with six dependencies due to the
orthonormality constraints). This is one of the reasons why quaternion representation is so
popular in computer graphics. This section contains only basic information on the subject;
further details can be found in [52, 29, 32] and especially in the recent book [51]. From a
modern point of view, quaternions can also be considered as a special case of more general
geometric algebras (also known as Clifford algebras) [94, 57, 133].

A quaternion q is a four-tuple q = w + xi + yj + zk, where w, x, y, z are real numbers
and i, j, k are quaternion units. Number w is sometimes called the scalar (or real) part,
and x, y, z the vector part. The addition and subtraction of quaternions is component-wise,
regarding quaternions as R4 vectors. We assume that 1, i, j, k are linearly independent. The
multiplication of quaternions is associative and obeys the law i2 = j2 = k2 = ijk = −1,
from which can be derived the products of all pairs of quaternion units, i.e., ij = −ji =
k, jk = −kj = i, ki = −ik = j. The product of two general quaternions q0 = w0 + x0i +
y0j + z0k and q1 = w1 + x1i + y1j + z1k thus is

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1) +

(x0w1 + w0x1 + y0z1 − z0y1)i +

(y0w1 + w0y1 + z0x1 − x0z1)j +

(z0w1 + w0z1 + x0y1 − y0x1)k

This can be written more concisely, if we treat the vector parts of quaternions q0,q1 as R3

vectors, v0 = (x0, y0, z0)
T , v1 = (x1, y1, z1)

T :

q0q1 = (w0 + v0)(w1 + v1) = (w0w1 − 〈v0,v1〉) + w0v1 + w1v0 + v0 × v1 (2.1)

Quaternion multiplication is associative and distributive, but not commutative (in general).
The conjugate of quaternion q is q∗ = w − xi − yj − zk, and the norm of quaternion q
is defined as ‖q‖ =

√
q∗q =

√
qq∗ =

√
w2 + x2 + y2 + z2. Conjugation of quaternion

product obeys the rule (pq)∗ = q∗p∗ for any two quaternions p,q. Unit quaternion is
a quaternion with norm 1. Inverse quaternion is defined only if q �= 0, in which case
q−1 = q∗

‖q‖2 .

A 3D rotation given by unit axis a = (a0, a1, a2)
T and angle of rotation α can be represented

by unit quaternion

q = cos
(α

2

)
+ sin

(α

2

)
(a0i + a1j + a2k)

Unit quaternions form a sub-group of quaternions. Number 1, viewed as a quaternion
corresponds to the identity rotation (we prefer not to differ scalar and quaternion 1 by the
boldface convention, because in this case the difference is rather moot). Conjugation of a
unit quaternion yields the inverse rotation. Geometrically, unit quaternions form surface
of a hypersphere S3 = {q ∈ R4 : ‖q‖ = 1}. The correspondence among 3D rotations and
unit quaternions is one to two, because both unit quaternions q and −q represent the same

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 13

rotation. This fact is sometimes referred as quaternion antipodality. This is not a specific
feature or drawback of quaternion algebra; actually, this reflects the interesting fact that a
360 degrees rotation is not equivalent with identity, whereas a 720 degrees rotation is (in
fact, all rotations about 360 + 720k (k ∈ Z) degrees form one group and all 720k degrees
rotations form the other one). This can be demonstrated even in the real world by the
interesting Dirac’s belt trick [52, 51].

A 3D vector v = (v0, v1, v2)
T can be expressed as quaternion v0i+v1j+v2k. It is convenient

to denote this quaternion by the same symbol as the 3D vector, i.e., v. Using this conven-
tion, a rotation of vector v by unit quaternion q is given as v′ = qvq∗. It can be shown that
the scalar part of v′ is zero and the vector part corresponds to rotation of v about axis a and
angle α. Composition of rotations corresponds to quaternion multiplication, because, if p is
another unit quaternion used to rotate v′, we obtain v′′ = pv′p∗ = pqvq∗p∗ = pqv(pq)∗.
From this formula we also see that the quaternion pq first performs the rotation q and
second p. This is in accordance with our matrix multiplication convention (Section 2.1).

The Euler’s identity for complex numbers generalizes to quaternions. If we identify the
unit axis of rotation a with quaternion a = a0i + a1j + a2k, we can express the rotation
about axis a with angle α by quaternion

exp
(
a
α

2

)
= cos

α

2
+ a sin

α

2
(2.2)

This can be proven by taking the Taylor series of exp(x), substituting aα
2

for x and con-
sidering that the quaternion product aa = −1 (because of the unit length of axis a).
Formula (2.2) defines the exponential mapping, which is a mapping from quaternions with
zero scalar part (but not necessarily unit) to unit quaternions. The inverse mapping (log-
arithmic) is given as follows. If unit quaternion q is written as q = exp

(
aα

2

)
(which is

always possible), then log q = aα
2
. Using these mappings, we can define the power of unit

quaternion: qt = exp(t log(q)). These concepts are essential for quaternion interpolation
[29].

Conversions between 3 × 3 rotation matrix and unit quaternion can be derived from the
quaternion product qvq∗; see [32] for optimized conversion routines. Even though both
quaternions q and −q represent the same rotation, their powers qt

0 and (−q0)
t are different

for 0 < t < 1: one corresponds to clockwise and second to counterclockwise rotation, see
Figure 2.2. During matrix to quaternion conversion, we can choose between q0 and −q0.
This choice depends on each particular application. For example, in the case of blending,
we typically want to select such signs so that the geodesic distances (i.e., the shortest paths
on S3) among the resulting quaternions are as small as possible. This can be done by an
algorithm described independently in [105] and [66].

2.1.2 Dual Quaternions

Regular quaternions, even though very important in computer animation, have their limi-
tations. In many algorithms, we need to work with both rotation and translation, whose

14 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

q0 , 0 < t < 1t

(-q0) ,
t

0 < t < 1

q0 = 1 (identity)0

q0 (-q0)
1 1~~

Figure 2.2: Quaternion antipodality. In this example, transformation of the teapot by qt
0

for t ∈ [0, 1] produces a counterclockwise rotation (longer trajectory), while transformation
by (−q0)

t leads to a clockwise one (shorter trajectory).

composition is known as rigid transformation. The concept of homogeneous matrices is
very useful, because it allows us to represent composition of rigid transformations by one
4 × 4 matrix multiplication. Unfortunately, this is not possible with regular quaternions.
Dual quaternions can be understood as an extension of quaternion algebra that overcomes
this limitation: unit dual quaternions represent 3D rigid transformations in the same way
as regular quaternions represent 3D rotations.

Dual quaternions were developed by Clifford in the nineteenth century [26], along with
the more general concept of geometric algebras. These algebras naturally contain not
only vectors and quaternions, but also k-dimensional subspaces [133]. This leads to very
elegant and dimension independent expressions, but unfortunately also to an increase in
time and memory complexity [35]. Dual quaternions, in turn, are not so general, but are
more compact and faster to manipulate. Some results in this thesis are based on the dual
quaternion algebra, and therefore we summarize the most important facts in this section.
Further information can be found in the books [94], [16] and [68].

Dual quaternions can be considered as quaternions whose elements are dual numbers. In
the text, we distinguish dual quantities (i.e., scalars, vectors and quaternions) from non-
dual ones by a caret. The algebra of dual numbers is similar to complex numbers: any
dual number â can be written as â = a0 + εaε, where a0 is the non-dual part, aε the
dual part and ε is a dual unit satisfying ε2 = 0. The dual conjugate is analogous to
the complex conjugate: â = a0 − εaε. Multiplication of two dual numbers is given as
(a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε + aεb0). The inverse of a dual number â−1 is given by

1

a0 + εaε

=
1

a0

− ε
aε

a2
0

as can be immediately verified. The previous expression is defined only when a0 �= 0.
Purely dual numbers, that is dual numbers with a0 = 0, do not have an inverse. This is

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 15

a fundamental difference from complex numbers, because every non-zero complex number
has an inverse. The square root is defined only for dual numbers with a positive non-dual
part, and it is computed as

√
a0 + εaε =

√
a0 + ε

aε

2
√

a0

A dual quaternion q̂ can be written as q̂ = ŵ + ix̂ + jŷ + kẑ, where ŵ is the scalar part
(dual number), (x̂, ŷ, ẑ) is the vector part (dual vector), and i, j, k are the usual quaternion
units. The dual unit ε commutes with quaternion units, for example iε = εi. A dual
quaternion can be also considered as an 8-tuple of real numbers, or as the sum of two
ordinary quaternions, q̂ = q0 + εqε. Conjugation of a dual quaternion is defined using
classical quaternion conjugation: q̂∗ = q∗

0 + εq∗
ε

The norm of a dual quaternion can be written as ‖q̂‖ =
√

q̂∗q̂ =
√

q̂q̂∗, which expands to

‖q̂‖ =
√

q̂∗q̂ = ‖q0‖ + ε
〈q0,qε〉
‖q0‖

The norm satisfies the multiplicative property ‖p̂q̂‖ = ‖p̂‖‖q̂‖ (see [68]). The inverse
of a dual quaternion is defined only when q0 �= 0. In this case, we have q̂−1 = q̂∗

‖q̂‖2 .

Unit dual quaternions are those satisfying ‖q̂‖ = 1. According to the previous formula, a
dual quaternion q̂ is unit if and only if ‖q0‖ = 1 and 〈q0,qε〉 = 0. Note that unit dual
quaternions are always invertible (their inverse is just conjugation). We denote the set
of unit dual quaternions as Q̂1. Geometrically, Q̂1 is a 6-dimensional manifold (called an
image-space of dual quaternions [94]). Just like ordinary quaternions, dual quaternions are
also associative, distributive, but not commutative.

As expected, unit dual quaternions naturally represent 3D rotation, when the dual part
qε = 0. If we have a 3D vector v = (v0, v1, v2)

T , we define the associated unit dual
quaternion as v̂ = 1 + ε(v0i + v1j + v2k). The rotation of vector v by a dual quaternion
q̂ then can be written as q̂v̂q̂∗ (where q̂∗ denotes both quaternion and dual conjugation).
This is obvious: if qε = 0 then q̂ = q0 and q̂v̂q̂∗ simplifies to

q0(1 + ε(v0i + v1j + v2k))q∗
0 = 1 + εq0(v0i + v1j + v2k)q∗

0

where q0(v0i + v1j + v2k)q∗
0 is the formula for rotation by an ordinary quaternion from

Section 2.1.1.

An interesting fact is that dual quaternions can also represent 3D translations. A unit
dual quaternion t̂, defined as t̂ = 1 + ε

2
(t0i + t1j + t2k) corresponds to translation by

vector (t0, t1, t2)
T (note that dual quaternions work with half of the translation vector, in

analogy to classical quaternions, which work with half of the angle of rotation). If we

simplify t̂v̂t̂∗, we obtain 1 + ε((v0 + t0)i + (v1 + t1)j + (v2 + t2)k), which shows that the
unit dual quaternion t̂ really performs translation by (t0, t1, t2)

T . Rigid transformation is
a composition of rotation and translation, and composition of transformations corresponds

16 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

to multiplication of dual quaternions. If the rotation is described by unit quaternion q0

and the translation by unit dual quaternion 1 + ε
2
(t0i + t1j + t2k) as before, then their

composition is

(1 +
ε

2
(t0i + t1j + t2k))q0 = q0 +

ε

2
(t0i + t1j + t2k)q0 (2.3)

We can verify by direct computation that the result is always a unit dual quaternion.
Formula (2.3) tells us how to convert a (quaternion, translation) pair to a unit dual
quaternion. Note that this conversion involves just computation of one regular quater-
nion product. The opposite conversion, from a unit dual quaternion q0 + εqε to a
(quaternion, translation) pair is equally easy. The rotation is just q0 and the transla-
tion is given as 2qεq

∗
0.

Every unit dual quaternion q̂ can be written as

q̂ = cos
θ̂

2
+ ŝ sin

θ̂

2
(2.4)

where ŝ is a unit dual vector with zero scalar part, see [94] or [30]. Note that this looks
like the formula for ordinary quaternions, just employing the dual angle θ̂ = θ0 + εθε and
unit dual vector ŝ = s0 + εsε. The geometric interpretation of those quantities is related to
screw motion, that is a rotation and translation about the same axis. Chasle’s theorem [30]
states that any rigid transformation can be described by a screw motion, see Figure 2.3.
Angle θ0/2 is the angle of rotation, and unit vector s0 represents the direction of the axis
of rotation. θε/2 is the amount of translation along vector s0, and sε is the moment of
the axis. Moment is an unambiguous description of the position of an axis in space. It is
given by equation sε = p× s0, where p is a vector pointing from the origin to an arbitrary
point on the axis. Which point we choose is not important, because for any other point
of the axis, say p + cs0 (where c is an arbitrary scalar), we obtain the same moment:
(p+ cs0)× s0 = p× s0. Computation of the moment and other screw parameters is hidden
in the quaternion multiplication during conversion to a dual quaternion, Formula (2.3). We
can also infer another insight: whereas classical quaternions can represent only rotations
whose axes pass through the origin, dual quaternions can represent rotations with arbitrary
axes.

Similarly as in Section 2.1.1, it is possible to derive the dual quaternion version of expo-
nential mapping:

q̂ = exp

(
ŝ
θ̂

2

)
= cos

θ̂

2
+ ŝ sin

θ̂

2
(2.5)

The logarithm of q̂ is thus log(q̂) = ŝ θ̂
2
. A power of a dual quaternion q̂ is then defined

naturally: q̂û = exp(û log q̂) = cos(û θ̂
2
) + ŝ sin(û θ̂

2
). We see that the dual quaternion

formulas are very similar to corresponding formulas for ordinary quaternions. However, it
is necessary not to forget that in the former case, the numbers û and θ̂ are dual.

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 17

s0

p0

�0
s0

p

0

�� s0
.

Figure 2.3: Example of a screw motion. Each rigid transformation can be described as
a screw: rotation about an axis by angle θ0 and translation with magnitude θε along the
same axis. The axis, with direction determined by unit vector s0, needs not pass through
the origin 0. Its position in space is given by vector p pointing from the origin to some
point on the axis. The choice of vector p is not unique, thus dual quaternions work with
the unique moment: p× s0.

Dual quaternions inherit the antipodality of regular quaternions, i.e., both q̂ and −q̂
represent the same rigid transformation. This has the same consequences as in the case
of classical quaternions, see Section 2.1.1. Namely, mapping from rigid transformations
to unit dual quaternions is also one to two and the power q̂û differs from (−q̂)û by the
clockwiseness of the associated screw. The translation component of the motion is not
affected.

2.2 Skin Deformation

In this thesis, we use the term skinning (equivalently smooth skinning, matrix palette skin-
ning, skeletal deformation or skeletal animation) to refer to a skin deformation algorithm
based on 1) a list L of rigid transformations, 2) reference mesh and 3) vertex weights,
describing the relationship between L and mesh vertices. Note that this understanding
of skinning has not been introduced until recently [63]. In previous literature, skinning
is considered to be linked with a hierarchical structure of transformations (usually called
skeleton). Even though this is intuitive (reminiscent to skeletons of real beings) it is also
restrictive, as no skeleton is actually required in skinning, as shown in [63]. In the following,
we will be therefore emphasizing this more general perspective.

Theoretically, any kind of skin deformation caused by an underlying skeleton can be called
skeletal animation as well. For example, skeleton motion can drive a physically based

18 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

simulation of an elastic body, whose surface corresponds to the skin [23]. Although we
survey such approaches in this section, they are not the topic of our further investigation.

2.2.1 Matrix Palette Skinning

Matrix palette skinning is the main objective of this thesis and therefore this section
presents its basics in more details. An input model consists of the following data structures:

• triangular mesh M – any 3D object representing the rest-pose (undeformed) model.
We assume there are m vertices in the mesh and we denote them as v1, . . . ,vm ∈ R3.

• list L of rigid transformations – representing the current deformation. In certain
special situations it will be useful to consider a more general class of transformations,
e.g., affine ones. However, unless stated otherwise, only rigid transformations are
assumed. We denote the length of list L as p and the individual transformations as
C1, . . . , Cp (often represented by 4× 4 homogeneous matrices). Each transformation
C1, . . . , Cp influences part of the mesh M .

• vertex binding – describing which transformations from L influence which part of
the mesh M . For each vertex vk we have two lists of length nk ∈ Z. The first list,
jk,1, . . . , jk,nk

∈ Z, is a sequence of indices of transformations from L that influence
vertex vk. Second list, wk,1, . . . , wk,nk

∈ [0, 1], is a sequence of vertex weights. Weight
wk,i describes the amount of influence of transformation Cjk,i

on vertex vk. Weights
wk,1, . . . , wk,nk

must be convex, i.e., besides the non-negativity are required to satisfy∑nk

i=1 wk,i = 1.

When matrix palette skinning is used in conjunction with a hierarchy of transformations
(e.g., a skeleton), then C1, . . . , Cp are rigid transformations corresponding to individual
joints (nodes of the tree). In this case, the rigid transformation Cj represents translation
and rotation of joint j from the rest-pose to the current (animated) posture. Formulas for
computing the transformations C1, . . . , Cp in this case are presented in [A.10]. The indices
1, . . . , p of transformations C1, . . . , Cp are often called joints (or proxy-joints) even if no
actual skeleton is present.

There exist various software tools to design skeletally deformable models [9, 10]. Never-
theless, creation of a these model is a complex task requiring many hours of the animator’s
labor. Good models are seldom available for free, but can be purchased on-line [126] or
together with a book [122]. Some simpler models might be equipped only with rigid skin-
ning, which means that vertex weights are either 0 or 1 (which typically results in poor
skin deformations). An automatic way to construct skinned animations is discussed in
Chapter 7.

The basic operation with a skeletal model is to deform its skin according to a given list
L of transformations. Note that both rest-pose mesh and vertex binding are constant,

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 19

as well as the length of the list L – only the individual transformations C1, . . . , Cp vary
during an animation. The most popular matrix palette skinning algorithm is linear blend
skinning (LBS) [87]. With LBS, we assume that C1, . . . , Cp are represented by homogeneous
matrices; the deformed vertex positions v′

1, . . .v
′
m are then computed as as follows:

v′
k =

(
nk∑
i=1

wk,iCjk,i

)
vk, k = 1, . . . , m (2.6)

In situations where the vertex index will not be important, we drop the subscript k and
write Formula (2.6) more concisely: v′ = (

∑n
i=1 wiCji

)v. In practice, we can exploit the
distributivity of matrix products and rewrite(

nk∑
i=1

wk,iCjk,i

)
vk =

nk∑
i=1

wk,i

(
Cjk,i

vk

)
which explains why LBS is sometimes called vertex blending: it can be interpreted as blend-
ing transformed positions of vk. More advanced matrix palette skinning algorithms replace
the linear combination of matrices, i.e., the term

(∑nk

i=1 wk,iCjk,i

)
, by a more sophisticated

transformation blending method.

See Figure 2.4 for an example illustrating these concepts. There are two transformations
in the figure, C1 and C2, corresponding to the transformations of shoulder and elbow joints
from the rest-pose to an animated posture (note that C1 is pure translation, as the shoulder
is not rotated, but C2 is a general rigid transformation). Vertex v1 is influenced solely by
C1, but v2 is influenced by both C1 and C2. Therefore, we have n1 = 1, j1,1 = 1, w1,1 = 1
and n2 = 2, j2,1 = 1, j2,2 = 2, w2,1 = 0.5, w2,2 = 0.5, assuming that v2 is influenced by both
transformations equally.

vertex v1

C1
C2

vertex v2

v1' v2'

Rest-pose Animated pose

mesh

Figure 2.4: A silhouette of human arm animated by matrix palette skinning.

Although the LBS algorithm with properly weighted vertices produces smooth skin defor-
mation, it does not look naturally for all joint transformations. It has been pointed out

20 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

already in [134] that LBS produces poor skin deformations when the joint rotations are
large. A classic example of this behavior is known as a candy wrapper artifact. It is nicely
obvious when the shoulder joint is twisted 180 degrees, see Figure 2.5, but it occurs also
with not so extreme rotations [134].

Figure 2.5: Left: rest-pose character model. Right: shoulder twisted by 180 degrees
produces the candy wrapper artifact in LBS.

In spite of these problems, LBS algorithm is commonly used for real-time animation of
virtual characters, especially in computer games. However, this might be only because
there is no simple alternative.

2.2.2 Example Based Methods

An important class of skin deformation methods achieves better quality by using multiple
input meshes. These meshes are often designed in extremal positions, where the artifacts of
linear blending are most obvious. The problem of skin deformation can then be expressed
as a problem of blending of the examples. The blending domain is the space of all transfor-
mations C1, . . . , Cp; some methods consider also additional parameters (e.g., gender, age,
muscularity). Obviously, the blending space is a very high-dimensional one.

One of the first example based methods is pose space deformation [85]. It exploits the
generality of the blending problem and provides a unified framework for both skeletal and
facial animation. The basic idea is to use radial basis functions to blend example skins with
different shapes. In [85], as well as in most other interpolation-based methods, only the
displacements from LBS to the examples poses are blended, which considerably simplifies
the problem. The blending function is a linear combination of radial basis functions, whose
coefficients are derived using least-squares optimization. Unfortunately, no experimental
results such as timings are reported in [85], but the authors claim that a real-time animation
is possible (on the assumption of pre-computed coefficients).

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 21

A more advanced example-based method is presented in [120]. The most important differ-
ence to [85] is the introduction of cardinal basis functions, which play the role of a blending
basis. Instead of computing a different function per each vertex as in [85], the functions
are created as a linear combination of cardinal basis functions. According to [120], this
results in orders of magnitude faster precomputation. The other improvements include a
different form of radial basis function: sum of a linear component and a B-spline.

The usage of programmable graphics processing units (GPUs) for the example-based skin
deformation is considered in [74]. The previous methods [85, 120] were not suitable for GPU
execution, because they required a lot of memory to store the examples and the blending
coefficients. This problem is tackled in [120] by applying singular value decomposition
(SVD). The matrix of vertex displacements for all relevant poses is decomposed using SVD,
which reveals the most important displacement components – called eigen-displacements.
Only few most important eigen-displacements are necessary for a good approximation of
the original shape. This results in considerable memory savings and enables to transfer
the computations to the GPU.

Recently, a generalization of pose space deformation called weighted pose space deforma-
tion has been suggested [75]. This technique is useful also if only a limited number of
examples is available. The main trick is that the distance function between two poses is
no longer independent of the processed vertex, but depends on the vertex weights. This
improves the interpolation of a sparse number of examples, but unfortunately also slows
the process down. A real-time implementation on the current hardware is possible only
by a smart utilization of the GPU, as suggested in [114]. This consists in executing the
skin deformation algorithm in fragment shaders, in contrast to the straightforward solution
utilizing vertex shaders [58]. This is done because fragment shaders offer higher paralleliza-
tion and thus also faster run-time computations. However, the latest generation of graphics
hardware (GeForce 8 Series) automatically assigns its stream processors to either vertex
or fragment processing, so this trick should no longer be so important.

The advantage of the example-based methods is that they not only resolve the artifacts
of LBS, but also provide higher control. For example, it is possible to achieve the mus-
cle bulging effects easily, just by sculpting the contracted muscles. It is also possible to
introduce additional parameters, such as gender, age, or muscularity, and blend them in
the same framework as joint transformations. Thanks to this, it is possible to obtain in-
teresting shape variations in run-time. The disadvantage is the necessity of acquiring the
example skins, which can be costly. Such methods are therefore more popular in feature
film animation (e.g., Shrek 2) than in real-time applications.

Other example based methods are not based on the concept of blending. This is the case of
multi-weight enveloping [132], which is a direct generalization of LBS. It introduces more
parameters and therefore greater flexibility to the deformation algorithm. Instead of one
weight per transformation as in LBS, the multi-weight enveloping uses twelve – one per each
entry of the homogeneous matrix. These numerous parameters are derived from examples
using least squares optimization. This offers great versatility in run-time skin deformations,

22 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

comparable to example-based methods. However, this comes at a cost of complicated
computation of the numerous weights. The user has to provide a sufficient number of
examples, and the optimization process is reported to take several minutes. Another
disadvantage is that while the LBS models can be weighted manually by animators [122],
this is questionable with multi-weight enveloping. However, for high-fidelity characters,
this is an appropriate method. The idea of multi-weight enveloping has recently been
refined by Merry et al. [96], who proposed a linear framework supporting multiple weights
per transformation matrix. Linearity has certain benefits: it is fast, it allows a simple least-
squares optimization and it can be used to derive a measure of average distance across the
space of poses. However, the example meshes are still necessary in order to obtain the
weights – no direct way has been presented.

The example based algorithm discussed in [99] combines the advantages of [134] and [132].
The artifacts of LBS are resolved by adding extra joints, which are also exploited to simulate
additional effects such as the muscle bulging. The vertex weights must be re-computed after
the joint addition, which is done automatically using the provided examples. The vertex
positions in the reference mesh are optimized together with vertex weights. An iterative
optimization algorithm ensures that the deformed skin matches the provided examples as
closely as possible (in the least squares sense).

2.2.3 Advanced Blending

As discussed in Section 2.2.1, the problems of LBS stem from the linear combination
of transformation matrices. It is well known that this is a poor way of transformation
blending. For example, if the input matrices are rigid transformations, the result of a
direct linear combination can be an arbitrary matrix. This matrix can (and usually does)
contain scale and shear components that are responsible for the LBS artifacts.

Therefore, a natural solution is to apply an advanced transformation blending method. One
of the first algorithms from this category overcomes the artifacts by introducing auxiliary
bones, in order to spread large rotations into smaller ones [134]. Even though this method
reduces the artifacts, the vertex binding needs to be redesigned, which can be costly. Also,
the accuracy of this method depends on the number of auxiliary bones, and finding an
optimal trade-off between accuracy and efficiency requires some tweaking.

Another, more sophisticated method of transformation blending has been proposed by
Alexa [3]. This method takes logarithms of the input matrices, computes their linear
combination and exponentiates the result. The matrix exponential is defined as

eA =

∞∑
n=0

An

n!

and the logarithm of matrix B is matrix C such that eC = B (see [101]). Blending of
matrix logarithms has better properties than direct linear combination. Specifically, it

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 23

preserves rigidity of input transformations, which prevents the candy wrapper artifacts. A
drawback is the computational complexity of matrix logarithm and exponential.

Alexa’s log-matrix blending has been applied to skinning by Magnenat-Thalmann et al.
[89]. Due to efficiency constraints, they recommend to use the log-matrix blending only
when the joint rotations are large and opt for linear blending otherwise. Unfortunately,
it has been shown that log-matrix blending still has not optimal properties and in some
cases may also produce unnatural skin deformations, see Chapter 4 and [13]. Solutions
of these limitations have been discussed in [86] and [53], however, only for the case of
transformation interpolation.

Another skinning method based on advanced blending has been proposed by Jim Hejl from
Electronic Arts [56]. His idea is to convert the rotation parts of the skinning matrices to
quaternions and blend them linearly. Because of the properties of quaternion blending,
this produces nice skin deformations in many situations. Unfortunately, this approach
ignores the translational part of the skinning transformations, i.e., the deformed vertex is
only allowed to rotate around a given fixed point. This works perfectly in cases where the
influencing bones share a common joint. However, for more complex joint influences, e.g.,
those usually occurring around the armpit or dorsum of character models, artifacts result
from the fact that the center of rotation is fixed and does not adapt to the actual posture
(as noted already in [58]).

Yang’s skinning approach [135] also falls into the category of advanced blending methods.
In this approach, a rotation between successive limbs is decomposed into twist and swing
components, and both are blended independently. In addition to this, the joint collapsing
artifact of linear blending is remedied by a stretching operator, which pushes the skin
outwards the problematic point. However, this method probably requires some non-trivial
tweaking of the stretching operator parameters. The article also does not discuss how to
blend rotations among more than two joints.

Another geometric skin deformation algorithm is presented in [14]. It is based on a convo-
lution with a complex auxiliary structure – a medial. This algorithm did not become quite
popular, since the computation of medial is non-trivial and the method is patented. An-
other skin deformation algorithm, which introduces novel skeleton-skin binding method,
is presented in [60]. Their algorithm is based on sweep surfaces of moving ellipses and
produces plausible deformations of human characters. However, this comes at the cost of
a more complex (and non-standard) rigging method.

2.2.4 Other Skin Deformation Methods

Numerous algorithms have been developed especially for the case of virtual humanoids.
They use more or less advanced knowledge about human anatomy, and therefore are not
applicable to general skeletally deformable models. The basic idea of these methods is to use
a layered decomposition of the virtual human to skeleton, muscles, fat tissues and skin [67].
All these layers contribute to the final shape of the skin. The most important difference

24 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

to skeletal animation is the introduction of muscles, that can be modelled, e.g., with
metaballs [67]. Metaballs smoothing can be used to mimic fat tissues. In order to achieve a
real-time animation, the final model is converted into cross-section representation [125, 64].
The cross-sections (or contours) exploit the fact that the human body can be decomposed
into a collection of cylindrical objects: torso, arms and legs (while the head, hands and
feet are animated separately). The cross-section based animation has also been used in the
context of H-ANIM compliant models [11].

When considering only virtual humans, it is appealing to simulate the human anatomy
directly. The visually most important elements are the muscles, which can be modelled
using control curves [7, 137]. A control curve is attached to bones (in analogy to real
muscles) and animated either geometrically using B-splines [137], or physically by a mass-
spring system [7]. The muscle is deformed by its control curve, which moves itself according
to the skeleton posture. The muscle motion then interacts with the fat layer, which is
simulated as linearly elastic material. This layering is able to create highly realistic effects.
Such methods are however not much favoured by animators, because they usually prefer
direct control of the animated model [106]. Moreover, muscle design is a tedious process,
even though this can be ameliorated using more advanced tools [8].

Another physically based approach models the interior of an object as an elastic material
(without assuming any anatomical structure). This can be solved using the finite element
method [23, 48] even at interactive framerates. The advantage of this approach is a realistic
deformation and an automatic inclusion of secondary (inertial) animation effects. The main
drawbacks are time consuming computation and difficult direct control. Note that dynamic
effects can be added also to matrix palette skinning, as discussed in [78].

Free-form deformation (FFD) is a general deformation technique originally proposed
in [116]. The usage of FFD for character skinning has been discussed in [119], propos-
ing so called surface-oriented FFD, which is driven by a coarse version of the skin. This
coarse mesh can be deformed by any simpler skin deformation algorithm, typically LBS.

2.3 Collision Detection

While in the real world the objects usually can not penetrate one another, the contrary
is true in virtual reality. In order to create an illusion of the real world, it is necessary to
simulate the physics of colliding objects. The first, and usually the most time-consuming
step in this task is collision detection (CD). There exist several classes of CD algorithms.
The basic one is static CD, where the objects are assumed to be rigid, i.e., transformed
only by rotation and translation. A more challenging problem arises when considering
deformable objects, such as those animated using matrix palette skinning (Section 2.2).
Continuous (or dynamic) CD algorithms present another important class of algorithms,
which take into account the continuous motion of simulated objects. A different benefit

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 25

offer time-critical algorithms, which can be interrupted and asked for an approximate
solution.

2.3.1 Static Collision Detection

The problem of static collision detection is fairly well studied, see [65] for a survey. In
this short overview, we focus mainly on the static CD algorithms based on a bounding
volume hierarchy (BVH). The BVH-based algorithms are quite efficient and do not pose
any restrictions on the input data (such as convexity or zero genus). This makes them
appealing for many applications.

The input of a basic CD algorithm are two triangular meshes M0, M1 (sometimes called
triangular soups, to indicate that no topological structure is assumed). We need to check
if there exists u0 ∈ M0 and u1 ∈ M1 such that u0 intersects u1. A naive static CD
algorithm could test each pair from M0 × M1. Such algorithm would have time complex-
ity O(|M0||M1|), which is unacceptable even for models with relatively small number of
triangles (i.e., thousands), since CD usually has to be computed in real-time.

It is possible to speed up CD using BVHs. The bounding volume of a set of triangles
T is denoted as B(T) and it can be any convex subset of R3 such that ∀t ∈ T : t ⊆
B(T). Obviously, the smallest bounding volume is the convex hull. In practice, only
approximations of the convex hull are used. The classic bounding volumes are spheres [108],
Axis-Aligned Bounding Boxes (AABBs) [128], Oriented Bounding Boxes (OBBs) [39], and
k-Discrete Oriented Polytopes (k-DOPs) [72]. More recent ones include QuOSPO-trees [54]
(based on k-DOPs), Boxtrees [136] and Sphere Swept Bounding Volumes [79]. AABB is a
box with edges parallel to the coordinate axes of some fixed coordinate system (usually the
world coordinate system). OBB is an arbitrarily oriented box and k-DOP (k ∈ Z even) is
a convex polytope, whose face normals come from a fixed set of k/2 orientations. Note that
if the first three orientations correspond to the coordinate axes, then 6-DOP is equivalent
to AABB.

The pre-processing step of a BVH-based CD algorithm is to construct a tree of the chosen
type of bounding volumes for a given triangular mesh M . Each node of this tree corresponds
to some set of triangles, for example the root corresponds to the whole M . Extending our
notation, B(u) can be interpreted as a bounding volume of the set of triangles corresponding
to node u. For conciseness, only binary trees are considered in the following; generalization
to n-ary trees is straightforward. Let us denote the left child of node u as l(u) and the
right child as r(u). The bounding volume tree can be constructed in a top-down manner,
according to Algorithm 2.1. An example of a sphere tree constructed by this algorithm is
in Figure 2.6.

The splitting rule mentioned in step (3) of Algorithm 2.1 is typically only a simple heuris-
tics. An efficient one is to construct the smallest enclosing AABB and divide it along its
longest side into two equal halves. The triangles are then assigned to either part. Other
heuristics were studied in [128], but none of them offered better results. General collision

26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Figure 2.6: Three levels of the sphere tree constructed by Algorithm 2.1.

Algorithm 2.1: Construction of a bounding volume hierarchy
Input: Triangular mesh M
Output: Root of the created tree
buildTree(M)
(1) create node p
(2) B(p) = B(M)
(3) split M according the chosen splitting rule into Ml and Mr

(4) if (Ml = 0) or (Mr = 0)
(5) l(p) = r(p) = nil
(6) return p
(7) l(p) = buildTree(Ml)
(8) r(p) = buildTree(Mr)
(9) return p

detection algorithm based on a BVH is independent of the actual bounding volumes type:
see Algorithm 2.2.

The function leaf used by the algorithm just checks if its parameter is a leaf node. The
function disjoint tests whether two bounding volumes are disjoint. However, the only
condition we require from the function disjoint is that if it returns positive answer, then
the bounding volumes must be disjoint. It is acceptable if the function returns negative
answer even for disjoint bounding volumes. This is known as conservative testing [72]
and can potentially produce redundant tests, but not an incorrect result. In spite of the
redundant tests, the conservative approach can result in a faster CD algorithm than exact
(and slower) intersection tests.

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 27

Algorithm 2.2: Collision detection using a bounding volume hierarchy
Input: Roots r0, r1 of BVHs
Output: Yes/no answer if the meshes represented by r0, r1 collide
colTest(r0, r1)
(1) if disjoint(B(r0), B(r1))
(2) return NO
(3) else
(4) if (leaf(r0) and leaf(r1))
(5) test all triangles from r0 against all triangles from r1

(6) return YES iff any pair intersected
(7) else if (leaf(r0) and not leaf(r1))
(8) return colTest(r0, l(r1)) or colTest(r0, r(r1))
(9) else if (not leaf(r0) and leaf(r1))
(10) return colTest(l(r0), r1) or colTest(r(r0), r1)
(11) else
(12) ri = the node with larger volume of B(ri), i = 0, 1
(13) return colTest(l(ri), r1−i) or colTest(r(ri), r1−i)

2.3.2 Deformable Collision Detection

In this thesis, we are especially interested in CD with skeletally deformable objects, i.e.,
objects whose shape changes during animation. The methods from Section 2.3.1 are not
directly applicable to this situation, because they assume rigid bodies.

One of the first approaches to deformable CD is based on a complete BVH refitting,
which adapts the bounding volumes to new vertex positions. The bottom-up refitting
first recomputes the bounding volumes in the leaves. In the subsequent steps, bounding
volumes in the parent nodes are refitted so that they enclose bounding volumes of their
children. This reduces the time complexity from O(n2) required for the tree construction
(Algorithm 2.1) to O(n), where n is the number of triangles. However, the refitting can
produce a sub-optimal BVH, because the topology of the hierarchy is unchanged. This is
outweighted by the fact that refitting is about 10-times faster than rebuilding (as reported
for the case of AABBs in [128]) so it is the algorithm of choice in practice.

The original bottom-up refitting algorithm is improved in [80] by combining bottom-up
and top-down update and by using higher order trees instead of binary ones. Recently,
this has been further optimized by exploiting temporal coherency [82, 83]. The refitting of
a sphere tree for deformable object is studied in [20], using approximate enclosing spheres.
Their algorithm optimizes the refitting procedure by considering only the vertices with
non-zero displacement. Although this optimization helps in applications with localized
deformations, it is of little use when all vertices are displaced (as is typically the case
in skeletal deformation). Note also that bottom-up refitting of a sphere tree produces

28 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

conservative bounding spheres, whereas refitting of AABBs or k-DOPs gives an optimal
one [128, 62].

The advantage of the complete BVH refitting is its generality – the method does not
depend on the actual deformation model, because it works directly with the displaced
vertices. The drawback is in the time-complexity: many bounding volumes may be refitted
uselessly, because the subsequent CD query usually needs only some bounding volumes.
In the case of the full BVH refitting, the time complexity is at least linear in the number
of vertices. A more efficient strategy is to exploit the properties of a specific deformation
model (if available). This makes possible to refit only those bounding volumes that are
really necessary for the collision detection. This has been successfully implemented for
models deformed by linear morphing [81]. This is a rather simple deformation model
based on linear combinations of mesh vertices. In this deformation model, the bounding
volumes can be simply deformed by the same algorithm as the object itself. However, the
bounding volumes produced this way can be conservative. This is improved in [73], where
a construction of tight bounding volumes for linear morphing is presented.

Another interesting deformation model are so called reduced coordinates, based on linear
combinations of displacement fields [62]. If p is a vector of undeformed point locations,
columns of matrix U describe the displacement fields and q are the reduced coordinates,
then the deformed point locations p′ are computed as

p′ = p + Uq

An efficient on-demand refitting operation for this model is described in [62]. Although
the displacement fields (columns of matrix U) can describe any kind of deformations, their
combination is linear and therefore unsuitable for skeletally deformable models.

Other important approaches to deformable CD are not based on a BVH. For example, the
bucket-tree algorithm [37] assumes a division of space instead of the object. The space is
divided using an octree, whose final levels are equipped with buckets for individual prim-
itives (typically triangles). When the primitives move or deform, they are shifted among
individual buckets. The CD algorithm then considers only pairs of primitives sharing the
same bucket, while the others can be culled. The space division paradigm is also applied
in spatial hashing, presented in [123].

The constant advances in graphics hardware enable to exploit their overwhelming com-
putational power also for deformable CD. This idea is pursued by image-space tech-
niques [70, 55, 44, 42, 43]. The basic trick is to perform an occlusion query (an operation
natively supported by the GPU). The occlusion query works by rasterizing the first object,
thus filling the Z-buffer. Then the second object is rasterized: if all its pixels pass the
Z-test, it means that the whole object is in front of the first one and thus there is no
collision.

The advantage of these methods is that they do not need any pre-processing (and therefore
are also more memory efficient). Their disadvantage is the necessity of either hashing or ras-
terizing all primitives, which disables sub-linear execution time (possible with BVH-based

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 29

methods). Moreover, the image-space methods have their accuracy limited by resolution
of the image plane, although in [42], an exact image-space algorithm is presented. The
exactness is achieved by inflating objects (formally: using the Minkowski sum), so that no
collisions are missed due to the limited precision of the image plane.

2.3.3 Other Problems in Collision Detection

In spite of the importance of static and deformable collision detection, there exist other
important problems in CD: continuous, time-critical and self-collision detection. This
section overviews the methods of solving these more advanced collision detection problems.

The input of continuous CD are two objects represented by triangular meshes, description
of their motion and a time interval. The task of the continuous CD is to find out whether
the triangular meshes intersect during the given time interval and if yes, report the time
of their first contact (in general, there can be more collisions during the time interval). A
suitable model of in-between motion is essential for continuous CD. Typically, each object
is assumed to undergo a screw motion (see Section 2.1.2). On the assumption of screw
motions, an algebraic solution is possible [109]. This method reduces the problem to third
degree polynomials which can be solved analytically. The final continuous CD system
is presented in [110] and works by first performing continuous CD queries on bounding
spheres, followed by continuous CD tests of individual primitives (i.e., vertex-edge and
edge-edge tests).

A different approach to continuous CD is based on interval arithmetics [121], which is
a general tool to construct bounds of (possibly multidimensional) functions. A continu-
ous CD method based on interval arithmetics and a BVH of oriented-bounding boxes is
presented in [111]. The bounds produced this way need not be tight in general, which
leads to conservative tests. However, interval arithmetics can be used in more general
situations than the algebraic solution, for example in the case of articulated kinematic
chains [112, 113] (i.e., linkages of inter-connected rigid bodies).

A problem common to both static and continuous CD are the fluctuations of time com-
plexity: in certain cases, the CD query needs a considerable amount of time (e.g., in close
proximity situation), while in other cases it may terminate quickly (e.g., for objects far
away). Clearly, this is very disadvantageous for real-time applications, which would ideally
need algorithms with constant time complexity. Time-critical CD offers a solution to this
problem, which is based on the fact that imperfect results are more acceptable than lagging
(caused by waiting for an exact solution). The time-critical CD introduced in [59] is based
on a hierarchy of bounding spheres. The object is approximated by a union of spheres,
each level of the hierarchy standing for a higher level of detail. The CD Algorithm 2.2 is
slightly altered, so that before entering the next level of the hierarchy, the collisions on the
previous level must already be fully resolved (i.e., breadth-first search is used instead of
depth-first). This makes possible to interrupt the algorithm and ask for an approximate
solution (which is actually an exact solution for a union-of-spheres approximation of the

30 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

object). The main problem is to construct a good approximation with a small number
of spheres. Modern algorithms exploit dynamic and adaptive medial-axis approximation
in order to create efficient sphere trees [17, 18]. Recently, a time-critical algorithm sup-
porting deformable objects has been discussed [95], but this area is still open to further
investigation.

Self-collision detection, i.e., detection of collisions of an object with itself, is especially
important in cloth simulation. Even though it is correct to simply execute Algorithm 2.2
on two identical objects, it is not very efficient. An object is inevitably in close-proximity
with itself and thus culling of non-colliding parts becomes more difficult. In order to
achieve an efficient self-CD algorithms, special techniques must be applied. For example,
the method presented in [88] optimizes CD by bounding normals of each sub-piece of
cloth. If there exists a direction v such that all normals within the sub-piece have a
positive dot product with v and the projection to the plane orthogonal to v is collision
free, than the sub-piece of cannot contain any self-collisions. This rule enables an efficient
culling even in the case of self-collision detection. Another optimization for the cloth CD
is presented in [97]. Their algorithm is based on an oriented inflation of k-DOPs which
helps to bound the motion of the cloth. A more general family of methods is based on
mesh decomposition [41, 40]. This reduces the problem to the standard n-body CD and
thus enables to use efficient GPU-based algorithms. Another GPU-oriented approach to
self-CD is presented in [25]. However, this method performs no culling and is thus useful
only for relatively small models (about 1000 triangles).

2.4 Skinning Mesh Animations

The idea of using skinning as a method of data reduction is relatively new (being introduced
in 2005) [27, 63, 91]. However, already before, a similar problem has been tackled in the
context of clothed virtual humans: Oh et al. [102] present a system for the automatic
dressing of a virtual human that is animated by matrix palette skinning. Alternatively,
Cordier and Magnenat-Thalmann [28] propose to simulate cloth far from the body using
a simplified physical model. Even though real-time, the physical simulation is reported
to consume a lot of CPU time, which is a disadvantage over the computationally cheap
skeletal animation.

Automatic construction of skinned approximations can be considered as an animation com-
pression method. Various animation compression algorithms have been described since the
pioneering work of Lengyel [84]. Alexa proposes applying Principal Components Analysis
(PCA) [4]. PCA can also be advantageously augmented by another common compression
technique, Linear Prediction Coding, as shown in [69]. Decorrelation based on wavelets
also has been successfully applied to animation data [49]. Sattler et al. [115] show the
advantages of clustered PCA and present fast GPU-based decompression. Another in-
teresting idea is to encode the mesh as geometry images [47] and apply established 2D
animation compression methods [19]. Alternatively, deformable geometry can be stored

CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART 31

using progressive multiresolution meshes [71], which represent the animation at multiple
levels of detail. This allows the correct level of detail to be selected at runtime, either in
a static or view-dependent way.

While data reduction is important, it is not the only issue in interactive 3D applications.
Another tasks are equally important, such as efficient hardware accelerated rendering and
collision detection. For example, skinned approximations can be exploited to speed up
collision detection and facilitate rest-pose editing [63]. Also, it should be emphasized that
skinning is not a linear representation. In fact, skinning can easily outperform even the best
linear representation (given by Principal Component Analysis). This is because skinning
allows objects to rotate and/or bend. For example, Principal Component Analysis does not
work very well on a rotating rigid object (unless the rotation is small and the trajectories
can be approximated well by straight lines). However, rotating a rigid object presents
no problem for skinning, which needs just one proxy-joint to represent such an animation
exactly.

Besides Skinned Mesh Animations (SMAs) [63], other techniques for approximating ani-
mations by skinning have been described. Collins and Hilton [27] propose a method based
on a rigid transformation basis. Their algorithm delivers efficient data reduction, but the
reconstructed animation suffers from discontinuities between individual clusters. The au-
thors suggest correcting this by adding another post-processing step to smooth out the
geometry. Mamou et al. [91] present a variation of SMAs with emphasis on animation
compression. However, all of these algorithms focus only on quasi-articulated animations
and are not suitable for highly deformable ones, such as those of cloth or elastic materials.

32 CHAPTER 3. SPHERICAL BLEND SKINNING

3 Spherical Blend Skinning

Spherical blend skinning (SBS) is our first attempt to resolve the artifacts of linear blend
skinning (LBS) (see Figure 3.1). Even though in Chapter 4 we show that spherical blending
is not as efficient as our dual quaternion based approach, we believe that SBS still deserves
to be mentioned due to the following reasons. First, the ideas behind SBS reveal certain
insights into the geometrical background of the problem, which help to understand the
subsequent dual quaternion method (in our opinion, it is not a coincidence that SBS has
been discovered before the dual quaternion skinning). Second, for SBS exists an efficient
collision detection algorithm (Chapter 6), while this is an open problem for dual quaternion
skinning.

Figure 3.1: Left: the candy wrapper artifact of linear blend skinning, right: the same
posture deformed by spherical blend skinning.

The problems of LBS arise from the fact that Formula (2.6) performs linear blending of
matrices, which is known to be a poor way of transformation blending [3]. Specifically,
even though the transformations Cji

are rigid, their linear blend (
∑n

i=1 wiCji
) needs not be

rigid. The basic idea of SBS is to fix the skinning by employing a more advanced blending
method. We hypothesize that if the applied blending algorithm preserves rigidity of input
transformations, artifacts such as the candy wrapper will disappear. This hypothesis has
proven to be true, see Figure 3.1. Intuitively, the blending of vertices Cji

v does not operate
on a line segment as LBS, but rather on a spherical arc, see Figure 3.2.

3.1 Beyond Linear Blending

Obviously, the problem of blending matrices Cji
is caused by their rotational parts, because

the group of rotations is not a linear space. If we want to avoid artifacts, we must ensure
that the blending method always returns a correct rotation. This is possible even when
working with rotation matrices, by finding the closest orthonormal matrix [12]. Unfortu-
nately, this is a rather time-consuming operation, because as much as 6 orthonormality
constraints must be satisfied (a rotation matrix has 9 elements, but 3D rotation has only 3

CHAPTER 3. SPHERICAL BLEND SKINNING 33

j2jointmesh

vertex v

LBS workspace SBS workspace

C vj1

C vj2

j1joint

Figure 3.2: The set of possible results of LBS is a line segment, while SBS gives a circular
arc.

degrees of freedom). The quaternion algebra (Section 2.1.1) is more advantageous for this
purpose, having only one constraint and thus allowing a very efficient normalization.

However, there is one more (and perhaps even more serious) problem with this approach:
it is necessary to select a suitable center of rotation. We demonstrate this problem on an
example of human arm (see Section 4.1 for a more formal treatment). Consider that the arm
geometry is influenced by two joints j1 and j2, such as in Figure 3.2. The transformation
of the whole mesh by Cj1 is illustrated in the leftmost column of Figure 3.3 and the
transformation of the same geometry by Cj2 in the rightmost column (note that the results
are identical in both rows of these columns). The columns in the middle show the progress
of interpolation between Cj1 to Cj2. The only difference between the two rows in Figure 3.3
is in the choice of the center of rotation. In the top row, the rotation center rc is set to the
position of joint j2 (elbow) in the reference posture. Note that Cj1rc = Cj2rc, therefore also
the transformed rotation center is constant during the interpolation. In the bottom row of
the figure, the rotation center rc is set to the position of joint j1 (shoulder) in the reference
posture. Since Cj1rc �= Cj2rc, the transformed rotation center is linearly interpolated from
Cj1rc to Cj2rc. By comparison with the starting mesh (drawn gray in each frame), it is
obvious that the center of rotation choice in the top row is much more advantageous. In
this case, the interpolation of every single point is a circular arc (as in Figure 3.2), whereas
a disturbing drift is inherent to any other choice of rotation center (such as rc).

Unfortunately, the condition of zero translation cannot be always satisfied, typically for
more than two influencing joints. However, it is possible to define the rotation center
as the point whose transformations by associated matrices are as close as possible. This
minimizes the drift and thus mimics the natural skin behavior, i.e., the avoidance of an
excessive stretching. We find the center of rotation rc as the least-squares solution of the

34 CHAPTER 3. SPHERICAL BLEND SKINNING

Cj1

rcCj1
rcCj2

Cj2

Cj1

Cj2

rcCj1 rcCj2

Figure 3.3: The correct center of rotation is chosen in the top row, while a sub-optimal in
the bottom one. In the middle columns, notice the difference of the elbow position with
respect to the original skin.

system of
(

n
2

)
linear vector equations

Carc = Cbrc, a < b, a, b ∈ {j1, . . . , jn} (3.1)

Each homogeneous matrix Ci has structure

Ci =

(
Crot

i Ctr
i

0T 1

)
where Crot

i is a 3× 3 orthogonal matrix and Ctr
i is a translation vector. This enables us to

re-write the linear system to

Crot
a rc + Ctr

a = Crot
b rc + Ctr

b

(Crot
a − Crot

b)rc = Ctr
b −Ctr

a

If we stack all these equations to one matrix D and the right-hand sides to vector e, we
can write the whole system as

Drc = e

where D is a 3
(

n
2

)×3 matrix, rc is a 3-dimensional unknown vector and e is 3
(

n
2

)
-dimensional

vector. In general, we cannot make any assumptions about the rank of matrix D, which
can vary from 0 to 3 (consider for example n = 2 and Cj1 = Cj2). Therefore, we search the
optimal solution rc in least-squares sense. If there are multiple solutions giving the minimal
‖Drc − e‖, the rc with the minimal norm is chosen. This can be done in a robust way
using the singular value decomposition (SVD), followed by computation of pseudo-inverse
matrix. To perform these computations, we use the LAPACK software [5].

CHAPTER 3. SPHERICAL BLEND SKINNING 35

Even though LAPACK routines are efficient, computation of the center of rotation per
each vertex would not result in a real-time algorithm. Fortunately, the center of rotation
depends only on the transformations of joints j1, . . . , jn and not the vertex itself. Therefore,
if we encounter another vertex assigned to the same set of joints j1, . . . , jn, we can re-use
the center of rotation computed formerly (cached). Moreover, if there is only one, or
two neighboring joints that influence the vertex, we can determine the center of rotation
explicitly and omit the SVD computation completely. It turns out that the number of
different non-trivial joint sets, and therefore the number of running the SVD, is surprisingly
small for common models – about several tens (see Section 3.4). This enables the real-time
performance.

However, as we discuss in Section 4.1, the caching of rotation centers introduces some limi-
tations. This is because vertex weights are not considered in Formula (3.1). Theoretically,
it would be much more natural, if, for example, a transformation with weight 0.1 did not
influence the center of rotation by the same amount as a transformation with weight 0.9.
Unfortunately, it is not affordable to execute SVD per each vertex, so it is necessary to
settle for the uniform centers of rotations.

3.2 Rotation Blending

The problem of rotation blending has already received some attention [22, 105], as well as
the problem of blending multiple general transformations [3]. Unfortunately, it has been
shown later that Alexa’s method [3] does not work very well for rotations [13]. More accu-
rate (rotation specific) methods [22, 105] do not have such problems, but are substantially
slower then the simple linear interpolation used in LBS. Since our goal is an algorithm
with comparable time complexity as LBS, we propose an approximate but fast quaternion
linear blending (QLB). For the case of two rotations, we compare this method with the
established SLERP.

Recall that a rotation around axis a (unit length vector) with angle 2α corresponds to
quaternion q′ = cos α + a sin α. However, this correspondence is not unique, because both
quaternions q′ and −q′ represent the same rotation (see Section 2.1.1). The SLERP of
two unit quaternions p,q assumes that their dot product 〈p,q〉 ≥ 0. If the dot product
〈p,q〉 < 0, we use −p instead of p, which is possible because both p and −p represent the
same rotation. The SLERP of p,q with interpolation parameter t ∈ [0, 1] is given by the
following formula (see [32]).

SLERP (t;p,q) =
sin((1 − t)θ)p + sin(tθ)q

sin θ
(3.2)

where θ is the angle inclined by quaternions p,q, i.e., cos θ = 〈p,q〉. Note that
SLERP (t;p,q) is always a unit quaternion.

36 CHAPTER 3. SPHERICAL BLEND SKINNING

The quaternion linear blending is computed as

QLB(t;p,q) =
(1 − t)p + tq

‖(1 − t)p + tq‖ (3.3)

The difference to SLERP is obvious: QLB interpolates along the shortest segment, and
then projects to arc, which does not result in the uniform interpolation of the arc. In spite
of this, we claim that QLB is sufficient for our task. In order to justify this statement,
we face a question interesting by itself: how big can be the difference between QLB and
SLERP for the same input rotations?

Lemma 3.1. For any unit quaternions p and q and any parameter t ∈ [0, 1], we can write
SLERP (t;p,q) = prs(t) and QLB(t;p,q) = prl(t), where the unit quaternions rs(t) and
rl(t) have the same axis of rotation. Moreover, this axis is constant, i.e., independent of
the interpolation parameter t.

Proof. For t = 0, both QLB and SLERP return of course p. For t > 0, we can imagine that
both QLB and SLERP work by concatenating p with some rotation (multiplying p with
some quaternion). For SLERP, we denote this quaternion as rs(t). It can be expressed as
p∗SLERP (t;p,q), because

prs(t) = pp∗SLERP (t;p,q) = SLERP (t;p,q)

The rotation rs(t) can be written out as

rs(t) = p∗SLERP (t;p,q) =
sin((1 − t)θ) + sin(tθ)p∗q

sin θ
(3.4)

From the definition of quaternion multiplication, it can be seen that the scalar part of p∗q
equals 〈p,q〉 = cos θ. Since p∗q is a unit quaternion, we can express it as

p∗q = cos θ + u sin θ

for some axis of rotation u ∈ R3. If we substitute this into Formula (3.4), we obtain

rs(t) =
sin((1 − t)θ) + sin(tθ) cos θ

sin θ
+ u sin(tθ)

which means that the axis of rotation given by vector u is independent of t (since axis does
not depend on the length of its representing vector).

Let us examine the rotation rl(t) following p in QLB:

rl(t) = p∗QLB(t;p,q) =
(1 − t) + tp∗q
‖(1 − t)p + tq‖ =

(1 − t + t cos θ)

‖(1 − t)p + tq‖ + u
t sin θ

‖(1 − t)p + tq‖
which shows that the axis of rotation rl(t) is the same as that of rs(t).

CHAPTER 3. SPHERICAL BLEND SKINNING 37

From Lemma 3.1, it follows that the only difference between QLB and SLERP is in the
angle of rotations rs(t) and rl(t). The following lemma presents an upper bound of this
difference.

Lemma 3.2. The difference in the angle of rs(t) and rl(t) from Lemma 3.1 is strictly less
than 8.15 degrees for each t ∈ [0, 1].

Proof. Note that both rs(t) and rl(t) have a form of linear combination of quaternions 1
(zero angle rotation) and p∗q. It means that both rs(t) and rl(t) end up in certain 2D
subspace of R4 for each t ∈ [0, 1]. We can restrict our attention to this subspace (the linear
hull of 1 and p∗q).

Since SLERP assumes cos θ = 〈p,q〉 ≥ 0, the angle θ cannot exceed π/2. To obtain an
upper bound of the maximal difference in the angle, we consider the extremal case with
θ = π/2, depicted in Figure 3.4.

t

1-t

1

1

�(t)

SLERP

QLERP

�(t)

Figure 3.4: Difference between the QLB angle α(t) and the SLERP one, β(t)

The angle α(t) on the picture can be computed by atan, and β(t) by simple linear inter-
polation of the right angle, which yields the difference function

d(t) = α(t) − β(t) = atan

(
t

1 − t

)
− π

2
t

It remains to find the extremes of d(t) on the interval 〈0, 1〉. An elementary mathematical
analysis discovers the global extremes in points 1/2 ±√

(1/π − 1/4). The absolute value
of d(t) in these points is approximately 0.071 radians (4.07 degrees). To finish the proof,
recall that the angle of rotation is twice the angle inclined by quaternions.

38 CHAPTER 3. SPHERICAL BLEND SKINNING

To conclude: both SLERP and QLB interpolate by multiplying the first quaternion with
a rotation with the same, fixed axis. The difference between SLERP and QLB is only
in the angle of this rotation, and is strictly less then 0.143 radians (8.15 degrees) for
any interpolation parameter t ∈ [0, 1]. This is an upper bound; practical results are
much smaller and could hardly cause an observable defect in the deformed skin. The big
advantage of QLB over SLERP is that it can be easily generalized to interpolate multiple
rotations – it suffices to make a convex combination and re-normalization of multiple
quaternions (more in the next section).

3.3 Algorithm Overview

Now we have prepared all the ingredients to describe how the SBS algorithm works. The
task is to transform a vertex v influenced by joints j1, . . . , jn with convex weights w =
(w1, . . . , wn)T ∈ Wn to its position v′ in the animated skin. In order to obtain a correct
deformation, it is necessary to respect the computed center of rotation rc. First, however,
we need to extend the QLB scheme to homogeneous matrices Cji

. We denote the blending
of matrices Cji

with weights w as

QLB′
0(w; Cj1, . . . , Cjn) =

(
Q m
0T 1

)
(3.5)

The subscript 0 means that the rotation is with respect to the origin (zero vector). Rotation
matrix Q and translation vector m are computed as follows. First, the rotation submatrices
Crot

ji
are converted to quaternions qji

. One of them, for example qj1 , is chosen as pivot. If
〈qj1,qji

〉 < 0 for any i = 2, . . . , n, we replace qji
with −qji

(by analogy to SLERP). Then,
QLB′

0 computes s = w1qj1 + . . . +wnqjn, which is subsequently normalized to sn = s/‖s‖.
Finally, sn is converted to the rotation matrix Q. The translation part is just linearly
combined, m =

∑n
i=1 wiC

tr
ji
.

The following lemma explains how the blending of homogeneous matrices changes when
we switch the center of rotation from 0 to rc.

Lemma 3.3.

QLB′
rc

(w; Cj1, . . . , Cjn) = T QLB′
0(w; T−1Cj1T, . . . , T−1CjnT) T−1 (3.6)

where T is a 4 × 4 matrix

T =

(
I rc

0T 1

)

Proof. Let us denote by K the coordinate system with origin in rc and identical basis
vectors as the world coordinate system. The matrix T is nothing but transformation from
K to the world coordinate system. By analogy, the inverse matrix

T−1 =

(
I −rc

0T 1

)

CHAPTER 3. SPHERICAL BLEND SKINNING 39

represents the transformation from the world coordinate system to K. It follows that
T−1Cji

T is the transformation Cji
expressed with respect to K. By blending these matrices

with QLB′
0, we obtain a matrix working also on vectors in K coordinates:

QLB′
0(w; T−1Cj1T, . . . , T−1CjnT)

We can express this matrix with respect to the world coordinate system easily:

TQLB′
0(w; T−1Cj1T, . . . , T−1CjnT)T−1

which is exactly what we wanted to proof.

Using QLB′
rc

, we can write the formula of SBS concisely: v′ = QLB′
rc

(w; Cj1, . . . , Cjn)v.
The following lemma says how this equation can be computed more efficiently.

Lemma 3.4. For any vertex v ∈ R3, the formula

v′ = QLB′
rc

(w; Cj1, . . . , Cjn)v

simplifies to

v′ = Q(v − rc) +

n∑
i=1

wiCji
rc (3.7)

where Q = QLB(w; Cj1, . . . , Cjn).

Proof. Recall that the matrix Cji
has structure

Cji
=

(
Crot

ji
Ctr

ji

0T 1

)
which enables us to write out

T−1Cji
T =

(
Crot

ji
Cji

rc − rc

0T 1

)
as can be simply verified. Therefore, according to Formula (3.5),

QLB′
0(w; T−1Cj1T, . . . , T−1CjnT) =

(
Q −rc +

∑n
i=1 wiCji

rc

0T 1

)
where Q = QLB(w; Cj1, . . . , Cjn). Using T−1v = v − rc and Tx = x + rc, we see that

v′ = TQLB′
0(w; T−1Cj1T, . . . , T−1CjnT)T−1v

= T

(
Q −rc +

∑n
i=1 wiCji

rc

0T 1

)(
v − rc

1

)

= Q(v − rc) +

n∑
i=1

wiCji
rc

is true for any vector v. Note that the shift of the center of rotation does not influence the
blended rotation – it manifests only in the translation part.

40 CHAPTER 3. SPHERICAL BLEND SKINNING

The Formula (3.7) has to be evaluated once per each vertex. A basic optimization is to pre-
compute the quaternions qji

, because they do not depend on the actual vertex – only on
the joint’s transformation, similarly as the rotation centers rc. Nevertheless, QLB still has
to be executed for each vertex, since vertex weights w1, . . . , wn vary. In order to challenge
the speed of LBS, we apply the following trick.

According to Section 2.1.1, the rotation of vector v by quaternion sn = s/‖s‖ can be
expressed as snvsn

∗. Although this expression is not efficient for computation (because of
slow quaternion multiplication), it enables us to write out the rotation of v by quaternion
sn as

snvsn
∗ =

1

‖s‖2
svs∗ =

1

〈s, s〉svs∗

This suggests to convert already the quaternion s to matrix Q′ and normalize subsequently
by dividing 〈s, s〉. Therefore, we can compute the matrix Q from Formula (3.7) as Q = Q′

〈s,s〉
and save the sqrt operation. Some attention must be paid because standard routines for
quaternion to matrix conversion assume a unit-length quaternion. The conversion of an
arbitrary length q′ = w + xi + yj + zk leads to the following matrix:⎛

⎝ x2 + w2 − y2 − z2 2xy − 2wz 2xz + 2wy
2xy + 2wz y2 + w2 − x2 − z2 2yz − 2wx
2xz − 2wy 2yz + 2wx z2 + w2 − x2 − y2

⎞
⎠

Vertex normal vn is transformed in a similar way as vertex position, but ignoring the
translation component

v′
n = Qvn

Using Formula (3.7), we can verify our previous intuitive reasoning. If n = 2 and Cj1rc =
Cj2rc (as in the beginning of Section 3.1), the translation part becomes

w1Cj1rc + w2Cj2rc = (w1 + w2)Cj1rc = Cj1rc = Cj2rc

which is independent of blending parameters (weights), i.e., no translation is blended, as
in Figure 3.3. The whole SBS is summarized in Algorithm 3.1. The algorithm uses a
subroutine rotcenter, which computes the center of rotation using SVD as discussed in
Section 3.1.

3.4 Results and Comparison

We tested the SBS algorithm on various models (see Figure 3.5 and Table 3.1) and com-
pared the shape of the deformed skin on the model of woman, because human eye is most
sensitive to the deformations of human body. Figure 3.6 presents the results of LBS and
SBS executed on the same posture of the model. Another example has been presented
in Figure 3.1. For small deformations, both algorithms produce similar results, as in the
second column of Figure 3.6 (although a small loss of volume is noticeable even there).

CHAPTER 3. SPHERICAL BLEND SKINNING 41

Algorithm 3.1: Spherical blend skinning

Input: C1, . . . , Cp – joint transformation matrices for the current posture
v1, . . . ,vm – rest-pose vertices
ν1, . . . , νm – rest-pose normals
w1,1, . . . , w1,n1, . . . , wm,1, . . . , wm,nm – vertex weights
j1,1, . . . , j1,n1 , . . . , jm,1, . . . , jm,nm – influencing joints indices
(see Section 2.2.1 for description)

Output: v′
1, . . . ,v

′
m – vertices of the deformed skin

ν ′
1, . . . , ν

′
m – normals of the deformed skin

SBS(C1, . . . , Cp)
(1) for k = 1 to m
(2) if rotation center for jk,1, . . . , jk,nk

not in cache
(3) rc = rotcenter(Cjk,1

, . . . , Cjk,nk
)

(4) store rc in cache for key jk,1, . . . , jk,nk

(5) else
(6) retrieve rc from cache for key jk,1, . . . , jk,nk

(7) Q = QLB(wk,1, . . . , wk,nk
; Cjk,1

, . . . , Cjk,nk
)

(8) v′
k = Q(vk − rc) +

∑nk

i=1 wk,iCjk,i
rc

(9) ν ′
k = Qνk

Figure 3.5: 3D models used for testing

It is remarkable that the results of SBS look better even though the models have been
optimized to work with the LBS algorithm.

The performance of both algorithms is compared in Table 3.2. The measured value is
an average time in milliseconds necessary to deform one model on a 3.4GHz Pentium 4
(rendering time not included). We see that the time complexity of SBS, though higher than

42 CHAPTER 3. SPHERICAL BLEND SKINNING

Hand Woman Creature
vertices 2402 3356 6802
triangles 4800 5205 13590
joints 23 78 56

Table 3.1: Complexities of example models (testing of spherical blend skinning)

Figure 3.6: Comparison of the deformations computed by linear (top) and spherical blend
skinning (bottom)

that of LBS, is still quite suitable for real-time applications. In the last row of the table the
number of different non-trivial joint sets is reported. Put in another way, it is exactly the
number of singular value decompositions performed by the SBS algorithm. Theoretically,
the number of different non-trivial joint sets could be very high. Fortunately, this number
is rather small in practice, because the joint influences tend to be local (e.g., it is very
unlikely to find vertices influenced by both left and right wrist).

The additional memory needed for SBS is dominated by caching the computed centers of
rotation. However, this amount of memory is negligible, considering the number of different
non-trivial joint sets.

We also tried to apply the spherical weighted averages [22] instead of QLB. Spherical
averages behave like SLERP for the case of two rotations, in contrast to QLB, which only

CHAPTER 3. SPHERICAL BLEND SKINNING 43

Hand Woman Creature
LBS time 2.68 2.81 7.6
SBS time 5.79 5.43 16.11
SVD executions 38 37 56

Table 3.2: First two rows: run-time of LBS and SBS algorithms in milliseconds; last row:
number of SVD executions

approximates the SLERP results. On one hand, the difference in the deformed skin was
barely observable (confirming the results from Section 3.2). On the other hand, the increase
in the execution time was quite substantial (spherical averages took about 5 times longer).
This experiment confirmed our choice of QLB for rotation blending.

44 CHAPTER 4. DUAL QUATERNION SKINNING

4 Dual Quaternion Skinning

The spherical blend skinning algorithm, introduced in Chapter 3, achieves our goal of re-
moving the artifacts of linear blend skinning while retaining its real-time efficiency. How-
ever, it is obvious that the solution by spherical blending lacks the simplicity and elegancy
of linear blending. Spherical blending requires the non-trivial singular value decomposi-
tion algorithm as a subroutine. Also, the caching of rotation centers introduces potential
problems when moving the algorithm from CPU to GPU. This chapter therefore analyzes
the properties of spherical blend skinning, in order to find a skinning algorithm similar in
quality, but faster to execute and amenable to graphics hardware. We demonstrate that
such an algorithm can be obtained using dual quaternions.

4.1 Properties of Spherical Blending

The main problem of SBS is the computation of the center of rotation – this is also the
part which requires the singular value decomposition. Moreover, as rotation centers are
shared by multiple vertices, there is a potential source of discontinuities in parts of the skin
where the rotation centers change. Even though we usually cannot observe this problem
in practice, it is possible to design an example where this produces visual artifacts, see
Figure 4.1.

Ideally, we would like a skinning algorithm similar to spherical blending, but avoiding the
computation of the center of rotation. First, we have to clarify what we mean by “similar to
spherical blending”. As we have seen in the examples, SBS produces reasonable skin defor-
mations, while the direct application of QLB′

0 does not. Nevertheless, spherical blending
is nothing but QLB′

0 with a different center of rotation. Can we explain mathematically
why one blending algorithm does not work, whereas a very similar one does? Let us denote
a general blending method among z rigid transformations M1, . . . , Mz with weight vector

Dual QuaternionsSpherical Blend SkinningRest-pose

Figure 4.1: Piece of cloth deformed by spherical blend skinning reveals artifacts caused by
discontinuous change of rotation centers. Dual quaternion skinning (Section 4.5) does not
have such problems and produces a smooth deformation.

CHAPTER 4. DUAL QUATERNION SKINNING 45

w ∈ Wz as Φ(w; M1, . . . , Mz). For brevity, let us further denote the spherical blending as
ΦSB. We might now ask which property that ΦSB fulfills does not hold for QLB′

0.

A general blending method Φ is said to be left-invariant, if

∀U ∈ SE(3) : UΦ(w; M1, . . . , Mz) = Φ(w; UM1, . . . , UMz)

By analogy, we define right-invariance of Φ as

∀U ∈ SE(3) : Φ(w; M1, . . . , Mz)U = Φ(w; M1U, . . . , MzU)

(Recall that SE(3) is the group of rigid transformations, see Section 2.1.) If both left and
right-invariance applies at the same time, we speak about bi-invariance [98]. Bi-invariance
directly implies another important property: coordinate-invariance, which is defined as

∀U ∈ SE(3) : UΦ(w; M1, . . . , Mz)U
−1 = Φ(w; UM1U

−1, . . . , UMzU
−1)

The fact that bi-invariance implies coordinate-invariance is obvious. We will see below that
bi-invariance is a stronger property (i.e., that bi-invariance is not equivalent to coordinate
invariance).

Let us clarify the geometrical interpretation of left/right-invariance and their implications
to skinning. Left-invariance considers the input transformations Mi multiplied from the
left by U , i.e., Mi is applied first and U operates on the result. This means that in the
case of left-invariance, U acts in world-space coordinates. In skinning, left-invariance has
the following interpretation: the matrices UM1, . . . , UMz mean simply transformation of
the whole posture in the world space. Left-invariance therefore expresses the fact that the
skinning of a transformed model is equivalent to the transformation of a skinned model.
This a very natural requirement; if breached, unpleasant artifacts can occur. It is easy
to see that QLB′

0 is left-invariant, as well as spherical blending. The latter is proven in
the following lemma. First, let us remark that QLB (i.e., rotation-only blending) is both
left and right invariant, which follows from the left and right distributivity of quaternion
multiplication (see a more general Lemma 4.5 in Section 4.3).

Lemma 4.1. If ΦSB denotes spherical blending (Formula (3.7)), then

∀U ∈ SE(3) : UΦSB(w; Cj1, . . . , Cjn) = ΦSB(w; UCj1, . . . , UCjn)

Proof. Let us assume that the rotation center computed for matrices Cj1, . . . , Cjn is rc.
What will be the rotation center computed for matrices UCj1, . . . , UCjn? Substituting into
Formula (3.1) yields

UCax = UCbx, a < b, a, b ∈ {j1, . . . , jn}

Multiplying from the left by U−1, we see that this is equivalent to the original system and
therefore x = rc.

46 CHAPTER 4. DUAL QUATERNION SKINNING

Let us denote the components of matrix U as follows:

U =

(
U rot Utr

0T 1

)
Left-multiplication of the SBS formula by U therefore gives

U

(
Q(v − rc) +

n∑
i=1

wiCji
rc

)
= U rot

(
Q(v − rc) +

n∑
i=1

wiCji
rc

)
+ U tr

On the other hand, SBS for transformations UCj1 , . . . , UCjn yields, applying the left-
invariance of QLB,

U rotQ(v − rc) +

n∑
i=1

wiUCji
rc = U rotQ(v − rc) + U

n∑
i=1

wiCji
rc =

= U rot

(
Q(v − rc) +

n∑
i=1

wiCji
rc

)
+ U tr

By comparing these equations we can conclude that spherical blending is indeed left-
invariant.

Let us now turn our attention to the right-invariance and its geometrical interpretation.
Right-invariance considers the input transformations Mi multiplied from right by U , i.e.,
Mi operates on a point already transformed by U . This means that in the case of right-
invariance, U acts in body-space coordinates. In skinning, this expresses the following fact:
if the body-space coordinates of model vertices v1, . . . ,vm are changed to Uv1, . . . , Uvm,
then this will be compensated by changing matrices C1, . . . , Cp to C1U

−1, . . . , CpU
−1 (this

happens, for example, when a designer decides to translate the model’s origin). The right-
invariance then requires that this does not influence the skin deformation, i.e., that the
result will be the same as without the translation U .

Obviously, QLB′
0 cannot be right-invariant, because this would already imply coordinate-

invariance. This would mean that Lemma 3.3 could have been simplified to

QLB′
rc

(w; Cj1, . . . , Cjn) = QLB′
0(w; Cj1, . . . , Cjn)

which is obviously not true. In other words, right-variance means that a transformed
object rotates with respect to the origin of its body-space coordinates, i.e., a user-specified
point (see Figure 3.3). With a right-invariant blending, the body-space coordinates do
not determine the rotation center anymore. The rotation center is thus given by other
means, for example as the point yielding a minimal drift of blended transformations (see
Section 3.1). The following lemma verifies that spherical blending is right invariant.

Lemma 4.2. If ΦSB denotes spherical blending (Formula (3.7)), then

∀U ∈ SE(3) : ΦSB(w; Cj1, . . . , Cjn)U = ΦSB(w; Cj1U, . . . , CjnU)

CHAPTER 4. DUAL QUATERNION SKINNING 47

Proof. Let us denote the rotation center computed for matrices Cj1, . . . , Cjn as rc. What
will be the rotation center r′c for matrices Cj1U, . . . , CjnU? Formula 3.1 expresses the
rotation center as the least squares solution of

CaUx = CbUx, a < b, a, b ∈ {j1, . . . , jn}

Let us introduce the substitution y = Ux, which converts the system to the original
form Cay = Cby. The solution therefore is y = rc (i.e., the original rotation center) and
x = U−1rc.

Let us denote the components of matrix U as follows:

U =

(
U rot Utr

0T 1

)

If we apply Formula (3.7) to Uv, we obtain

Q(Uv − rc) +

n∑
i=1

wiCji
rc

When we apply SBS to matrices Cj1U, . . . , CjnU and vertex v, we obtain, using the right-
invariance of QLB,

QU rot(v − U−1rc) +

n∑
i=1

wi(Cji
U)U−1rc =

= QU rot(v − (U rot)T rc + (U rot)T U tr) +
n∑

i=1

wiCji
rc =

= QU rotv − Qrc + QU tr +

n∑
i=1

wiCji
rc = Q(Uv − rc) +

n∑
i=1

wiCji
rc

This shows the right-invariance of spherical blending.

Therefore, right-invariance is the key property for correct skinning, because QLB′
0 is equiv-

alent to spherical blending up to right-invariance. Unfortunately, the right-invariance of
spherical blending is achieved by computing the rotation center, which has the disadvan-
tages discussed in the beginning of this section. Obviously, it would be very desirable
to design a right-invariant rigid transformation blending which avoids the computation of
the rotation center. Of course, such a blending method must not breach other desirable
properties of QLB′

0, such as left-invariance and shortest-path (see Section 3.1).

A promising idea is to base the potential advanced blending algorithm on screw parameters
of a rigid transformation (see Section 2.1.2). A straightforward way would be to convert
the skinning matrices Cj1, . . . , Cjn to screw parameters (axis a, moment m, twist θ and
pitch d) and blend them linearly with given weights. Unfortunately, this method fails in

48 CHAPTER 4. DUAL QUATERNION SKINNING

Figure 4.2: Left: In most positions, log-matrix blending solves the candy wrapper artifact
equally well as spherical blending. Right: However, translation of the model in the world
space results in artifacts, due to the left-variance of log-matrix blending.

the same way as QLB′
0: linear blending of screw parameters is not right-invariant. This is

a consequence of the fact that the multiplication of 4-tuples (a, m, θ, d) defined via screw
composition is not distributive.

Alexa proposed another interesting method: linear blending of matrix logarithms, followed
by matrix exponential [3]. This method is indeed coordinate-invariant, because matrix
logarithm and exponential satisfy the relations

exp(TMT−1) = T exp(M)T−1, log(TMT−1) = T log(M)T−1,

see for example [98]. This is what enables the application of Alexa’s method in skinning
without computing rotation centers [28].

Alexa’s log-matrix blending produces reasonable skin deformations in most situations.
Unfortunately, matrix logarithms do not blend well the rotation parts of input matrices [13]
(see also Section A.2 in the Appendix). Another problem of log-matrix blending is that it
is neither left, nor right-invariant (which also shows that bi-invariance is really a stronger
property than coordinate-invariance). This follows from the simple fact that exp(TM) �=
T exp(M) as well as exp(MT) �= exp(M)T (and analogically for logarithms). To see this,
it is sufficient to consider just the case when M is a scalar, i.e., a 1 × 1 matrix. The
consequence of the left-variance of log-matrix blending is illustrated in Figure 4.2 (right-
variance produces similar artifacts). This is undesirable, even though in most practical
situations the artifacts are not as disturbing as in Figure 4.2.

For completeness, let us examine the invariance properties of linear blending. Linear
blending of matrices is bi-invariant (and thus also automatically coordinate-invariant),
because for any matrix T , the following is true:(

n∑
i=1

wiTMi

)
= T

(
n∑

i=1

wiMi

)
,

(
n∑

i=1

wiMiT

)
=

(
n∑

i=1

wiMi

)
T

CHAPTER 4. DUAL QUATERNION SKINNING 49

This is a consequence of the distributivity of matrix products. The bi-invariance of linear
blend skinning explains why linear blending has no problems with any change of coordi-
nates. This is probably one of the reasons why linear blend skinning still dominates in
many applications, in spite of the skin collapsing artifacts.

To conclude, we see that none of the previous solutions works perfectly in skinning: a
novel rigid transformation blending algorithm would be desirable. We found interesting
the intimate relationships between algebra, geometry and computer animation: distribu-
tive property of multiplications reflects itself in coordinate invariance, which in turn has
implications to skinning.

4.2 Optimal Rigid Transformation Blending for Skinning

In this section, we summarize (and formalize) the properties of an ideal rigid transformation
blending algorithm. We discuss this problem in general, because rigid transformation
blending has potentially much more applications than just skinning, e.g., motion blending
and animation compression [3].

Any blending technique of z rigid transformations M1, . . . , Mz with weight vector w ∈ Wz,
denoted as Φ(w; M1, . . . , Mz), must satisfy the following basic properties:

1. ∀i = 1, . . . , z : Φ(ei; M1, . . . , Mz) = Mi

2. ∀w ∈ Wz : Φ(w; M1, . . . , Mz) ∈ SE(3)

3. ∀ permutation π of {1, . . . , z} :

Φ((wπ(1), . . . , wπ(z))
T ; Mπ(1), . . . , Mπ(z)) = Φ(w; M1, . . . , Mz)

The first condition expresses the fact that if all weights except one are zero, then the result is
exactly the transformation corresponding to the non-zero element (recall that ei is the i-th
standard basis vector – see Section 2.1). The second condition requires that the blending
method preserves rigidity, i.e., enables us to speak about rigid transformation blending.
The third condition simply means that the blending is not dependent on any permutation
of the input. This condition may sound obvious, but consider that, for example, that
successive SLERPs do not satisfy permutation invariance [22].

However, even when taking all these requirements into account, there is still an infinite
number of ways how to define a valid blending. It is thus desirable to pick a blending
method which satisfies the most advantageous additional properties. One of such proper-
ties, discussed in Section 4.1, is bi-invariance, i.e.,

∀T ∈ SE(3) : TΦ(w; M1, . . . , Mz) = Φ(v; TM1, . . . , TMz)

Φ(w; M1, . . . , Mz)T = Φ(v; M1T, . . . , MzT)

50 CHAPTER 4. DUAL QUATERNION SKINNING

Other two useful properties can be taken from the well-known SLERP algorithm [117],
which interpolates between two 3D rotations (R1, R2). These properties are:

• Constant speed, meaning that the angle of interpolated rotation varies linearly with
respect to the interpolation parameter.

• Shortest path, meaning that the motion between R1 and R2 is a rotation about a
fixed axis with the smallest angle.

It is relatively simple to generalize these properties to our case of rigid transformations. Let
us decompose the rigid transformation M−1

1 Φ(t; M1, M2), t ∈ [0, 1] to corresponding screw
parameters: axis a(t), moment m(t), twist θ(t) and pitch d(t). Then a rigid transformation
blending is said to be

• Constant speed if the derivative of both θ(t) and d(t) is constant.

• Shortest path if a(t) and m(t) are constant, and θ(1) ∈ [−π, π].

Note that even though the constant speed and shortest path properties consider only the
case of two rigid transformations (i.e., interpolation), they can still be used with a general
blending (by considering the remaining weights to be zero). More formally, we could have
defined the constant speed and shortest path in general by requiring constant speed and
shortest path interpolation for each set of weights w1(t), . . . , wn(t) corresponding to an Rn

line segment for t ∈ [0, 1]. However, both definitions are equivalent in the case of blending
defined via linear combinations. Since this kind of blending is our main concern in this
thesis, we prefer to use the definition stated above.

4.3 Dual Quaternion Blending

In this section, we show how dual quaternions can be exploited to design a rigid transfor-
mation blending algorithm satisfying the properties from Section 4.2. One might wonder
whether it is really necessary to apply (and therefore study) dual quaternions, because any
algorithm working with dual quaternions can be re-written to an algorithm working just
with regular quaternions (which, in turn, can be re-written just to basic linear algebra). In
fact, our first attempt was to derive blending algorithms with the desired properties only
using classical quaternions, but the resulting formulas quickly became too complicated.
We hypothesize that this process would not result in anything but re-discovering of dual
quaternions (which seems to be, however, a problem far beyond the scope of this thesis).

Using dual quaternions, we design three practical rigid transformation blending algorithms.
They are derived by generalizing previous successful rotation blending techniques to all
rigid transformations:

CHAPTER 4. DUAL QUATERNION SKINNING 51

• ScLERP (Screw Linear Interpolation), a generalization of SLERP [117]

• DLB (Dual quaternion Linear Blending), a generalization of QLB (see Section 3.2)

• DIB (Dual quaternion Iterative Blending), a generalization of spherical averages [22]

ScLERP fulfills all properties from Section 4.2, but works only for two rigid transformations
(therefore we call it interpolation rather then blending). DLB can be applied to more than
two rigid transformations, but is only approximately constant-speed (we provide upper
bounds of the error). Finally, DIB meets all properties from Section 4.2 and supports more
than two rigid transformations. However, DIB is iterative, and therefore can be slower to
compute than the closed-form DLB. Our comparison with previous rigid transformation
blending algorithms (Section 4.4) shows that dual quaternion methods are in most cases
more favorable, both in terms of mathematical properties and computational speed.

We start by generalizing the famous Spherical Linear Interpolation (SLERP) from rotations
to rigid transformations. The interpolation of two unit quaternions p,q with parameter
t ∈ [0, 1] is computed as SLERP (t;p,q) = p(p∗q)t (assuming that we have already
enforced 〈p,q〉 ≥ 0). In Section 2.1.2, we have defined the power of dual quaternions,
which enables us to straightforwardly generalize SLERP to Screw Linear Interpolation
(ScLERP). ScLERP interpolates between two unit dual quaternions p̂, q̂ with parameter
t ∈ [0, 1], and is given as ScLERP (t; p̂, q̂) = p̂(p̂∗q̂)t. What is its geometric interpretation?
Obviously, p̂∗q̂ is a unit dual quaternion, which represents a rigid transformation from p̂
to q̂. According to Section 2.1.2, the power can be written as (p̂∗q̂)t = cos(t α̂

2
) + n̂ sin(t α̂

2
)

for some dual angle α̂ and dual vector n̂. The dual vector n̂ represents the axis of the
screw motion (an axis that needs not pass through the origin, as in Figure 2.3). The
dual angle t α̂

2
= tα0

2
+ εtαε

2
contains both the angle of rotation (tα0

2
) and the amount of

translation (tαε

2
). We can immediately observe two important properties: the axis n̂ of

the screw motion is constant (independent of t), and the angle of rotation tα0

2
, as well as

the amount of translation tαε

2
, vary linearly with respect to the interpolation parameter t.

This means that ScLERP guarantees both shortest path and constant speed interpolation.
The bi-invariance of ScLERP is proven in the following two lemmas.

Lemma 4.3. Let q̂ = cos θ̂
2

+ ŝ sin θ̂
2
, where q̂, ŝ are unit dual quaternions, and ŝ has zero

scalar part. Then for any unit dual quaternion m̂, both of the following equations are true:

exp

(
m̂ŝ

θ̂

2
m̂∗

)
= m̂ exp

(
ŝ
θ̂

2

)
m̂∗

log (m̂q̂m̂∗) = m̂ log(q̂)m̂∗

Proof. Since the scalar part of ŝ is zero, the same is true for the scalar part of m̂ŝ θ̂
2
m̂∗, as

can be shown by direct computation. This means that the exp on the left hand side of the

52 CHAPTER 4. DUAL QUATERNION SKINNING

first equation is well defined and, according to its definition,

exp

(
m̂ŝ

θ̂

2
m̂∗

)
= cos

θ̂

2
+ m̂ŝ sin

θ̂

2
m̂∗ = m̂

(
cos

θ̂

2
+ ŝ sin

θ̂

2

)
m̂∗

because a dual number always commutes with a dual quaternion and m̂m̂∗ = 1. This
shows the first equation. The proof of the second one is similar:

m̂q̂m̂∗ = m̂

(
cos

θ̂

2
+ ŝ sin

θ̂

2

)
m̂∗ = cos

θ̂

2
+ m̂ŝm̂∗ sin

θ̂

2

Therefore log(m̂q̂m̂∗) = m̂ŝ θ̂
2
m̂∗ = m̂ log(q̂)m̂∗, as we wanted to prove.

Lemma 4.4. ScLERP is bi-invariant, that is for any unit dual quaternions r̂, p̂, q̂ and any
interpolation parameter t ∈ [0, 1], both of the following equations are true:

ScLERP (t; r̂p̂, r̂q̂) = r̂ScLERP (t; p̂, q̂)

ScLERP (t; p̂r̂, q̂r̂) = ScLERP (t; p̂, q̂)r̂

Proof. The left-invariance is easy, because

ScLERP (t; r̂p̂, r̂q̂) = r̂p̂(p̂∗r̂∗r̂q̂)t = r̂p̂(p̂∗q̂)t = r̂ScLERP (t; p̂, q̂)

Proving the right-invariance is a little more tricky: ScLERP (t; p̂r̂, q̂r̂) = p̂r̂(r̂∗p̂∗q̂r̂)t. It
is now sufficient to show that (r̂∗p̂∗q̂r̂)t = r̂∗(p̂∗q̂)tr̂, because this gives us p̂r̂(r̂∗p̂∗q̂r̂)t =
p̂r̂r̂∗(p̂∗q̂)tr̂ = ScLERP (t; p̂, q̂)r̂. However, the power can be written as (r̂∗p̂∗q̂r̂)t =
exp(t log(r̂∗p̂∗q̂r̂)). Thanks to Lemma 4.3, we can derive

exp(t log(r̂∗p̂∗q̂r̂)) = exp(tr̂∗ log(p̂∗q̂)r̂) = r̂∗ exp(t log(p̂∗q̂))r̂ = r̂∗(p̂∗q̂)tr̂

which concludes the proof.

Naturally, the bi-invariance of ScLERP implies its coordinate-invariance. The remaining
properties from Section 4.2 are easy to show for ScLERP (permutation invariance follows
from Lemma 4.6).

Let us now turn our attention to quaternion linear blending (QLB), introduced in Sec-
tion 3.2. In the case of two transformations, the inputs of QLB are identical to those
of SLERP: quaternions p,q and parameter t ∈ [0, 1]. The disadvantage of QLB is that
it is not a constant speed interpolation, although it is shortest path (Section 3.2), and
coordinate-invariant, as proven below (for the more general case of dual quaternions). As
computed in Section 3.2, the difference between the angle of rotation in QLB and SLERP
is fairly small, i.e., always strictly less than 8.15 degrees. This means that QLB is actually
“almost” constant speed interpolation, but faster and easier to compute than SLERP.

CHAPTER 4. DUAL QUATERNION SKINNING 53

The dual counterpart of QLB is Dual quaternion Linear Blending (DLB). As could be
expected, this interpolation is again a direct generalization, defined as

DLB(t; p̂, q̂) =
(1 − t)p̂ + tq̂

‖(1 − t)p̂ + tq̂‖
The natural question is whether DLB is also a good approximation of ScLERP, as QLB
was of SLERP. We show first the bi-invariance of DLB.

Lemma 4.5. For any unit dual quaternions r̂, p̂, q̂ and any interpolation parameter t ∈
[0, 1], both of the following equations are true:

DLB(t; r̂p̂, r̂q̂) = r̂DLB(t; p̂, q̂)

DLB(t; p̂r̂, q̂r̂) = DLB(t; p̂, q̂)r̂

Proof. For proof of the left-invariance it is sufficient to use the left-distributivity of dual
quaternions which implies ‖(1− t)r̂p̂+ tr̂q̂‖ = ‖r̂‖‖(1− t)p̂+ tq̂‖ = ‖(1− t)p̂+ tq̂‖ (recall
that r̂ is a unit dual quaternion). We can thus write

DLB(t; r̂p̂, r̂q̂) =
(1 − t)r̂p̂ + tr̂q̂

‖(1 − t)r̂p̂ + tr̂q̂‖ = r̂
(1 − t)p̂ + tq̂

‖(1 − t)p̂ + tq̂‖ = r̂DLB(t; p̂, q̂)

Proof of the right-invariance is a direct analogy of the proof above (using right-distributivity
of dual quaternions).

The left-invariance of both DLB and ScLERP simplifies their comparison. The following
derivation is in fact an extension of the results from Section 3.2, and therefore we will now
proceed more quickly. Instead of comparing DLB(t; p̂, q̂) directly with ScLERP (t; p̂, q̂),
we rewrite them as p̂DLB(t; 1, p̂∗q̂) and p̂ScLERP (t; 1, p̂∗q̂), which is correct because of
left-invariance. Since p̂ is the same in both expressions, it is sufficient to compare just
DLB(t; 1, p̂∗q̂) with ScLERP (t; 1, p̂∗q̂), which is an easier problem. As p̂∗q̂ is a unit dual
quaternion, it can be written as p̂∗q̂ = cos α̂

2
+ n̂ sin α̂

2
. This enables us to derive

DLB(t; 1, p̂∗q̂) =
1 − t + tp̂∗q̂
‖1 − t + tp̂∗q̂‖ =

1 − t + t cos(α̂
2
) + n̂t sin(α̂

2
)

‖1 − t + tp̂∗q̂‖
ScLERP (t; 1, p̂∗q̂) = 1(1∗p̂∗q̂)t = (p̂∗q̂)t = cos

(
t
α̂

2

)
+ n̂ sin

(
t
α̂

2

)
from which we see that both DLB and ScLERP use the same, constant screw axis n̂. This
means that DLB is a shortest path interpolation. Thus, the only difference between DLB
and ScLERP is in the angle of rotation and amount of translation. Since DLB(t; 1, p̂∗q̂)
is a unit dual quaternion, it can be written in form

DLB(t; 1, p̂∗q̂) = cos
β̂t

2
+ n̂ sin

β̂t

2

54 CHAPTER 4. DUAL QUATERNION SKINNING

By considering only the scalar part of this equality, we see that

cos
β̂t

2
=

1 − t + t cos(α̂
2
)

‖1 − t + tp̂∗q̂‖
In order to compute an upper bound of the difference between DLB and ScLERP, it
is sufficient to express the dual angle β̂t and compare it with ScLERP’s α̂t. It is not
difficult but is a lengthy mathematical analysis: we therefore employed the software package
Maple [24] to carry out the computations, see Section A.1 in the Appendix. The result
is that the angles of rotation in DLB and ScLERP always differ by less than 8.15 degrees
(which is in accordance with the results from Section 3.2). The amount of translation
always differs by less than 15.1% of the translation present in p̂∗q̂. Note that those results
are upper bounds – in practice, the difference is usually much smaller. To conclude, DLB
is coordinate invariant, shortest path and “almost” constant speed. DLB works also for
multiple rigid body transformations represented by unit dual quaternions q̂1, . . . , q̂n with
convex weights w = (w1, . . . , wn)T :

DLB(w; q̂1, . . . , q̂n) =
w1q̂1 + . . . + wnq̂n

‖w1q̂1 + . . . + wnq̂n‖
Obviously, the properties of DLB hold also in this more general case.

Our next goal is to achieve also constant speed solution and therefore fulfill all the prop-
erties from Section 4.2. For the case of 3D rotations, this can be done using spherical
averages [22]. Unfortunately, it is not possible to simply apply spherical averages for unit
dual quaternions, because the set of unit dual quaternions Q̂1 is not a hypersphere (instead,
it is a set of tangent planes of a hypersphere [94]). Fortunately, it has been shown that
Buss and Fillmore’s idea [22] can be generalized to other manifolds [45]. The latter paper
is based on the theory of matrix groups and Lie algebras. We propose a similar algorithm
based on dual quaternions (see Algorithm 4.1), which is more efficient – due to the simple
logarithm and exponential for dual quaternions (c.f. with the Rodriguez formula for rigid
transformation matrices [101]).

Algorithm 4.1: Dual quaternion iterative blending
Input: Unit dual quaternions q̂1, . . . , q̂n, convex weights w = (w1, . . . , wn),
desired precision p
Output: Blended unit dual quaternion b̂
DIB(w; q̂1, . . . , q̂n)
(1) b̂ = DLB(w; q̂1, . . . , q̂n)
(2) repeat
(3) x̂ =

∑n
i=1 wi log(b̂∗q̂i)

(4) b̂ = b̂ exp(x̂)
(5) until ‖x̂‖ < p
(6) return b̂

CHAPTER 4. DUAL QUATERNION SKINNING 55

We leave a detailed mathematical discussion of this algorithm for a future work (considering
the complexity of discussion of a simpler algorithm [22]). In practice, we observed the DIB
algorithm to converge very quickly, typically in 1 to 4 steps. An intuitive explanation of
this algorithm is shown in Figure 4.3.

1

2

3

q1

q2

b Q1

initial estimate

^
^ ^

^

b*q1

b*q2

1=b*b

log

x1
x2

^ ^ ^ ^

^ ^

^^

exp()x

1x1
x2x

exp

^ ^ ^

^
q1

q2

b xexp()

improved estimate

^
^ ^

^

Figure 4.3: Illustration of one iteration of the DIB algorithm for n = 2 in a 2D slice
of a 6-dimensional manifold Q̂1. First, the input dual quaternions are left-multiplied by
b̂∗, which maps the initial estimate b̂ onto the identity. The logarithm mapping then
transforms b̂∗q̂1, b̂∗q̂2 into the tangent space of Q̂1 at the identity, giving x̂1 = log(b̂∗q̂1),
x̂2 = log(b̂∗q̂2). The blended value x̂ = w1x̂1 + w2x̂2 is computed and projected back by
the exponential mapping. Finally, multiplication b̂ exp(x̂) yields the unit dual quaternion
closer to the exact solution.

The bi-invariance of DIB (and thus also the coordinate-invariance), follows from the bi-
invariance of DLB and Lemma 4.3. The comparison of ScLERP with DIB is interesting.
Not only is the result of DIB exactly equivalent to the result of ScLERP, but DIB finds
this solution in just a single iteration (the second pass through the loop finds that ‖x̂‖ is
zero and performs no update of b̂). We prove this property in Lemma 4.7. First, however,
we need the following:

Lemma 4.6. For any unit dual quaternion q̂ and dual numbers â, b̂, it is true that log(q̂â) =

â log(q̂) and q̂âq̂b̂ = q̂â+b̂.

Proof. The first statement is simple, because, by definition, log(q̂â) = log(exp(â log(q̂))) =
â log(q̂).

The second part is a little bit more tricky: by definition, q̂âq̂b̂ = exp(â log q̂) exp(b̂ log q̂).
However, we must be careful, because for dual (as well as regular) quaternions in general

56 CHAPTER 4. DUAL QUATERNION SKINNING

exp(p̂) exp(q̂) �= exp(p̂ + q̂). Luckily, in our case, exp(â log q̂) exp(b̂ log q̂) = exp((â +
b̂) log q̂), as we show below. This is sufficient to finish the proof, because, by definition,

exp((â + b̂) log q̂) = q̂â+b̂. According to Section 2.1.2, we can write log q̂ = ŝĉ, where ŝ
is a unit dual quaternion with zero scalar part. Note that ŝŝ = (s0 + εsε)(s0 + εsε) =
s0s0 +ε(sεs0 +s0sε) = −1, because of Formula (2.1) and the fact that 〈s0, sε〉 = 0 (following
from the unit length of ŝ). This enables us to derive

exp(ŝĉâ) exp(ŝĉb̂) = (cos ĉâ + ŝ sin ĉâ)(cos ĉb̂ + ŝ sin ĉb̂) = cos ĉâ cos ĉb̂ − sin ĉâ sin ĉb̂ +

ŝ(sin ĉâ cos ĉb̂ + cos ĉâ sin ĉb̂) = cos(ĉâ + ĉb̂) + ŝ sin(ĉâ + ĉb̂) = exp(ŝĉ(â + b̂))

Lemma 4.7. For the case of two rotations, the DIB(t; p̂, q̂) algorithm converges in a
single iteration with result ScLERP (t; p̂, q̂).

Proof. Thanks to the bi-invariance of DIB, we can perform the same simplification as
when comparing DLB with ScLERP, that is instead of DIB(t; p̂, q̂) and ScLERP (t; p̂, q̂),
compare DIB(t; 1, p̂∗q̂) and ScLERP (t; 1, p̂∗q̂). Let us denote the initial value of b̂ as
b̂0 = DLB(t; 1, p̂∗q̂). With weight vector w = (1 − t, t) as the input (recalling convention
from Section 4.2), the DIB computes in the first iteration b̂1 = b̂0 exp((1 − t) log(b̂∗

0) +
t log(b̂∗

0p̂
∗q̂)). As shown above, the only difference between DLB and ScLERP is in the

angle of rotation and amount of translation. It means that b̂0 = (p̂∗q̂)û for some dual
number û. Since for unit dual quaternions conjugation is the same as inverse, we can
write, using Lemma 4.6,

b̂1 = (p̂∗q̂)û exp((1 − t) log((p̂∗q̂)−û) + t log((p̂∗q̂)1−û)) = (p̂∗q̂)û exp((t − û) log(p̂∗q̂))

= (p̂∗q̂)û+t−û = (p̂∗q̂)t = ScLERP (t; 1, p̂∗q̂)

In the following iteration, the DIB algorithm computes

x̂ = (1 − t) log b̂∗
1 + t log(b̂∗

1p̂
∗q̂) = (1 − t) log((p̂∗q̂)−t) + t log((p̂∗q̂)1−t)

= (t2 − t + t − t2) log(p̂∗q̂) = 0

and thus the algorithm DIB(t; 1, p̂∗q̂) terminates with zero error and returns b̂1 exp(0) =
b̂1 = ScLERP (t; 1, p̂∗q̂). Multiplication from left by p̂ and using the left-invariance yields
DIB(t; p̂, q̂) = ScLERP (t; p̂, q̂).

An immediate consequence is that DIB is also constant speed and shortest path. The DIB
algorithm therefore meets all the properties from Section 4.2. However, it can be slower to
compute than the closed-form DLB – the choice obviously depends on the needs of each
particular application.

CHAPTER 4. DUAL QUATERNION SKINNING 57

4.4 Comparison with Other Methods

This section summarizes the properties of previous blending algorithms and the dual
quaternion based ones. Where applicable, we also state the execution time in FLOPS,
see Table 4.1. Comments to the algorithms listed in Table 4.1 follow.

Linear – linear blending of homogeneous matrices is the most straightforward solution. As
shown in Section 4.1, it is bi-invariant and naturally supports more than 2 transformations.
Unfortunately, linear blending of rigid transformations does not preserve their rigidity,
therefore also the constant speed and shortest path properties are not defined.

QLB′
0 – based on the decomposition of a homogeneous matrix to a quaternion and a

translation. Rigidity is preserved, because quaternion to matrix conversion always produces
a valid rotation matrix. However, QLB′

0 is not right invariant, as shown in Section 3.1,
and therefore neither coordinate nor bi-invariant. Shortest path property of QLB′

0 follows
from Lemma 3.1 in Section 3.2 and its non-constant speed is discussed in the same section.

SB – spherical blending, i.e., QLB′
rc

, where rc is computed by least squares optimiza-
tion (see Section 3.1). Therefore, spherical blending inherits the properties of QLB′

0 and
augments them with bi-invariance, as proven in Lemma 4.1 and Lemma 4.2.

Log – blending of matrix logarithms, proposed by Alexa [3], naturally preserves rigidity
of input transformations, because of the properties of matrix exponential [101]. Invariance
properties of log-matrix blending have been discussed in Section 4.1. As pointed out by
Bloom et al. [13], log-matrix blending is not shortest path (even for pure rotations).
Moreover, it is not constant speed, which we prove in the Appendix A.2.

Finally, the properties of our dual quaternion based blending algorithms, i.e., ScLERP,
DLB and DIB, have been discussed in Section 4.3.

Linear QLB′
0 SB Log ScLERP DLB DIB

Preserving rigidity - + + + + + +
Bi-invariance + - + - + + +

Coord.-invariance + - + + + + +
n > 2 + + + + - + +

Constant speed - - - - + - +
Shortest path - + + - + + +

FLOPS 23n 28n + 26 (�1) 104n + 160 240 49n + 65 (�2)

Table 4.1: Properties of different rigid transformation blending algorithms. (�1) FLOPS
for SB are determined by the applied SVD algorithm (which is orders of magnitude slower
than the blending itself). (�2) FLOPS for DIB depend on the actual input and on the
desired precision.

We conclude that, for two rigid transformations, the optimal choice is ScLERP. If we need
a precise solution for more than two transformations, we have to employ the iterative DIB.
The FLOPS of log-matrix blending reported in Table 4.1 refer to an optimization, which is

58 CHAPTER 4. DUAL QUATERNION SKINNING

restricted to rigid transformations and employs a closed-form Rodriguez formula for rigid
transformations [101, 6]. However, even though it is closed-form, the Rodriguez formula is
still more difficult to compute than the simple dual quaternion exp and log. We see that
there is no reason to apply log-matrix blending for rigid transformations, because DLB has
better properties and faster run-time. In the calculation of FLOPS, we assume that both
input and output are 4×4 homogeneous matrices (specifically, the FLOPS for matrix↔dual
quaternion conversions are included in Table 4.1; if an application works internally with
quaternions instead of matrices, then the performance of our proposed algorithms is even
better).

4.5 Application in Skinning

We have tested our DLB algorithm to the problem of skinning and have developed both
CPU and GPU implementations. Having an existing code for linear blend skinning,
this is quite straightforward (see Algorithm 4.2). In the pseudocode, function rot-

Part retrieves the rotational 3 × 3 submatrix of a homogeneous matrix and functions
matrix2dq, dq2matrix convert between dual quaternions and homogeneous matrices
(see Section 2.1.2).

Algorithm 4.2: Dual quaternion skinning

Input: C1, . . . , Cp – joint transformation matrices for the current posture
v1, . . . ,vm – rest-pose vertices
ν1, . . . , νm – rest-pose normals
w1,1, . . . , w1,n1, . . . , wm,1, . . . , wm,nm – vertex weights
j1,1, . . . , j1,n1 , . . . , jm,1, . . . , jm,nm – influencing joints indices
(see Section 2.2.1 for details)

Output: v′
1, . . . ,v

′
m – vertices of the deformed skin

ν ′
1, . . . , ν

′
m – normals of the deformed skin

DQS(C1, . . . , Cp)
(1) for i = 1 to p
(2) q̂i = matrix2dq(Ci)
(3) for k = 1 to m
(4) q̂blend = DLB(wk,1, . . . , wk,nk

; q̂jk,1
, . . . , q̂jk,nk

)
(5) M = dq2matrix(q̂blend)
(6) v′

k = Mvk

(7) ν ′
k = rotPart(M) νk

For an experimental evaluation, we used the woman model from Chapter 3 (just equipped
with a more decent dress), having 5002 vertices, 9253 triangles and 54 joints. The cloth
model used to illustrate the artifacts of SBS has 6000 vertices, 12000 triangles and 49
joints. The average run-time performance is reported in Figure 4.4.

CHAPTER 4. DUAL QUATERNION SKINNING 59

0

4

8

12

Pentium 4 / 3.4 GHz GeForce 6600 GT

LBS Log SBS DLB

3.67

11.78
10.83

5.074.66

0.0

0.1

0.2

0.3

0.4

0.5

LBS DLB

0.32

0.39

0.46

[ms] [ms]

QLB0
' QLB0

'

Figure 4.4: Average CPU/GPU run-times for skin deformation of a woman model in
milliseconds.

We see that practical results are better than the theoretical ones presented in Table 4.1;
this is because FLOPS counts in Table 4.1 include matrix to dual quaternion conversion,
but our skinning application works internally with dual quaternions. The measurements,
together with the visual results in Figure 4.5, clearly show the superiority of dual quaternion
blending over previous methods: is not only more accurate, but also more than twice as
fast as both log-matrix and spherical blending.

Dual quaternion skinning is slightly slower than linear blend skinning and QLB′
0, but

we believe that this is not a high price to pay for the elimination of artifacts. When
compared to linear blending, dual quaternions have one more advantage: they only need
8 floats instead of the 12 required by matrices, which is of particular benefit for the GPU
implementation.

60 CHAPTER 4. DUAL QUATERNION SKINNING

LBS DLB DLBLBS

Log LogDLB DLB

SBS SBSDLB DLB

QLB0
' DLB DLBQLB0

'

(a)

(b)

(c)

(d)

Figure 4.5: Comparison of dual quaternion skinning with (a) linear blend skinning, (b)
log-matrix blending, (c) direct quaternion blending – QLB′

0, (d) spherical blend skinning.

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 61

5 Collision Detection for Linear Blend Skinning

In this chapter, we discuss the problem of collision detection (CD) with an object deformed
by linear blend skinning (see Section 2.2.1). The reason to consider linear blend skinning
(while we presented more advantageous blending methods in the previous chapters) is that
CD is not trivial already in the case of linear blending. Therefore, we find it natural to
start with this simplest skinning algorithm. Also, the collision detection for spherical blend
skinning, presented in Chapter 6, builds on the results from this chapter.

It would be of course possible to apply a general CD algorithm (see Section 2.3.2) for
models deformed by linear blend skinning. However, this is not the most efficient way,
because no general deformable CD algorithm can work in a sub-linear time with respect
to the number of vertices. This is obvious: if general deformations are supported, it is
necessary to visit each vertex – just to find out the deformation.

This is a serious drawback when compared to the rigid body CD, which can be processed
in a sub-linear time thanks to bounding volume hierarchies. Sub-linear CD algorithms
for special deformation models have been presented in [81, 62]. They are based on an
on-demand refitting of bounding volumes, which enables us to achieve sub-linear time
complexity. Unfortunately, both [81, 62] work only with linear combinations of vertex
displacements (see Section 2.3.2) and therefore cannot be applied to linear blend skinning.

In this chapter, we discuss how to design an on-demand refitting for linear blend skinning
and thus obtain a sub-linear CD algorithm.

5.1 Sphere Tree Construction

We have chosen the most simple bounding volume – a sphere, because of its one unique
feature: invariance under rotation. This property is very advantageous for the on-demand
refitting operation. Sphere tree hierarchy is constructed for the skin in the reference posi-
tion.

Since our goal is a precise algorithm, we must ensure that each triangle of the skin is
covered by a bounding sphere entirely. (We do not allow covering of one triangle by several
bounding spheres, although this could be advantageous for long thin triangles.) In the first
pass, we construct only a binary sphere tree according to Algorithm 2.1. We compute the
minimal enclosing sphere for a set of vertices in each node using a fast exact algorithm
[36]. This ensures that our spheres in the reference position are as tight as possible.

After the initial sphere tree is built, we execute a second pass which optimizes the sphere
tree. We observed that it may happen that the radii of the children and parent spheres do
not differ considerably (see example in Section 5.4). If a node c has a sphere of similar size
as its parent node p, it means that it has only a small discriminating power for the CD
query. We can therefore remove the node c from the tree and assign its children directly
to node p. It does not violate the correctness of the algorithm, but saves an intersection

62 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

test and several refitting operations. Therefore, in the second pass, we collapse the binary
tree to a general n-ary tree, following a simple rule. Let us denote the radii of spheres in
nodes c and p as cr and pr. The node c is deleted if

cr > C · pr

where C is a user-defined constant. We found the number C = 0.6 to work well in practice.

5.2 On-demand Sphere Refitting

Recall that linear blend skinning (LBS) is based on Formula (2.6). In the following, we
call the joints j1, . . . , jn influencing vertex v as its joint-set and denote it as J(v).

In this section, we describe an efficient method for on-demand sphere refitting, which is the
key part of our sub-linear CD algorithm. Our goal is to detect collisions between models
deformed by LBS in an arbitrary posture. During pre-processing, a sphere tree for the
model in the reference position is built according to Section 5.1. During the CD query, it
is necessary to transform the bounding spheres from the reference position to the current
(animated) posture preserving their bounding property, i.e., ensuring that a transformed
sphere encloses all the geometry that it enclosed in reference position. It does not affect
the result of CD if the transformed sphere is bigger than necessary, although it might affect
the performance.

Observe that the only thing that changes the shape of the deformed skin during the anima-
tion are the joint rotations, i.e., the transformation matrices Cji

. The number of joints in a
typical model is much smaller than the number of vertices. The main idea of our on-demand
refitting operation is to update the bounding spheres using only the joint transformations
Cji

(and some pre-computed information which is invariant during the animation). As
mentioned in Section 2.2.1, the LBS does nothing else but a convex combination of indi-
vidual vertex transformations. In order to enclose the transformed geometry, it is sufficient
to enclose only the transformed vertices (since triangles are convex).

Assume that we are refitting a sphere S containing vertices v1, . . . ,vt in the reference
posture. The list of all joint-sets influencing v1, . . . ,vt is pre-computed and stored in the
node representing sphere S. For simplicity, we first assume that all vertices v1, . . . ,vt are
influenced by only one joint-set J , i.e., J = J(v1) = J(v2) = . . . = J(vt).

LBS transforms vertex vi to v′
i according to Formula (2.6). From this equation it can be

seen immediately that
v′

i ∈ CH({Cjvi : j ∈ J})
Since vi ∈ S, it indicates that we can transform the whole sphere S instead of individual
vertices. To transform a sphere by a homogeneous matrix it is sufficient to transform only
the center of the sphere and keep the radius intact (thanks to the rotation invariance).

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 63

Since Cjvi ∈ CjS for any j ∈ J , we can write

v′
i ∈ CH

(⋃
j∈J

CjS

)
(5.1)

for any i = 1, . . . , t. Note that the bounding volume in Formula (5.1) depends only on the
bounding sphere S and the current joint transformations Cj, i.e., it can be computed in
time sub-linear to l – the number of vertices. In practice, we work with minimal enclosing
sphere instead of convex hull. This is correct indeed, because sphere is a convex set and
therefore contains the convex hull.

Unfortunately, the bounding volume according to Formula (5.1) is very loose (conservative).
This is especially apparent if sphere S contains only few vertices. The bad approximation

quality of CH
(⋃

j∈J CjS
)

follows from the fact that it contains points v′
i for arbitrary

convex weights. In other words, it encloses not only the current LBS deformation, but
all possible LBS deformations that could be achieved by varying vertex weights. We can
make the bounding spheres much more tight by taking the actual model’s vertex weights
into account.

This is illustrated in Figure 5.1. In the left image, we see three vertices v1,v2,v3 bounded
by sphere S in the reference position. These vertices are influenced by joints j1 and j2,
let us say that the weights of v1 are 0.6, 0.4 (for j1 and j2), of v2: 0.5, 0.5, and of v3:
0.4, 0.6 (indicated by color). The middle image shows the animated skeleton. All possible
positions of the deformed vertex v′

i form set

Li = {wCj1vi + (1 − w)Cj2vi : w ∈ [0, 1]}, i = 1, 2, 3

which are the line segments illustrated in the picture. The bounding volume BV1 given
as the convex hull of transformed spheres Cj1S and Cj2S encloses the lines L1, L2, L3 and
therefore also the new vertex positions v′

1,v
′
2,v

′
3. A smaller bounding volume BV2 is

depicted in Figure 5.1 right. It is created by considering that vertex weights for j1 fall into
interval [0.4, 0.6]. Therefore, it is sufficient to enclose only shorter line segments

{wCj1vi + (1 − w)Cj2vi : w ∈ [0.4, 0.6]}

which gives BV2. The next section describes how to exploit this observation to create
tighter refitted spheres.

5.2.1 Optimized Sphere Refitting

For notational simplicity, let us assume that all vertices enclosed by S belong to the joint-
set J = {1, . . . , n}. For any j ∈ J we define the smallest interval of weights [lj , hj] such
that all vertex weights of joint j fit into this interval. These weight intervals are used to
create smaller refitted spheres. The following construction is based on a concept of convex

64 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

j1
j2

jointmesh

vertices

C Sj2

C Sj1

v1
v2 v3 sphere S

BV1
BV2

bone

C v1j1

C v1j2
v1' v2' v3'

Figure 5.1: Left: the reference posture; middle and right: the animated posture. Cj1

(Cj2) is the transformation matrix of joint j1 (j2). Bounding volume BV1 is bigger than
necessary, because it encloses all possible deformations of vertices v1,v2,v3. Our algorithm
uses an optimized bounding volume BV2, which considers actual vertex weights.

combination of spheres – a generalization of convex combination of points. For brevity, we
denote the transformed spheres as Sj = CjS for each j = 1, . . . , n. We define the convex
combination of spheres S1, . . . Sn (or any general convex sets) with weight vector w ∈ Wn

as:
n∑

i=1

wiSi ≡
{

n∑
i=1

wixi : xi ∈ Si

}

i.e., the set of convex combinations of all points from S1, . . . , Sn. This definition is a natural
extension of standard convex combination of points. The following lemma claims that a
convex combination of spheres is a sphere which can be computed as a convex combination
of sphere centers and radii.

Lemma 5.1. Let S1, . . . Sn be spheres in Rd with centers si ∈ Rd and radii ri. If w ∈ Wn

then
n∑

i=1

wiSi = S

where S is a sphere with center s =
∑n

i=1 wisi and radius r =
∑n

i=1 wiri.

Proof. Let x ∈ ∑n
i=1 wiSi. According to the definition of convex combination of convex

sets, we have xi ∈ Si such that x =
∑n

i=1 wixi. Obviously ‖xi−si‖ ≤ ri for each i = 1, . . . n.
Multiplying the equations by wi and summing them together yields

n∑
i=1

‖wixi − wisi‖ ≤
n∑

i=1

wiri

The triangle inequality says that∥∥∥∥∥
n∑

i=1

wixi −
n∑

i=1

wisi

∥∥∥∥∥ ≤
n∑

i=1

‖wixi − wisi‖

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 65

Putting both inequalities together gives

‖x − s‖ =

∥∥∥∥∥
n∑

i=1

wixi −
n∑

i=1

wisi

∥∥∥∥∥ ≤
n∑

i=1

wiri = r

which shows that x ∈ S, and therefore
∑n

i=1 wiSi ⊆ S. In order to show the opposite
inclusion, choose x ∈ S, i.e., satisfying ‖x − s‖ ≤ r. Consider points

xi =
(x − s)ri

r
+ si

for i = 1, . . . n. Note that xi ∈ Si, because

‖xi − si‖ =

∥∥∥∥(x − s)ri

r

∥∥∥∥ ≤ r ri

r
= ri

Moreover,
n∑

i=1

wixi =
x − s

r

n∑
i=1

wiri +

n∑
i=1

wisi =
(x − s)r

r
+ s = x

which shows that x ∈ ∑n
i=1 wiSi, and therefore also S ⊆∑n

i=1 wiSi.

Lemma 5.1 is interesting by itself, but we use it also to show that it is possible to rewrite
the bounding volume from Formula (5.1) to

CH

(⋃
j∈J

Sj

)
=

⋃
w∈Wn

n∑
j=1

wjSj (5.2)

which is a generalization of the well-known identity for convex hulls of points. In order to
show the correctness of Formula (5.2), we prove first the convexity of the set on the right
hand side of Formula (5.2).

Lemma 5.2. Let S1, . . . Sn are spheres in Rd. Then the set

M =
⋃

w∈Wn

n∑
j=1

wjSj

is convex.

Proof. Let us assume that sphere Si has center si ∈ Rd and radius ri. We fix an arbitrary
x ∈ M, x′ ∈ M and λ ∈ 〈0, 1〉, and we have to proof that x′′ = (1−λ)x+λx′ ∈ M . By the
definition of M , there exist weight vectors w ∈ Wn and w′ ∈ Wn such that x ∈∑n

i=1 wiSi

and x′ ∈∑n
i=1 w′

iSi. According to Lemma 5.1, it means that

‖x −
n∑

i=1

wisi‖ ≤
n∑

i=1

wiri, ‖x′ −
n∑

i=1

w′
isi‖ ≤

n∑
i=1

w′
iri

66 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

Consider weights
w′′

i = (1 − λ)wi + λw′
i, i = 1, . . . , n

and observe that w′′ ∈ Wn: obviously w′′
i ≥ 0 and

∑n
i=1 w′′

i = (1−λ)
∑n

i=1 wi+λ
∑n

i=1 w′
i =

1. Using the triangle inequality we derive∥∥∥x′′ −
∑

w′′
i si

∥∥∥ =
∥∥∥(1 − λ)x −

∑
(1 − λ)wisi + λx′ −

∑
λw′

isi

∥∥∥ ≤
(1 − λ)

∥∥∥x −
∑

wisi

∥∥∥+ λ
∥∥∥x′ −

∑
w′

isi

∥∥∥ ≤ (1 − λ)
∑

wiri + λ
∑

w′
iri =

∑
w′′

i ri

Again by Lemma 5.1, this means that x′′ ∈∑n
i=1 w′′

i Si and thus also x′′ ∈ M .

In order to verify Formula (5.2), it is now sufficient to show the following:

Lemma 5.3. Let S1, . . . Sn are spheres in Rd. Then the set M =
⋃

w∈Wn

∑n
j=1 wjSj is the

convex hull of S1 ∪ · · · ∪ Sn.

Proof. By Lemma 5.2 we know that the set M is convex, and M obviously contains
S1, . . . , Sn. Therefore, it is sufficient to show that if any other convex set C ⊆ Rd contains
S1, . . . Sn, then it contains also M . To show that C contains M , it is sufficient to show
that

∑n
i=1 wiSi ⊆ C for any w ∈ Wn. Let us choose x ∈∑n

i=1 wiSi. By definition, for any
i = 1, . . . , n we have xi ∈ Si such that x =

∑n
i=1 wixi. We assumed Si ⊆ C which means

that xi ∈ C for each i = 1, . . . , n. The convexity of C assures x ∈ C. This verifies that∑n
i=1 wiSi ⊆ C.

Having verified Formula (5.2), we can take the weight intervals into account by defining
W ′

n = {x ∈ Wn : li ≤ xi ≤ hi, i = 1, . . . n} and changing the bounding volume to

M ′ =
⋃

w∈W ′
n

n∑
j=1

wjSj (5.3)

This is correct, because only the weights that actually appear among the bounded vertices
are important, and all these weights are within [l1, h1] × · · · × [ln, hn]. Because of For-
mula (5.2), we refer to the set M ′ as to the generalized convex hull of spheres S1, . . . , Sn.
It is obvious that the generalized convex hull is always a subset of the non-generalized one,
and they are equal if and only if all weight intervals are [0, 1].

The resulting refitted sphere computed by our algorithm is therefore the bounding sphere
of M ′. From the definition it is not straightforward to see how M ′ looks like, and how its
enclosing sphere could be efficiently computed. This is an essential part of the proposed
algorithm and therefore deserves our attention.

The main trick is that instead of working directly with spheres S1, . . . , Sn, we compute
another set of spheres R1, . . . , Rm, whose ordinary (non-generalized) convex hull will be

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 67

equivalent to the generalized convex hull of spheres S1, . . . , Sn. The spheres R1, . . . , Rm

reduce the problem to computing the minimal enclosing sphere of spheres.

Our task now is to transform the set of spheres S1, . . . , Sn with weight intervals [l1, h1],
. . . , [ln, hn] into spheres R1, . . . , Rm, turning the generalized convex hull into a standard
one. Let us examine the set W ′

n. Assuming naturally 0 ≤ li ≤ hi ≤ 1, the set W ′
n can be

written explicitly as

W ′
n = {w ∈ Rn : li ≤ wi ≤ hi, i = 1, . . . n,

n∑
i=1

wi = 1}

We can interpret W ′
n geometrically as an intersection of 2n half-spaces and one hyperplane.

It means that W ′
n is a bounded (n− 1)-dimensional convex set in Rn, and therefore, it can

be expressed as a convex hull of some points in Rn (because of the equivalency of bounded
H-polytopes and V-polytopes [93]). We call these points corners and denote them as
c1, . . . , cm. Since the set W ′

n depends only on constant vertex weights, the corners can be
pre-computed and stored along with the model. We employed only a simple brute-force
computation of corners: testing all intersections and discarding those outside [l1, h1]× . . .×
[ln, hn]. Once the corners are known, the spheres R1, . . . , Rm can be computed as

Ri =

n∑
j=1

ci,jSj , i = 1, . . . , m (5.4)

In order to justify this formula, consider that W ′
n is the convex hull of c1, . . . , cm, and thus

can be expressed as W ′
n = {∑m

i=1 uici : u ∈ Wm}. Therefore

⋃
w∈W ′

n

n∑
j=1

wjSj =
⋃

u∈Wm

n∑
j=1

(
m∑

i=1

uici,j

)
Sj

because the j-th component of
∑m

i=1 uici is
∑m

i=1 uici,j. Since the convex combination of
spheres is nothing but a convex combination of their centers and radii, we can swap the
sums ⋃

u∈Wm

n∑
j=1

(
m∑

i=1

uici,j

)
Sj =

⋃
u∈Wm

m∑
i=1

ui

(
n∑

j=1

ci,jSj

)

and
(∑n

j=1 ci,jSj

)
is the new sphere Ri. Putting the equations together we see that

⋃
w∈W ′

n

n∑
i=1

wiSi =
⋃

u∈Wm

m∑
i=1

uiRi

This shows that the generalized convex hull of spheres S1, . . . , Sn is really equivalent to the
ordinary convex hull of spheres R1, . . . , Rm.

68 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

An example is presented in Figure 5.2. In the picture, CH1 is the convex hull of spheres
S1, S2, S3. CH2 is the generalized convex hull of spheres S1, S2, S3 with respect to weight
intervals [0, 0.6], [0, 1], [0, 1]. The right part of the picture demonstrates that CH2 can be
also expressed as CH(R1, R2, R3, R4) where spheres R1, R2, R3, R4 are computed according
to Formula (5.4).

S1

S2

S3

R1

R2

R3

R4

CH1 CH2

Figure 5.2: The standard and generalized convex hull of spheres S1, S2, S3. The generalized
convex hull of S1, S2, S3 is equivalent to the ordinary convex hull of spheres R1, R2, R3, R4.

5.3 Algorithm Overview

In this section we summarize our CD algorithm for models deformed by LBS. First, we
make some off-line pre-processing for every model. The pre-processing involves building
the sphere tree, as discussed in Section 5.1. For each bounding sphere S in the tree we
perform some further precomputations. Let us assume that sphere S encloses vertices
v1, . . . ,vt. First of all, we determine the joint-sets J1, . . . , Jk that cover all the joint-sets
within v1, . . . ,vt, i.e., such that J1 ∪ . . . ∪ Jk = J(v1) ∪ . . . ∪ J(vt). We discard potential
duplicates, ensuring that Ji �= Jj for each i �= j.

Let pi denote the number of joints in joint-set Ji. For each Ji = {ji,1, . . . , ji,pi
}, we compute

the weight intervals as follows. We start with empty weight intervals and check all vertices
associated with Ji. Their weights are included into [li,1, hi,1], . . . , [li,pi

, hi,pi
], inflating the

intervals if necessary. Then we compute the corners ci,1, . . . , ci,mi
of the resulting weight

bound, as indicated in the previous section. We store the corners and the joint-sets in the
final tree, while the vertices v1, . . . ,vt need not be stored there.

When processing a collision detection query for animated (deformed) models, we apply
Algorithm 2.2 from Section 2.3.1. We modify this algorithm only by adding the refitting
operation, which is inserted just prior to the sphere intersection test. This ensures that we
work with correct bounding spheres even though the model has changed its shape.

In order to refit bounding sphere S, we consider each of its joint-sets J1, . . . , Jk. For each
Ji = {ji,1, . . . , ji,pi

} we transform S by the transformations of joints ji,1, . . . , ji,pi
. It results

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 69

in spheres Si,1 = Cji,1
S, . . . , Si,pi

= Cji,pi
S, which are blended using Formula (5.4) and

corners ci,1, . . . , ci,mi
. The result of blending is another set of spheres: Ri,1, . . . , Ri,mi

. We
merge together these spheres for all joint-sets (i = 1, . . . , k). Finally, we enclose spheres
R1,1, . . . , Rk,mk

by a single bounding sphere, which is the result of the refitting operation.
Note that according to the previous section, already CH(R1,1, . . . , Rk,mk

) bounds the cur-
rent mesh deformation. We use only a simple approximation of minimal enclosing sphere
of spheres, see Algorithm 5.1. The same approximation of minimal enclosing spheres has
been used in [62], where it has been found that these conservative bounding spheres result
in faster CD than exact but slower to compute minimal enclosing spheres. In the algorithm
pseudocode, we denote a sphere with center s and radius r as (s, r).

Algorithm 5.1: Bounding sphere of spheres
Input: L = (s1, r1), . . . , (sn, rn) – list of spheres
Output: (se, re) – enclosing sphere of spheres in L
boundingSphere(L)
(1) se = (

∑n
k=1 si)/n

(2) re = 0
(3) for k = 1 to n
(4) if (‖sk − se‖ + rk > re)
(5) re = ‖sk − se‖ + rk

(6) return (se, re)

For the final sphere refitting pseuodocode, see Algorithm 5.2.

Algorithm 5.2: Sphere refitting for linear blend skinning

Input: S – sphere to be refitted (expressed in the reference posture)
C1, . . . , Cp – joint transformation matrices for the current posture
J1, . . . , Jk – joint-sets influencing sphere S
c1,1, . . . , c1,m1, . . . , ck,1, . . . , ck,mk

– pre-computed corners
Output: sphere S refitted for the current skin deformation
LBSsphereRefit(S)
(1) for i = 1 to k
(2) for h = 1 to pi

(3) Si,h = Cji,h
S

(4) for h = 1 to mi

(5) Ri,h =
∑pi

j=1 ci,h,jSi,j

(6) return boundingSphere(R1,1, . . . , Rk,mk
)

70 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

5.4 Results and Comparison

We tested our collision detection algorithm on three models, whose complexities are de-
scribed in Table 5.1. First, we examine the tightness of bounding spheres. Before the tree

Vertices Triangles Joints
Dwarf 859 1664 45
Man 4435 8270 27
Creature 6682 13590 56

Table 5.1: Complexities of example models

optimization, the total number of spheres for the creature model is 27079 and the sphere
tree depth is 22. The average radii of spheres for each level are: 34.55 31.82 23.63 18.86
13.07 7.32 4.86 3.46 2.60 1.92 1.47 1.14 0.90 0.72 0.61 0.53 0.47 0.42 0.39 0.38 0.37 0.36.
Note that the average radii on certain neighboring levels are close to each other. This is
improved by collapsing the tree according to Section 5.1. After this step (with C = 0.6)
only 18679 spheres remain in the tree and its depth decreases to 9, while the number of
children increases from 2 to 15 (in an extremal case). The resulting sphere tree is presented
in Figure 5.3.

The average radii of the resulting spheres in the reference position can be found in the
second column of Table 5.2 (Reference). The third column of Table 5.2 (On-demand) lists
average radii of spheres refitted by our algorithm for the animated posture (Figure 5.3
bottom). Results for the bottom-up refitted spheres are in the fourth column. The average
radii of minimal enclosing spheres are reported in the last column of Table 5.2. They
are computed directly from the deformed vertices and thus represent the best possible
result of any refitting. From Table 5.2, as well as from Figure 5.3, it as apparent that

Level Reference On-demand Bottom-up Best
1 34.55 43.89 45.68 33.33
2 18.86 26.17 24.63 19.39
3 7.38 8.05 9.21 7.31
4 3.68 3.95 4.58 3.70
5 1.69 1.77 2.27 1.70
6 0.91 0.94 1.17 0.92
7 0.61 0.63 0.74 0.61
8 0.42 0.43 0.49 0.42
9 0.30 0.30 0.35 0.30

Table 5.2: Average radii of spheres on each level of the sphere tree for the creature
model. The column “Reference” considers spheres in the reference position, while the
other columns refer to spheres in the animated posture.

our on-demand refitting operation produces quite tight bounding spheres. On most levels,

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 71

Figure 5.3: Top: the reference posture of the creature model with spheres on levels 4 and
6 of the tree (pre-computed according to Section 5.1), Bottom: an animated posture with
spheres refitted by our algorithm (during run-time).

bottom-up refitting is outperformed by the on-demand refitting, which is actually not far
from the optimal solution. Notice that the gap between the on-demand and best possible
results is smaller in higher levels. This is understandable, because the on-demand refitted
spheres deep in the tree are typically only transformed reference spheres, which are optimal
(see Section 5.1).

We tested the collision detection run-time performance on a 2.5GHz Athlon CPU under
normal working conditions. In the first scenario, two men are walking towards each other.
One frame of the animation is presented in Figure 5.4, together with spheres refitted by
our algorithm. Our algorithm detects all collisions in average 0.27ms per frame, while the
algorithm using the complete bottom-up refitting needs 13.6ms. The about 50 times faster
execution is achieved by refitting only the spheres that are important for the CD query.
Our algorithm refits only the blue spheres in Figure 5.4, while the bottom-up refitting has
to refit all spheres, both blue and red. The time for the bottom-up refitting itself is 12.9ms,
which reveals that this is the bottleneck of the CD indeed. The refitting of all the 15339
spheres by our on-demand refitting operation takes 15.16ms (less than 1µs per sphere).
This shows that our refitting operation is quite fast in practice.

72 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

Figure 5.4: A collision of two man models with spheres on level 5 and 6 of the tree. Our
lazy algorithm does not refit the red spheres, in contrast to eager bottom-up refitting.

The previous scenario resulted in great speed-up because the number of intersections was
not big. In order to test the algorithm in a more complex situation, we designed a torture
test: two creatures walking through each other, see Figure 5.5. Such a scenario is unlikely
to occur in practice, because collision response algorithms usually prevent large interpen-
etrations. In this animation, the average time of our CD test is 6.14ms, and the CD using

Figure 5.5: Torture test for our algorithm, involving lot of collisions.

bottom-up refitting takes 32.7ms. The speed-up of our approach is not as high as in the
previous example, but shows that the on-demand refitting still performs much better than
the bottom-up one.

Some applications do not need to determine the whole set of colliding triangles – the
information whether the models are intersecting is sufficient, e.g., for backtracking to a
collision-free state. In such a situation, the CD algorithm can stop after finding the first
intersecting triangle pair. The CD algorithm with our on-demand refitting operation bene-
fits greatly from this fact, unlike the complete bottom-up refitting. In this case, the average

CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING 73

time of our CD test for the same scenario drops down to 0.72ms, while the CD with the
bottom-up refitting time improves only slightly: to 26.5ms.

Another important aspect of a CD algorithm is its scalability, i.e., how its performance
changes when the size of input data increases. We executed a test on a pair of dwarf models
in an animated posture, both in collision free and interfering position, see Figure 5.6.
Starting with a low-polygonal model, we subdivided each triangle to four smaller ones,
which ensures the same shape for all CD queries. The results for the colliding situation

Figure 5.6: The meshes of dwarf models were subdivided several times in order to evaluate
the performance of our algorithm when increasing the input size. The collision free position
(left) gives great speed-ups: 32, 126, 502 and 1995 times for subdivision levels 0,1,2,3
respectively. The more decent results for the interfering situation (right) are reported
in Table 5.3.

are presented in Table 5.3. The speed-up of our algorithm increases with the size of the
model. This could have been expected because the proposed on-demand refitting does
not depend on the actual geometry of the model, unlike the bottom-up refitting. On the
posture from Figure 5.6 (right), we performed also a comparison with rigid body CD.
A brand new sphere tree built for the unsubdivided animated dwarves detects collisions
in 0.7ms, whereas our algorithm needs 1.33ms. (However, the building of the tree took
1549ms, thus this is of course not a method of choice in practical applications.) It shows
that the performance of our deformable CD algorithm is comparable to rigid body CD.

Finally, we tested our CD algorithm on a crowd simulation. The scenario consists of 50
creature models walking in close proximity, see Figure 5.7. In this case, we obtained a
15-times faster collision detection query.

74 CHAPTER 5. COLLISION DETECTION FOR LINEAR BLEND SKINNING

Subdivisions 0 1 2 3
Triangles 1664 6656 26624 106496
Spheres 2046 8821 36506 147025

Collisions 46 90 178 350
On-demand time 1.33 2.17 3.8 8.04
On-demand S-S 4866 9309 17083 37682
Bottom-up time 5.24 18.1 66.37 260
Bottom-up S-S 9515 19833 40527 86437

Speed-up 3.9 8.34 17.47 32.34

Table 5.3: The performance comparison for subdivided dwarf models, Figure 5.6 right.
“Spheres” is the total number of spheres in the tree and “S-S” stands for the number of
sphere-sphere overlap tests. The row “Speed-up” is the ratio between average time for CD
using the bottom-up refitting and CD with our on-demand refitting.

Figure 5.7: The scenario for our crowd collision detection experiment: 50 animated crea-
tures with more than 650 thousands triangles together. Our CD algorithm needs an average
52.83ms per frame, whereas the CD based on complete BVH refitting takes 779.3ms (15-
times more).

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 75

6 Collision Detection for Spherical Blend Skinning

The collision detection algorithm described in Chapter 5 is efficient, but limited only to
linear blend skinning. This is unfortunate, because of the artifacts of linear blend skinning
(see Section 2.2.1). In practical applications, it would be highly desirable to support
efficient collision detection (CD) for a skinning method that avoids these artifacts, such as
spherical or dual quaternion skinning. However, as apparent from Chapter 5, already the
CD for linear blend skinning is not trivial – in spite of the simplicity of the linear blending
method.

The CD algorithm for linear blend skinning relies on the fact that linear blending interpo-
lates always within the convex hull of input vertices (see Section 5.2). Since this condition
is not true for spherical blend skinning, the adaptation of the algorithm from Chapter 5 is
not trivial.

As has been demonstrated in Section 4.4, dual quaternion skinning is even more advan-
tageous than spherical blend skinning. Therefore, one could object that a CD algorithm
for dual quaternion skinning would be more desirable than the one for spherical blend
skinning. However, the situation is not so simple. Even though dual quaternion blending
is simpler to implement, the actual blending mechanism is in fact much more complex
than that of spherical blending. This is because the dual quaternion blending operates on
a 6-dimensional manifold Q̂1, whereas spherical blending on a 3-dimensional hypersphere
S3. Naturally, it is easier to design bounds in the latter space (because spherical topology,
even though non-Euclidean, is still relatively simple and well studied). Therefore, we leave
the collision detection for dual quaternion skinning for a future work.

6.1 Problem Decomposition

Our CD algorithm for spherical blend skinning has the same structure as that for linear
blend skinning, discussed in Chapter 5. Both are based on a pre-computed hierarchy of
bounding spheres. The sphere tree computation is identical in both algorithms – the only
difference being in the sphere refitting.

In the following, let us therefore assume that we are refitting a sphere S with center p and
radius r, which encloses some set of triangles. We denote all vertices of those triangles as
v1, . . . ,vt. For simplicity of notation, we first assume that all these vertices are influenced
by the same joint-set J = {j1, . . . , jn}, that is J = J(v1) = . . . J(vt) (adopting the
conventions from Section 5.2). The task is to compute a new sphere which will enclose
vertices v′

1, . . . ,v
′
t, computed by Formula (3.7).

The trick to obtaining an algorithm sub-linear in t is to replace the set of vertices {v1, . . .vt}
by the bounding sphere S, which is correct because {v1, . . . ,vt} ⊆ S. That is, instead of

76 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

bounding v′
1, . . . ,v

′
t we could bound the set

⋃
w∈Wn

(
Qw(S − rc) +

n∑
i=1

wiCji
rc

)
(6.1)

Considering the whole sphere S of points instead of only one point is not a big problem,
as shown in Section 6.3. A more serious problem is that the set from Formula (6.1) is very
conservative, because it disregards the actual vertex weights of v1, . . .vt. In analogy with
Chapter 5, this can be solved by employing the vertex weight bounds [lj , hj] for each joint
j ∈ J . Recall the definition of the set W ′

n of limited convex combinations:

W ′
n = {w ∈ Rn : li ≤ wi ≤ hi, i = 1, . . . n,

n∑
i=1

wi = 1}

This set can be applied in Formula (6.1) instead of Wn, yielding tighter bounds. The final
set to be bounded by the refitted sphere is therefore

⋃
w∈W ′

n

(
Qw(S − rc) +

n∑
i=1

wiCji
rc

)
(6.2)

As discussed in Section 5.2, there can be computed points c1, . . . , cm (called corners) whose
convex hull forms the set W ′

n:

W ′
n = CH(c1, . . . , cm) =

{
m∑

k=1

ukck : u ∈ Wm

}
(6.3)

We derive the bound of the set from Formula (6.2) in three steps. In the first step, we
bound the linear component

∑n
i=1 wiCji

rc (Section 6.2) and in the second step, we bound
the spherical part Qw(S − rc) (Section 6.3). Finally, both of these bounds are simply
added together (Section 6.4) to create the resulting refitted sphere. The final algorithm is
presented in Section 6.5.

6.2 Bounding the Linear Part

Unlike the bound of the spherical part, the bound of the linear part of the set from For-
mula (6.2) can be done in a way similar to Chapter 5 (the situation is even slightly simpler
here, because we are now bounding points instead of spheres). This is because the linear
part is actually nothing but a linear blending applied to the rotation center rc, which is
a point computed by the spherical blend skinning algorithm (see Section 3.1). Recall an
important fact: the rotation center is independent of the vertex weights (it depends only
on the actual skinning transformations).

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 77

Thanks to the expression of W ′
n using corners (Formula (6.3)), we can rewrite the linear

part of Formula (6.2) as{
n∑

i=1

wiCji
rc : w ∈ W ′

n

}
=

{
n∑

i=1

(
m∑

k=1

ukck,i

)
Cji

rc : u ∈ Wm

}

where ck,i denotes i-th component of vector ck. In the latter term, we can swap the sums,
because

n∑
i=1

(
m∑

k=1

ukck,i

)
Cji

rc =
m∑

k=1

uk

(
n∑

i=1

ck,iCji
rc

)

We denote the transformations of the rotation center as:

r′k =

n∑
i=1

ck,iCji
rc, k = 1, . . . , m (6.4)

which is correct because ck ∈ W ′
n and thus

∑n
i=1 ck,i = 1. Formula (6.4) is actually nothing

but linear blending applied to rc with weight vector ck. If we put the equations together,
we can write the resulting bound of the linear part as{

n∑
i=1

wiCji
rc : w ∈ W ′

n

}
=

{
m∑

k=1

ukr
′
k : u ∈ Wm

}
= CH(r′1, . . . , r

′
m)

We see that the bound of the linear part is just a convex hull of several 3D points. These
points are given by the pre-computed corners and Formula (6.4).

6.3 Bounding the Spherical Part

Bounding the spherical part of Formula (6.2) is a little bit more tricky, because we must
deal with the quaternion linear blending (QLB) hidden in Qw. Recall that we are refitting
sphere S with center p and radius r, expressed in the reference position. First, we replace
the sphere S by its center p:⋃

w∈W ′
n

Qw(S − rc) = {Qw(p − rc) : w ∈ W ′
n} ⊕

{
x ∈ R3 : ‖x‖ ≤ r

}
where r is the radius of sphere S and ⊕ denotes the Minkowski sum. However, the
Minkowski sum in the previous equation is actually nothing but a convolution of set
{Qw(p− rc) : w ∈ W ′

n} with a zero center sphere of radius r. In the following, we derive
the bounding sphere of {Qw(p − rc) : w ∈ W ′

n}. At the end, we account for the Minkowski
sum (convolution) by simply increasing the radius of the resulting sphere by r.

The rest of this section is organized as follows: first, we compute bound on the set of
rotations Qw and express it as a subset of unit quaternion sphere S3. Second, we apply all

78 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

rotations from this set to rotate the vector p− rc. The result is some subset of R3, which
is enclosed by a final bounding sphere of the spherical part. The reader should not get
confused by the fact that the bounds in both steps will have the same shape (a spherical
cap, defined below). The difference is that the bounding of rotations occurs in R4 (the
embedding space of unit quaternions), whereas the bounding of rotated vectors takes place
in R3.

Recall that we denote the quaternions corresponding to the rotational parts of matrices
Cj1, . . . , Cjn by q1, . . . ,qn (see Section 3.3). Then Qw is a rotation matrix given by the
quaternion w1q1 + . . .+wnqn. This is correct, because every non-zero quaternion uniquely
determines a 3D rotation (even though not vice-versa). We proceed by constructing a
bound of all rotations given by the set of quaternions {w1q1 + . . . + wnqn : w ∈ W ′

n}. We
exploit the fact that QLB applies linear combinations of quaternions, and that quaternions
can be interpreted as R4 vectors. The first step will be therefore similar to that described
in Section 6.2, just in R4 instead of R3. Using the same corners c1, . . . , cm as in Section 6.2,
we compute another set of quaternions q′

1, . . . ,q
′
m given by

q′
k =

n∑
i=1

ck,iqi, k = 1, . . . , m

which satisfy the property

{w1q1 + . . . + wnqn : w ∈ W ′
n} = {u1q

′
1 + . . . + umq′

m : u ∈ Wm}
This can also be proven by swapping sums as in Section 6.2. It is therefore sufficient to
construct a bound for rotations corresponding to quaternions from CH(q′

1, . . . ,q
′
m).

We have chosen only a simple bound of a set of rotations: a spherical cap on S3 (the
sphere of all unit quaternions). Generally, we define a cap in any dimension as a non-
empty intersection of a sphere surface with a halfspace. In the following, we will also need
another expression of cap, defined by the center ss of the sphere, point as on the sphere’s
surface (the cap’s apex) and an angle αs ∈ [0, π]. If we denote the radius of the sphere as
rs = ‖as − ss‖, then the cap according to the second definition is given as{

x ∈ Rd : ‖x − ss‖ = rs, 〈x − ss, as − ss〉 ≥ r2
s cos(αs)

}
It is not difficult to prove that both definitions are equivalent, see the following lemma.
An example of a cap is shown in Figure 6.1.

Lemma 6.1. The two following definitions of a cap of sphere with center ss and radius rs

are equivalent:

(i) A non-empty intersection of a half-space with a surface of sphere with center ss ∈ Rd

and radius rs ∈ R

(ii)
{
x ∈ Rd : ‖x − ss‖ = rs, 〈x − ss, as − ss〉 ≥ r2

s cos(αs)
}
, where as is the apex, and αs

the angle.

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 79

�s
ss

as

halfspace

sphere

cap

Figure 6.1: Example of a cap in R2 with center ss, apex as and angle αs. In this case the
cap is just a spherical arc.

Proof. The half-space from (i) can be written as
{
x ∈ Rd : 〈x,d〉 ≥ D

}
for some d ∈

Rd, D ∈ R, and the surface of the sphere from (i) as
{
x ∈ Rd : ‖x − ss‖ = rs

}
. It is

therefore sufficient to show that the set (ii) can be written as

C =
{
x ∈ Rd : ‖x − ss‖ = rs, 〈x,d〉 ≥ D

}
The first part is straightforward: if we have a set (ii), we can rewrite 〈x − ss, as − ss〉 ≥
r2
s cos(αs) as 〈x, as − ss〉 ≥ r2

s cos(αs) + 〈ss, as − ss〉. Then it is sufficient to let d = as − ss

and D = r2
s cos(αs) + 〈ss, as − ss〉.

The second part requires showing that 〈x,d〉 ≥ D can be written as 〈x, as − ss〉 ≥
r2
s cos(αs) + 〈ss, as − ss〉 for some as ∈ Rd, αs ∈ R. Without loss of generality, we can

assume that ‖d‖ = rs (because 〈x,d〉 ≥ D can be multiplied by any non-negative scalar
and still represents the same half-space). The apex is then given simply as as = d + ss.
It remains to find an angle αs satisfying equation D = r2

s cos(αs) + 〈ss,d〉. To complete
the proof, it is thus sufficient to verify that |D − 〈ss,d〉| ≤ r2

s (so that cos(αs) is properly
defined by the equation D = r2

s cos(αs) + 〈ss,d〉). To show this, we use the fact that the
half-space 〈x,d〉 ≥ D intersects the spherical surface (here we use the non-emptiness of
the intersection in definition (i)). This means that the distance from plane 〈x,d〉 = D to
center ss is less than or equal to rs. The distance from 〈x,d〉 = D to ss is given by the

formula |D−〈ss,d〉|
rs

, so the previous condition can be written as

|D − 〈ss,d〉|
rs

≤ rs ⇒ |D − 〈ss,d〉| ≤ r2
s

as we wanted to prove.

The bound of a set of rotations expressed by a cap C on S3 has a nice geometric interpre-
tation. Let us denote the apex of cap C as aC and the angle as αC (in this case, the center
sC = 0 and radius rC = 1, because S3 is a zero centered sphere with unit radius). Since we

80 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

are considering S3, the apex aC is a unit quaternion representing some rotation RC . Then
all rotations represented by cap C can be obtained by composing RC with a rotation about
an arbitrary axis and angle within [0, 2αC] (2αC because quaternions work with half of the
angle of rotation, see Section 2.1.1). If we have the set of rotations bound by cap C ⊆ S3,
we can bound our original set {Qw(p − rc) : w ∈ W ′

n} by ρ = {R(p− rc) : R ∈ C}, where
C is interpreted as a set of rotations. But the set ρ is nothing but the set of all possi-
ble rotations of vector RC(p − rc) along an arbitrary axis and angle within [0, 2αC]. It
means that ρ is nothing but another spherical cap (but now in R3)! The apex of cap ρ is
RC(p − rc), center is 0 and angle 2αC .

Since we are constructing a cap on S3, we normalize our quaternions q′
1, . . . ,q

′
m to unit

quaternions: q′′
k = q′

k/‖q′
k‖, k = 1, . . . , m. We can work with q′′

k instead of q′
k, because

the following lemma shows that the sets of rotations corresponding to CH(q′
1, . . . ,q

′
m) and

CH(q′′
1, . . . ,q

′′
m) are the same.

Lemma 6.2. Let q1, . . . ,qm be non-zero quaternions and n1 = q1

‖q1‖ , . . . ,nm = qm

‖qm‖ their

corresponding unit quaternions. Then the set M = CH(q1, . . . ,qm) represents the same
rotations as the set N = CH(n1, . . . ,nm).

Proof. We know that two non-zero quaternions p,q represent the same rotation if and only
if there exists k ∈ R, k �= 0 such that p = kq. First, we show that any rotation from M is
also present in N . Let us choose an arbitrary a ∈ M , i.e., a =

∑
wiqi for some w ∈ Wm.

We define K =
∑

wi‖qi‖ and ui = wi‖qi‖
K

. Obviously K > 0, ui ≥ 0 and
∑

ui = 1, that is
u ∈ Wm. Hence

∑
uini ∈ N and to finish the first part of the proof it is sufficient to show

that K ·∑ uini = a (i.e. that
∑

uini represents the same rotation as a). So, we show
that:

K ·
∑

uini = K ·
∑ wi‖qi‖qi

K‖qi‖ =
∑

wiqi = a

Second, we show that any rotation from N is also present in M . Let us choose an arbitrary
b ∈ N , i.e. b =

∑
tini for some t ∈ Wm. We define L =

∑
ti

‖qi‖ and si = ti
‖qi‖L . Again,

L > 0 and s ∈ Wm, therefore
∑

siqi ∈ M . In a similar way as before we see that

L ·
∑

siqi = L ·
∑ tiqi

‖qi‖L =
∑

tini = b

which completes the proof.

Now, it remains just to construct a cap on S3 containing our quaternions q′′
1, . . . ,q

′′
m. In

order to construct this cap, we bound q′′
1, . . . ,q

′′
m by an enclosing sphere E ⊆ R4 with

center sE and radius rE . We can assume that the radius of sphere E satisfies rE < 1:
if not, we can simply consider the whole S3 (of radius 1) which bounds all rotations, as
the bounding cap (although it should be noted that this situation never occurred during
practical experiments).

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 81

We compute this sphere using Algorithm 5.1 (considering points as zero radius spheres).
At this stage, we are almost done, because E ∩ S3 is the desired cap. This is illustrated
in Figure 6.2 and verified in the following two lemmas.

S3

E

q''
1

q''
m

H

���

0

sE

dH

Figure 6.2: To construct the bounding cap (in this picture just the spherical arc) for
quaternions q′′

1, . . . ,q
′′
m, we first create an enclosing sphere E (not necessarily the smallest

one). The cap is then given as E ∩ S3, which can be equally expressed as H ∩ S3, where
H is a halfspace from Lemma 6.3. A formula for distance dH from H to 0 is also derived
in Lemma 6.3. The distance dH is used to compute the angle α.

Lemma 6.3. Let Sa be a spherical surface in Rd with center a and radius ra. Let Sb be
a sphere in Rd with center b and radius rb. Then the intersection Sa ∩ Sb is a cap, i.e.
Sa ∩ Sb = Sa ∩ H, where H is a halfspace in Rd. Moreover, if a = 0, ra = 1 and rb < 1,

then 0 /∈ H and the distance from 0 to H is
1+‖b‖2−r2

b

2‖b‖ .

Proof. The sets Sa and Sb can be written as

Sa =
{
x ∈ Rd :

∑
(xi − ai)

2 = r2
a

}
Sb =

{
x ∈ Rd :

∑
(xi − bi)

2 ≤ r2
b

}
Therefore the intersection Sa ∩ Sb =

{
x ∈ Rd :

∑
(xi − ai)

2 = r2
a,
∑

(xi − bi)
2 ≤ r2

b

}
. The

system of these two formulas can be written as∑
(x2

i − 2xiai + a2
i) = r2

a (6.5)∑
(x2

i − 2xibi + b2
i) ≤ r2

b (6.6)

which is equivalent to the system ∑
(xi − ai)

2 = r2
a (6.7)∑

(2(ai − bi)xi + b2
i − a2

i) ≤ r2
b − r2

a (6.8)

82 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

because Formula (6.8) is simply Formula (6.6) minus Formula (6.5). However, For-
mula (6.8) is an equation describing a halfspace, which we can denote as H . This proves the
first part of the statement. To show the second part, we substitute x = 0, a = 0, ra = 1
into Formula (6.8) and we obtain

∑
b2
i ≤ r2

b − 1. Since we supposed rb < 1, this equation
obviously cannot be satisfied, which means that x = 0 cannot be in H . Therefore, the
distance from H to 0 is the same as the distance from the hyperplane determining H to
0. Generally, the distance of hyperplane 〈x,d〉 = D, d ∈ Rd, D ∈ R from 0 is |D|/‖d‖.
In our case, we have |D| = |r2

b − 1− ‖b‖2| = 1 + ‖b‖2 − r2
b and ‖d‖ = 2‖b‖, which proves

the last part of the statement.

Lemma 6.4. Let n1, . . . ,nm be unit quaternions enclosed by sphere E ⊆ R4 with radius
< 1. Then the set C = E ∩ S3 is a cap such that

∀w ∈ Wm :
w1n1 + . . . + wmnm

‖w1n1 + . . . + wmnm‖ ∈ C

Proof. From Lemma 6.3 we know that C is really a cap and can be written as C = H ∩S3,
where H is some halfspace not containing the zero vector. Obviously ni ∈ C (because
ni ∈ S3 and ni ∈ E), therefore it must be also true that ni ∈ H . Since a halfspace is
always convex, we have w1n1 + . . . + wmnm ∈ H . We denote n′ = w1n1 + . . . + wmnm.
Since obviously n′/‖n′‖ ∈ S3, it remains to show only that n′/‖n′‖ ∈ H . First, we apply
the triangle inequality to obtain

‖n′‖ = ‖
∑

wini‖ ≤
∑

‖wini‖ =
∑

wi‖ni‖ =
∑

wi = 1

that is 1/‖n′‖ ≥ 1. Second, we show that γn′ ∈ H for any γ ≥ 1, especially for γ = 1/‖n′‖.
Since 0 /∈ H , the halfspace H can be expressed as H = {x ∈ R4 : 〈x,d〉 ≥ 1} for some
vector d ∈ R4. We know that n′ ∈ H , which means that 〈n′,d〉 ≥ 1 and therefore also
〈γn′,d〉 ≥ 1, i.e. γn′ ∈ H , which is what we wanted to prove.

Corollary. Let n1, . . . ,nm be unit quaternions and C cap as above. Then all rotations
represented by CH(n1, . . . ,nm) are also present in C.

Now it is straightforward to derive the resulting cap C ′ ⊆ R3 which fulfills

{Qw(p− rc) : w ∈ W ′
n} ⊆ C ′

We denote by Qc the rotation corresponding to sE . The apex of the cap C ′ is then
Qc(p− rc), the center is 0 and the angle is

α = 2 arccos(dH), dH =
1 + ‖sE‖2 − r2

E

2‖sE‖ (6.9)

where dH denotes the distance from H to 0, as computed in Lemma 6.3 and illustrated
in Figure 6.2. Note that, since the sphere E intersects S3, it cannot happen that E is

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 83

strictly inside S3, i.e., ‖sE‖ + rE < 1 cannot be true. Therefore, ‖sE‖ + rE ≥ 1, thus
−r2

E ≤ −(1 − ‖sE‖)2 = −1 + 2‖sE‖ − ‖sE‖2 from which follows:

dH ≤ 1 + ‖sE‖2 − 1 + 2‖sE‖ − ‖sE‖2

2‖sE‖ =
2‖sE‖
2‖sE‖ = 1

Since obviously 0 ≤ dH , the arccos in Formula (6.9) is well defined and α ∈ [0, π].

The resulting sphere returned for the bound of the spherical part is nothing but a minimal
enclosing sphere of cap C ′. We denote this minimal enclosing sphere as F ⊆ R3 and
we compute it easily: its center is cos(α)Qc(p − rc) and radius is sin(α)‖Qc(p − rc)‖ =
sin(α)‖p − rc‖, where α is given by Formula (6.9). This is illustrated in Figure 6.3 and
proven in the following lemma.

Lemma 6.5. Let C ⊆ Rd be a cap with center 0, radius r, apex a and angle α ∈ [0, π].
Then the smallest enclosing sphere S of cap C has center a cos α and radius ‖a‖ sin α.

Proof. First, we show that cap C cannot be enclosed by a sphere with smaller radius
than ‖a‖ sin α. This is because there exist two vectors v1,v2 ∈ C whose distance is
2‖a‖ sin α. To construct those vectors, pick an arbitrary vector v such that 〈v, a〉 = 0 and
‖v‖ = ‖a‖ = r. Now we can define v1 = a cos α +v sin α and v2 = a cos α−v sin α. Their
distance is obviously 2‖v‖ sinα = 2‖a‖ sin α, so it remains to verify that really v1,v2 ∈ C.
We compute that

‖v1‖ =
√
‖a‖2 cos2 α + ‖v‖2 sin2 α =

√
r2(cos2 α + sin2 α) = r

and
〈v1, a〉 = 〈a cos α + v sin α, a〉 = 〈a, a〉 cos α + 〈v, a〉 sinα = r2 cos α

which shows that v1 ∈ C. The same reasoning can be repeated for v2, showing that also
v2 ∈ C.

In the rest of the proof, we have to verify that C ⊆ S. Therefore, let us pick an arbitrary
x ∈ C. According to the definition of the cap, it means that ‖x‖ = r and 〈x, a〉 ≥ r2 cos α.
To show that x ∈ S, we compute

‖x − a cos α‖2 = 〈x − a cos α,x − a cos α〉 = ‖x‖2 − 2〈x, a cos α〉 + cos2 α‖a‖2

Now we use the fact that ‖a‖ = ‖x‖ = r and −2〈x, a cos α〉 ≤ −2r2 cos2 α to obtain

‖x‖2 − 2〈x, a cos α〉 + cos2 α‖a‖2 ≤ r2 − 2r2 cos2 α + r2 cos2 α = r2(1 − cos2 α) = r2 sin2 α

Taking the square root on both sides yields ‖x − a cos α‖ ≤ r sin α, that is x ∈ S.

Final note: it may seem that the bound of the spherical part could be done in an easier
way than by constructing a cap on S3. In fact, we have also considered other more simple
approaches, but none of them worked in general. For example, it is not correct to just rotate
vector p − rc by quaternions q′′

1, . . . ,q
′′
m and bound the results directly by a 3D enclosing

sphere. However, the algorithm presented in this section is only difficult to explain and
justify – the actual implementation is fairly simple, see Section 6.5.

84 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

�

Q (-)c cp r
cap C'

bounding sphere

0

Figure 6.3: If the cap C ′ centered in the origin has apex Qc(p− rc) and angle α, then its
minimal enclosing sphere has center cos(α)Qc(p − rc) and radius sin(α)‖p− rc‖.

6.4 Putting the Bounds Together

To construct the final bounding sphere of the set from Formula (6.2), it remains just to
combine the bound of the linear part and the bound of the spherical part. Recall that,
in Section 6.2, the bound of the linear part was expressed as CH(r′1, . . . , r

′
m) and, in

Section 6.3, the spherical part was bound by sphere F . The bound of both parts can
therefore be expressed as CH(r′1 ⊕ F, . . . , r′m ⊕ F), i.e., the final bounding sphere encloses
r′1 ⊕ F, . . . , r′m ⊕ F . This enclosing sphere is again computed by Algorithm 5.1.

In the beginning of this chapter, we assumed that all vertices v1, . . . ,vt of the reference
sphere S are assigned to only one joint-set J . If this is not the case, i.e., the vertices
v1, . . . ,vt are influenced by more joint-sets J1, . . . , Jz, we simply repeat the same algorithm
for each of these joint-sets. This way, we obtain spheres r′1,1 ⊕ F1, . . . , r

′
1,m1

⊕ F1, r
′
2,1 ⊕

F2, . . . , r
′
2,m2

⊕ F2, . . . , r
′
z,1 ⊕ Fz, . . . , r

′
z,mz

⊕ Fz and enclose them by one bounding sphere
as before.

6.5 The Final Algorithm

This section presents the final sphere refitting, Algorithm 6.1. For brevity, we write (s, r)
to denote a data structure describing sphere with center s and radius r. List L2 actually
stores points q′′

h but for simplicity, we treat them as spheres with zero radius, i.e.: (q′′
h, 0).

The addition of (0, r) on line (14) simply inflates the radius of the resulting sphere by r. The
sphere refitting algorithm uses a subroutine quat2matrix to convert from a quaternion
to matrix representation. The pseudocode of Algorithm 6.1 is written for clarity and not
for maximal performance – in the actual implementation, we perform some optimization
tricks. For example, when a joint-set consists of only one joint (which is a typical situation
on lower levels of the tree), it is of course not necessary to compute any bounds – the
sphere can be transformed directly.

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 85

Algorithm 6.1: Sphere refitting for spherical blend skinning

Input: S = (p, r) – sphere to be refitted (expressed in the reference posture)
C1, . . . , Cp – joint transformation matrices for the current posture
q1, . . . ,qp – quaternions corresponding to C1, . . . , Cp

J1, . . . , Jz – joint-sets influencing sphere S
c1,1, . . . , c1,m1, . . . , cz,1, . . . , cz,mz – pre-computed corners
rc – rotation center computed by spherical blend skinning

Output: sphere S refitted for current skin deformation
SBSsphereRefit(S)
(1) L1 = empty list
(2) for i = 1 to z
(3) L2 = empty list
(4) for h = 1 to mi

(5) r′h =
∑n

g=1 ci,h,gCjgrc

(6) q′
h =

∑n
g=1 ci,h,gqg

(7) q′′
h = q′

h/‖q′
h‖

(8) insert sphere (q′′
h, 0) into list L2

(9) (cE, rE) = boundingSphere(L2)
(10) Qc = quat2matrix(cE/‖cE‖)
(11) α = 2 arccos(

1+‖cE‖2−r2
E

2‖cE‖)

(12) for h = 1 to mi

(13) insert sphere (r′h +cos(α)Qc(p− rc), sin(α)‖p− rc‖) into list L1

(14) return boundingSphere(L1) + (0, r)

6.6 Results

In order to provide comparative measurements, we execute the tests on the same models
and animations as in Chapter 5 (the man model with 4435 vertices, 8270 triangles and
27 joints, and the creature model with 6682 vertices, 13590 triangles and 56 joints). The
dwarf model from Chapter 5 has only rigid skinning (trivial vertex weights), and thus there
is no reason to apply spherical blending. First, we investigate the tightness of the refitted
spheres, see Figure 6.4 and Table 6.1.

We observe that the size of the refitted spheres is almost the same as the size of the
spheres in the reference posture, which are optimal because they are computed by an exact
minimal enclosing sphere algorithm [36]. Also, the size of the spheres refitted for linear
and spherical blending is similar – even though the geometries of the deformed skins are
different (observe the candy wrapper artifact in the middle row of Figure 6.4). The average
sphere radii are reported in Table 6.1.

We measured the speed of the collision detection and sphere refitting on a 2.5GHz Athlon
PC under normal working conditions. Please note that the comparison of timings of

86 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

Figure 6.4: Bounding spheres on levels 4 and 6 of the tree: Top: reference posture, minimal
enclosing spheres. Middle: animated posture deformed with linear blend skinning (note
the candy wrapper artifact in the neck), spheres refitted by Algorithm 5.2. Bottom: the
same posture as in the middle row deformed by spherical blend skinning, spheres refitted
by Algorithm 6.1.

sphere refitting for linear and spherical blending cannot be exact, because both skinning
methods produce slightly different geometry (and thus possibly also a different number of
intersections). However, since the test animations involve only moderate joint rotations,
the difference between linear and spherical skinning is not very big (the difference is obvious
only for large joint rotations, e.g., the neck twist in Figure 6.4). The first scenario is an
animation of two walking men (the same as in Chapter 5).

Results for this animation are reported in the first row of Table 6.2. We see that the slow-
down caused by an advanced skinning algorithm is really negligible. The refitting of all
15339 spheres requires a total time of 20.15ms, which is 1.31µs per sphere. This is almost

CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING 87

Level Reference Linear Blending Spherical Blending Best
1 34.55 72.17 79.55 34.41
2 18.86 31.58 33.95 22.05
3 7.38 8.40 8.89 7.39
4 3.68 4.03 4.12 3.69
5 1.69 1.80 1.83 1.70
6 0.91 0.97 0.98 0.92
7 0.61 0.65 0.66 0.61
8 0.42 0.43 0.43 0.42
9 0.30 0.30 0.30 0.30

Table 6.1: This table lists an average radii of spheres in the creature model’s sphere tree.
Reference: spheres for the reference posture (Figure 6.4 top). Linear Blending: an-
imated posture in Figure 6.4 middle, skin deformed by linear blending, spheres refitted
by Algorithm 5.2 from Chapter 5. Spherical Blending: animated posture in Figure 6.4
bottom, skin deformed by spherical blending, spheres refitted by Algorithm 6.1. Best:
as in Spherical Blending, but spheres refitted by an exact minimal enclosing sphere algo-
rithm [36].

as good as sphere refitting for linear blending (which requires about 1µs per sphere, see
Section 5.4). In practical situations, of course, only a small fraction of all those spheres is
refitted, therefore times for collision detection are much smaller, see Table 6.2.

Scenario Linear Blending Spherical Blending
Men (Full) 0.27 0.31
Creatures (Full) 6.14 7.47
Creatures (Yes/no) 0.72 1.44

Table 6.2: Average times in milliseconds for one collision detection query in various set-
tings. Full: CD returns set of all colliding triangles, Yes/no: CD returns only one pair
of colliding triangles, if any. Linear Blending: on-demand refitting for linear blending
(Algorithm 5.2). Spherical Blending: on-demand refitting for spherical blending (Algo-
rithm 5.2). We see that the performance of on-demand refitting for spherical blending is
comparable to that for linear blending.

The next testing scenario is the torture test, because of the many colliding triangles (much
more than in practical situations, where the collision response routines prevent such ex-
treme interpenetration). Again, the only difference from the experiment in Chapter 5 is in
the application of spherical blend skinning instead of linear. In this animation, we mea-
sured besides the standard full CD query also the average time for yes/no CD task, which
reports only whether the objects are colliding or not, without searching for all colliding
triangles (collision detection algorithm in this case stops when the first intersecting triangle
pair is found). Measurements are reported in the second and third row of Table 6.2. We

88 CHAPTER 6. COLLISION DETECTION FOR SPHERICAL BLEND SKINNING

Figure 6.5: A “walk-through” animation, involving a lot of collisions. In the second and
third column we see spheres on level 4 and 6 refitted by our method. This scenario demon-
strates that our algorithm is suitable even in difficult situations.

see that, even in difficult situations, the overhead for spherical skinning is fortunately very
low, and thus its performance is comparable to refitting for linear blend skinning.

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 89

7 Skinning Arbitrary Deformations

Previous chapters consider the situation when our 3D objects are already rigged and an-
imated (i.e., equipped with skinning transformations and vertex weights, as discussed in
Section 2.2). This is usually done manually with the aid of professional software [9, 10].
However, manual rigging and animation is not always convenient, especially when we
already have an animation computed by other means (e.g., physically based simulation).
This was one of the motivations for James and Twigg’s Skinned Mesh Animations (SMAs),
which is a method to automatically infer the rigging structure and skinning transformations
from a pre-computed animation [63].

Their method works by clustering 3D model to quasi-rigid components (i.e., approximately
rigid parts). The transformations of quasi-rigid components are computed directly from
their actual positions and orientations in the animation. Vertex weights are optimized in
a way similar to [99]. This process constructs a skinned approximation of the original ani-
mation. Skinned animations offer interesting data reduction when compared to the classic
way of handling pre-computed animations (i.e., storing the positions of animated vertices
for every keyframe). Therefore, automatically constructed skinning approximations can be
considered as an animation compression method. However, their only benefit is not data
reduction: SMAs also offer efficient hardware-accelerated rendering, rest-pose editing and
fast collision detection [63].

However, James and Twigg’s method works efficiently only for quasi-articulated 3D objects
(i.e., objects created by linking quasi-rigid components). Unfortunately, SMAs do not
perform as well for highly deformable animations, such as those of cloth or elastic materials.
This is understandable because in such animations, no quasi-rigid components can be
found. Does it mean that no efficient skinning approximation exists in this case? In fact,
experiences with animating dressed virtual humans indicate the contrary – see Section 1.4.

As an attempt to answer this question in general, we propose a new method to automati-
cally construct skinned approximations. Since we do not make any assumptions about the
input animation, we distribute the control transformations (called proxy-joints, in analogy
to SMAs) uniformly over the rest-pose mesh. Subsequently, for each frame of the animation,
our algorithm finds the set of transformations whose application in matrix palette skinning
approximates the current shape of the model as closely as possible (see Figure 7.1). This
way, we ensure that the overall deformation is approximated reasonably, without relying
on quasi-rigid components.

Of course, this does not come for free: our pre-computation times are slower than those
of SMAs and our algorithm does not find the smallest reasonable number of proxy-joints
automatically (as a result, we typically use more proxy-joints than necessary). On the
other hand, according to our experiments, our algorithm constructs much more accurate
skinning approximations of highly deformable 3D models than SMAs. This enables us to
exploit the advantages of skinned animations even outside the realm of quasi-articulated
models (e.g., for cloth and elastic materials).

90 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

(a)
(b)

(c) (d)

Figure 7.1: Overview of our method for skinning arbitrary deformations: as input we
have the rest-pose model (a), and a deformed one (b). Our algorithm first determines
the proxy-joints and their influences (c) and then computes the joint transformations,
whose application in matrix palette skinning (d) gives a good approximation of the input
deformation. Even though (b) and (d) appear to be almost identical, (d) needs about 17
times less memory than (b) and can be rendered efficiently as a skinned mesh.

As input we have a sequence of polygonal meshes with constant connectivity. Furthermore,
we assume that a rest-pose mesh is given. This can be as simple as the first mesh of the
animation. If available, we can also use the rest-pose of the mesh used to produce the
animation, e.g., an unfolded piece of cloth. In order to support more accurate shading,
vertex normals are usually stored for each keyframe also. If the model is already rigged, i.e.,
equipped with joints and their influences, we can skip the following section and proceed
directly to transformation fitting (Section 7.2). However, in general, we do not assume
that those structures are present (as is the case for our experimental data). Therefore, an
algorithm for their automatic generation is described below.

7.1 Automatic Rigging

The proxy-joints are distributed over the rest-pose mesh so that each proxy-joint influences
approximately the same amount of geometry. Let us assume that we want to use p proxy-
joints (samples). We need to position the proxy joints in space so that the maximal distance

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 91

of a rest-pose vertex to the nearest proxy-joint is minimized. This ensures that each proxy-
joint controls approximately the same amount of geometry, even if the vertices of the
rest-pose mesh are non-uniformly distributed. This problem is known in computational
geometry as the p-center problem [1]. The simple greedy algorithm has been shown to
produce good results [38]. This algorithm places the centers (in our case, the proxy-joints)
so that they coincide with the mesh vertices. At each step of the algorithm, a new proxy-
joint is created at the vertex that has maximal distance from all proxy-joints created so
far. The resulting sampling is illustrated in Figure 7.2. Note that in our method (as well
is in SMAs [63]), every proxy-joint is independent, and there is no hierarchical structure
as in a skeleton.

The joint influences (vertex weights) are also easily computed. Let r be the maximal
distance from a rest-pose mesh vertex to the nearest joint (i.e., the value that the p-center
solution minimizes). The influence of each joint is limited to the ball centered in the joint
with radius P · r, where P is a user-defined parameter controlling the area of the joint’s
influence. We found the value P = 1.5 to perform well in practice. The weight decays
linearly from 1 at the joint’s center to 0 on the ball’s boundary. If more than one joint
influences the vertex, as is usually the case, we normalize the weights of all joints so that
they sum to 1. Since weights are obviously non-negative, this guarantees convex vertex
weights. We also experimented with a more sophisticated weight assignment, such as
one based on least-squares optimization [99], but we found the improvement to be almost
negligible.

Figure 7.2: One hundred proxy-joints generated by the greedy algorithm for the rest-pose
skirt and camel model. Joint influences are also depicted.

At this stage, the rest-pose mesh is ready to be animated with any kind of matrix palette
skinning, e.g., linear (Section 2.2.1), spherical (Chapter 3) or dual quaternion skinning
(Chapter 4). The only thing that remains to be determined are the actual skinning trans-
formations governing the animation. Their automatic computation is the main contribution
of our algorithm and is presented in the next section.

92 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

7.2 Fitting of Skinning Transformations

Let us assume that the (proxy-)joints are already given, either designed by animators or
generated automatically according to the previous section. The problem now is to find the
joint transformations for each keyframe of our input animation. This is done independently
for every keyframe; in the following, we therefore describe transformation fitting for one
fixed frame. We cannot simply apply the transformation fitting method from [63], because
it derives the joint transformations from previously identified quasi-rigid components (while
we do not assume the existence of any quasi-rigid components).

For simplicity, we will first consider the case of linear blend skinning. According to our
conventions from Section 2.2, the vertex positions in the current frame of the input ani-
mation are denoted as vgoal

k , k ∈ {1, . . . , m} (the number of vertices m does not change
between frames). The task now is to find the transformations C1, . . . , Cp, so that the

skinning according to Formula (2.6) produces vertices v′
k as close as possible to vgoal

k . All
other quantities, i.e., the number of influencing joints nk, the influencing joint indices
jk,1, . . . , jk,nk

and the weights wk,1, . . . , wk,nk
, are known and fixed. The question is: how

general should the class of transformations that we consider be? The simplest option is to
consider general affine transformations, because in this case, we can optimize each element
in every matrix Ci independently. Let us study this method first.

7.2.1 Affine Transformation Fitting

The problem can be stated as minimization of

m∑
k=1

∥∥∥vgoal
k − v′

k

∥∥∥2

over the joint transformation matrices C1, . . . , Cp. This is equivalent to the least-squares
solution of the linear system

vgoal
k =

nk∑
i=1

wk,iCjk,i
vk, k ∈ {1, . . . , m} (7.1)

with 3m equations and 12p unknowns (the elements of 3 × 4 matrices C1, . . . , Cp). The
system from Formula (7.1) can be rewritten as

Ax = b

where x is a 12p-dimensional unknown vector, A is a 3m×12p known matrix, and b is the
3m-dimensional right-hand side. The matrix A is constructed from vertex weights, rest-
pose vertex positions and influencing joints. The vector b is formed by stacking vertices
vgoal

1 , . . . ,vgoal
m . Note that since each vertex is influenced only by a small number of joints

(typically no more than 4), the matrix A will be quite sparse. We obtain the least-squares

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 93

solution x with the LSQR algorithm which exploits the sparsity of the matrix A [104]. The
transformation matrices C1, . . . , Cp are then extracted from vector x.

Fitting of affine transformations works very well for vertex positions. However, because
of realistic shading, we also need to handle vertex normals. For accurate normals, it
is not sufficient to simply transform them by the 3 × 3 submatrices of C1, . . . , Cp, as
observed already in [99]. Instead, it is necessary to incorporate the normals into our fitting
process, which can be done in two ways. Either, we can combine the vertex and normal
equations together, and find transformations that would be useful for skinning both vertex
positions and normals. Alternatively, we can solve two independent systems, one for vertex
positions, one for normals, thus computing two sets of transformations. Even though the
latter method needs more memory, we found it more advantageous in practice – it also
avoids problems with different magnitudes of vertex positions and normals (i.e., vertex
magnitudes vary for each particular model, while normals are always unit, which can lead
to an unbalanced least-squares fitting). Henceforth, we will therefore consider a separate
set of transformations for normals, C ′

1, . . . , C
′
p.

Vertex normals are transformed in linear blend skinning according to an equation similar
to Formula (2.6):

ν ′
k =

(
nk∑
i=1

wk,iC
′
jk,i

)−T

νk (7.2)

where C ′
1, . . . , C

′
p are the normal transformation matrices. Besides the inverse transposi-

tion, the problem is that this equation does not produce unit normals ν ′
k, even if the input

normals have unit length [99]. This means that we would actually have to minimize

m∑
k=1

∥∥∥∥νgoal
k − ν ′

k

‖ν ′
k‖
∥∥∥∥2

(7.3)

which leads to a system of non-linear equations. A non-linear optimization would make
our pre-processing times impractical – not to mention the associated numerical issues.
Luckily, by constraining our transformations to rigid ones, we are able to obtain a linear
least squares problem.

7.2.2 Rigid Transformation Fitting

If we restrict our transformations to rigid ones, and employ a blending method which
preserves rigidity, we obtain useful simplifications. Namely, the inverse transposition from
Formula (7.2) as well as the normalization in Formula (7.3) disappear, thus linearizing the
problem. Moreover, rigid transformations have only 6 degrees of freedom, which means
that we need only half the memory required for affine transformations.

On the other hand, fitting rigid transformations is more complex than fitting affine trans-
formations because, in the former case, we must constrain the transformations to be rigid.

94 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

The straightforward way to do this would be to require that the 3 × 3 submatrix of each
Ci is orthogonal. Unfortunately, the orthogonality condition is quadratic, and therefore
we would again obtain a non-linear optimization problem. In addition to this, linear blend
skinning cannot be applied, because we need a blending method that preserves the rigidity
of the input transformations (otherwise the transformations of normals would not preserve
their unit length).

Fortunately, all of the above-mentioned problems can be elegantly solved by switching to
dual quaternion skinning (Chapter 4). Dual quaternions are automatically restricted to
rigid transformations, and their blending also naturally preserves rigidity, so the lengths
of normal vectors naturally stay unit. Dual quaternion skinning is given by Algorithm 4.2,
which can be written shortly in the following way:

v̂′
k =

(
nk∑
i=1

wk,iq̂jk,i

)
v̂k

(
nk∑
i=1

wk,iq̂jk,i

)−1

(7.4)

where q̂1, . . . , q̂p is the dual quaternion representation of matrices C1, . . . , Cp. One technical

difficulty with this equation is that it is only valid if the dual quaternion
∑nk

i=1 wk,iq̂jk,i

is invertible. We must thus ensure that our fitting method will produce invertible dual
quaternions, i.e., those with a non-zero non-dual part – at least one coefficient of 1, i, j or
k must be non-zero. We can enforce this easily by setting the first (real) component of each
dual quaternion q̂1, . . . , q̂p to one. This does not restrict our set of rigid transformations,
because any dual quaternion p̂ represents the same rigid transformation as its real multiple
αp̂, for any real number α [94].

Equation (7.4) can be further simplified: if we multiply both sides by
∑nk

i=1 wk,iq̂jk,i
from

the right and replace v̂′
k by the desired vertex position v̂goal

k , we obtain:

v̂goal
k

(
nk∑
i=1

wk,iq̂jk,i

)
−
(

nk∑
i=1

wk,iq̂jk,i

)
v̂k = 0 (7.5)

for k = 1, . . . , m. This is a linear system, because multiplication of a dual quaternion
by a constant dual quaternion is a linear transformation. Therefore, the above system of
equations can be written as

A′x′ = b′ (7.6)

where x′ is a 7p-dimensional unknown vector, A′ is a 3m × 7p known matrix, and b′ is
the 3m dimensional right-hand side (which is non-zero due to the substitution of 1 for the
real component of dual quaternions q̂1, . . . , q̂p). Construction of the matrix A′ is just a
technical matter of rewriting Equation (7.5). The vector b′ is formed from the rest-pose
vertices vk and the target ones, vgoal

k . The matrix A′ is sparse and thus Formula (7.6) can
be efficiently solved in the least-squares sense using LSQR [104]. This is even faster than
affine transformation fitting, because here we have only 7p unknowns instead of 12p. The
dual quaternions q̂1, . . . , q̂p leading to an optimal fit are then constructed easily: their first
component is 1, and the last 7 components are extracted from the vector x′.

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 95

The fitting of normals can be done in essentially the same way. The only difference is that,
in the case of normals, we ignore the translation component, i.e., set the dual parts of all
dual quaternions q̂1, . . . , q̂p to zero. This leads to a linear system with only 3p unknowns,
which we obtain from Equation (7.6) by simply substituting zeros for dual components.

7.2.3 Discussion

Is it more advantageous to use affine or rigid transformation fitting? Intuitively, it would
seem that for highly deformable animations, affine transformations should be more ap-
propriate: in particular, they cannot give a worse fit, because rigid transformations are
a subset of affine ones. However, our experiments (see Figure 7.5) show that the fitting
accuracy of both rigid and affine transformations is actually quite similar. We therefore
argue in favor of using rigid transformations, because they need only half as much memory
as affine ones, simplify the treatment of normals and also offer faster pre-processing. The-
oretically, it would be possible to consider a hybrid system that uses affine transformations
for vertex positions and quaternions for vertex normals. However, we find it much more
convenient to treat both vertex positions and normals in a unified way. Our final im-
plementation therefore uses dual quaternion-based rigid transformation fitting. Note that
James and Twigg [63] arrived at similar conclusions, stating that rigid transformations are
more favorable for highly deformable animations than affine ones.

7.3 Adding Fine Details

In some cases, the transformation fitting process described in Section 7.2 (either affine or
rigid) has the side effect of smoothing out deformations. This is understandable, because
matrix palette skinning simply has insufficient degrees of freedom to reproduce all the
fine details of the deformation field. We can increase the accuracy of fitting by adding
more proxy-joints, i.e., choosing a higher p. However, some subtle effects, such as delicate
wrinkles on the cloth, would require a very high p, thus defeating the purpose of our method.
In order to support such effects, we propose an alternative method, based on skinning
corrections similar to EigenSkin [74]. This method is most suitable for fine, low-amplitude
deformations, and thus presents a perfect complement to our joint transformation fitting,
which is most advantageous for low-resolution global shape approximation.

In the rest of this chapter, we will need to work with the animation as a whole, as opposed
to the per-frame approach used in Section 7.2. Therefore, κ will denote the number of
keyframes. To denote the quantities in keyframe (time) t = 1, . . . , κ, we use a superscript
t, for example, vt

k, (v
goal
k)t and q̂t

i. Let us assume that we have already computed the joint
transformations for each frame according to Section 7.2 (irrespective of whether rigid or
affine fitting was used). We denote the final transformation of vertex vt

k as T t
k, e.g., in

linear blend skinning, T t
k =

∑nk

i=1 wk,iC
t
jk,i

. The trick of EigenSkin is to transform the

approximation error, i.e., the vector (vgoal
k)t − T t

kv
t
k, to the rest-pose by multiplying it by

96 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

(T t
k)

−1 from the left. We denote the rest-pose error as et
k,

et
k = (T t

k)
−1(vgoal

k)t − vt
k

The vector et
k is the displacement which, if added to vt

k before transformation, corrects the
skin to match the input exactly (see Figure 7.3).

rest-pose

skinnedexact

Tkvk

t t

()vk

tgoal

ek

vk
t

t

Figure 7.3: Differences between the exact mesh position, (vgoal
k)t, and its skinning approx-

imation, T t
kv

t
k, are mapped to the rest-pose, and denoted as et

k.

We stack all vectors et
k in a 3m×κ matrix E. Then we apply singular value decomposition

to decompose the matrix E to E = DK, where D is a 3m × κ matrix whose columns
are so-called eigen-displacement vectors and K is an κ × κ matrix of eigen-displacement
coefficients. The reason for this decomposition is that only the first few eigen-displacements
are necessary for a good approximation of matrix E (this is a consequence of the high
correlation between the columns of matrix E). This means that instead of storing the
matrix E, which is as big as the original animation, we store only the first f columns
of matrix D and the first f rows of matrix K. An approximation of matrix E, which
we denote as E ′, is then given as a matrix multiplication E ′ = D′K ′, where D′ and K ′

have the same size as D and K, but the last κ − f columns of matrix D′ and last κ − f
rows of matrix K ′ are zero. In a practical implementation, the matrix E ′ is actually never
explicitly evaluated. Instead, the elements of E ′ are computed as needed, and can be
efficiently implemented in a vertex shader. When computing the matrix palette skinning,
the elements (e′

k)
t of matrix E ′ are used as corrections to rest-pose vertex positions, i.e.,

the corrected deformed vertex positions are now computed as

v′′
k = T t

k(v
t
k + (e′

k)
t)

Typically, even a value of f = 1 adds most of the fine details, see Figure 7.4. When using
rigid transformation fitting (Section 7.2.2), the normals can be corrected in the same way
as vertex positions, giving other correction matrices D′

n, K
′
n for normals. If allowing non-

rigid transformations, we can also use the same scheme, but we must take into account
that the normals will be transformed by the inverse transposition of matrix T t

k in this case.

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 97

no corrections

1 eigen-disp. 2 eigen-disp. 3 eigen-disp.

original

Figure 7.4: EigenSkin corrections [74], adapted to our settings. Matrix palette skinning
sometimes smoothes out the deformations, because of lack of samples (transformations).
However, fine details can be recovered by adding only few eigen-displacements.

7.4 Experiments and Comparison

In order to obtain comparable results, we use the same error metric for measuring the
fitting accuracy as in [63]. This metric is expressed as the percentage of distortion:

%Error = 100
‖Pexact − Papprox‖F

‖Pexact − Paverage‖F

where Pexact is the 3m × κ matrix storing the original animation, Papprox is the animation
reconstructed using our method and Paverage is a matrix where every column is the same
and is equal to the average of Pexact over all columns (keyframes). The symbol ‖·‖F denotes
the Frobenius norm of a matrix. Our testing animations (except the elastic hippopotamus
and shark) were created in 3D Studio Max using physically based cloth simulation. The
elastic hippopotamus and shark are animated in the same software but as FFD soft bodies.
For the visual results please see Figures 7.1, 7.7 and 7.9. The results of approximating
these animations using 100 proxy-joints are reported in Table 7.1. This relatively high
number of proxy-joints is a conservative estimate of how many transformations are really
needed. If higher data reduction was necessary, it would be possible to find an optimal
number of proxy-joints for each animation (it is not our goal to outperform the previous
animation compression algorithms in terms of compression ratio). In practice, 100 rigid
transformations per frame are unlikely to present an issue in terms of memory budget or
a performance bottleneck (which is much more likely to occur in the vertex or fragment
shader, because of the 3D models’ sizes).

An important issue is how our method compares to Skinned Mesh Animations (SMAs)
[63]. Unfortunately, we could not simply run SMAs on our testing animations, because

98 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

Animation Vertices Triangles Keyfr. Pre-process. Error Compress.
Falling Skirt 1 1468 2811 30 2.2 min 0.69 5.9
Falling Skirt 2 4969 9706 60 10.7 min 0.86 17.6
Skirt Walk 1 2963 5747 54 8.2 min 0.84 11.6
Skirt Walk 2 7526 14766 60 19.9 min 1.33 23.1
Curtain 6409 12528 200 48.7 min 0.16 27.6
Elastic Hippopotamus 6442 11542 100 151.8 min 0.11 24.4
Elastic Shark 10070 19301 100 205.7 min 0.04 33.5
Cloth Hippopotamus 6442 11542 100 33.5 min 0.86 24.4
Cloth Camel 20330 28332 100 79.5 min 0.8 50.4

Table 7.1: Results of Skinning Arbitrary Deformations for our testing animations. Condi-
tions: rigid transformation fitting, separate handling of vertex positions and normals, 100
proxy-joints, no corrections.

their implementation is not publicly available. However, we executed our algorithm on
the highly deformable animations from the SMA paper (courtesy of Doug L. James). We
compare the algorithms in the same setting (both use rigid transformations and the same
number of proxy-joints). Note that in this case, the numbers of proxy-joints has not been
set by the user (as before), but selected by James and Twigg’s algorithm. The results
are summarized in Table 7.2. We see that, with the sole exception of the elastic cow
animation, our algorithm fits with more than five times higher accuracy. This is true for
both uncorrected skinned animations as well as for corrections with 10 eigendisplacements
(in brackets). In the case of the elastic cow, our algorithm achieves only a slightly better
fit than SMA. We presume this is because the elastic cow is still quite similar to a quasi-
articulated object, unlike the remaining cloth models.

Animation m #tri κ p SAD pp SAD % E SMA pp SMA % E
Cloth Horse 8431 16843 53 6 3.0 min 7.67 (0.17) 7.7 min 41.7 (0.88)
Flag(32joints) 6906 13436 200 32 40.7 min 1.17 (0.44) 9.8 min 21.2 (5.93)
Flag(100joints) 6906 13436 200 100 142 min 0.46 (0.17) 16.4 min 2.26 (1.25)
Elastic Cow 2904 5804 204 18 5.3 min 2.48 (1.2) 3.1 min 2.82 (1.54)

m . . . number of vertices SAD pp . . . pre-processing time of SAD
#tri . . . number of triangles SAD % E . . . approximation error of SAD

κ . . . number of keyframes SMA pp . . . pre-processing time of SMA
p . . . number of proxy-joints SMA % E . . . approximation error of SMA

Table 7.2: Performance of our algorithm (SAD) executed on the highly deformable ani-
mations from the Skinning Mesh Animations (SMA) paper [63]. The numbers in brackets
denote the error after correction by 10 eigen-displacements. Compression ratio is not re-
ported because is the same for both SAD and SMA.

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 99

Experiments on SMAs with about 100 proxy-joints for extra animations (e.g., the cloth
horse animation) were carried out by James [61]. Unfortunately, issues arose with the mean
shift implementation (an algorithm used by SMAs), and it was found that it is not robust
enough to handle such cases (i.e., with a lot of little clusters). We did not encounter any
such robustness issues with our algorithm.

However, it should be noted that while our algorithm is also applicable to quasi-articulated
animations, SMAs are more advantageous in this case. They automatically determine the
lowest suitable number of proxy-joints, and also have shorter pre-processing times than
our algorithm. Our algorithm spends the vast majority of pre-processing time in the
optimization process (i.e., the LSQR algorithm [104]). This is because in our algorithm,
each transformation in each keyframe undergoes optimization.

An interesting question is how fast the error decreases for increasing numbers of proxy-
joints. We computed the error for 1 to 100 proxy-joints, using both rigid and affine trans-
formation fitting (see Figure 7.5). We observe two things: first, the rigid transformations
quickly become almost as accurate as the affine ones. Therefore, rigid transformations
(Section 7.2.2) are preferred, because they lead to twice as good compression as the affine
ones. Second, after about 60 proxy-joints, the approximation error decreases very slowly.
This suggests that the mesh corrections described in Section 7.3 are more suitable for
adding fine details than increasing the number of proxy-joints.

50

100

40

30

20

10

80604020

proxy-joints

%
er

ro
r

rigid transformations

affine transformations

0
0

Figure 7.5: Falling Skirt 1 animation: error of fitting for increasing number of proxy-joints.
Even for low numbers of proxy-joints, rigid fitting is almost as accurate as affine.

The performance of skin corrections according to Section 7.3 is reported in Figure 7.6.
We see that eigen-displacements are indeed a good alternative to increasing the number of
proxy-joints, as the fitting error quickly drops to an unobservable level after applying the
few first eigen-displacements. This is in accordance with the experiments of Kry et al. [74].

Three frames of the collapsing cloth hippopotamus animation are shown in Figure 7.7.
We see that even the rigid transformation fitting without any corrections (top row) ap-
proximates the overall shape very well. However, some fine details are smoothed out, e.g.,
the crease under the hippopotamus’ eye – see Figures 7.4 and 7.7. This is improved by

100 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

1.0

0.8

0.6

0.4

0.2

30252015105

%
er

ro
r

eigen-displacements
0

0

Figure 7.6: The cloth hippopotamus animation (with 100 proxy-joints and rigid trans-
formations) is improved by adding eigen-displacements (Section 7.3). Even one eigen-
displacement adds most fine details.

adding 5 corrective eigen-displacements (Figure 7.7 middle row), which makes the recon-
struction visually indistinguishable from the original animation (Figure 7.7 bottom). The
error of the uncorrected skinning is 0.86% and decreases to 0.07% after correction with 5
eigen-displacements.

Figure 7.7: The animation of a collapsing cloth hippopotamus. Top: Uncorrected skinning
with 100 proxy-joints and rigid transformations. Middle: Skinning corrected by adding 5
eigen-displacements. Bottom: The original animation.

Matrix palette skinning approximations reduce the degrees of freedom of the animation,
which is useful in a number of applications, as discussed already by James and Twigg
[63]. Our algorithm facilitates efficient hardware accelerated rendering, collision detection
and rest-pose editing for non-quasi articulated models. Our performance testing scenario
involves one thousand unsimplified elastic shark models (see Figure 7.8). The skinned

CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS 101

Figure 7.8: One thousand unsimplified shark models, animated using our method on a
GeForce 6600 GT at 2.42 FPS.

(a) (b)

(c) (d)

Figure 7.9: Rest-pose editing: the original plain skirt in the rest-pose (a), is changed to
a pleated skirt (b). Our method then automatically propagates the pleats over the whole
animation. The image (c) shows one frame of the original animation, and (d) the resulting
one.

approximations avoid the bottleneck of sending large amounts of data down the graphics
pipeline, and therefore allow us to achieve 2.42 FPS instead of 0.64 FPS as in the classic
approach (i.e., sending all vertex and normal data for each keyframe). Our implementation
also benefits from the rigid transformation fitting, by sending dual quaternions instead of

102 CHAPTER 7. SKINNING ARBITRARY DEFORMATIONS

matrices (which is more efficient because a dual quaternion needs only 8 floats, instead of
12 for a rigid transformation matrix).

The deformable collision detection in [63] is based on a Bounded Deformation Tree [62],
constructed for each rigid component. Obviously, this cannot work for our method, be-
cause we do not assume the existence of any rigid components. However, the skinned
approximation computed by our algorithm can be used for efficient collision detection as
described in Chapter 5.

Finally, we demonstrate that our skinning approximations are robust enough to propagate
small changes of the rest-pose geometry over the rest of the animation. This is a conve-
nient tool for animation editing and/or simplification. Imagine, for example, that we want
to change an original plain skirt into a pleated one. Thanks to our skinning approxima-
tion, this can be done simply by editing the rest-pose – see Figure 7.9. Note also that
thanks to our simple weighting scheme (Section 7.1), it is also possible to change the mesh
connectivity and, for example, perform mesh simplification.

CHAPTER 8. SUMMARY AND CONCLUSIONS 103

8 Summary and Conclusions

This thesis discusses several techniques to achieve a more realistic animation and simulation
of skeletally deformable objects. We focus on one specific class of skeletal deformation
algorithms, i.e., those based on blending of rigid transformations. This choice is motivated
by both the industrial importance of this model and the lack of its theoretical study. Even
though our main goal is to develop algorithms useful in practice, an equal attention has
been paid to the related theoretical background, providing more formal justification where
necessary. This chapter summarizes our contributions and discusses potential directions of
future work.

8.1 Our Contribution in Skinning

In the first part of this thesis (Chapters 3 and 4), we focus on the problem of realistic and
efficient skin deformation. We identify the main problem of the standard solution (linear
blend skinning) in the fact that it produces non-rigid output transformations. Based on
this observation, we describe our first improvement: spherical blend skinning [A.6], which
produces rigid transformations and indeed removes most artifacts. As we demonstrate on
our experimental 3D objects, spherical blending is only slightly slower than linear blending
and can therefore be a practical alternative.

Unfortunately, spherical blending involves a complex algorithm (singular value decomposi-
tion) as a subroutine. This presents some implementational difficulties (especially concern-
ing a GPU implementation) and it is probably the reason why spherical blending did not
achieve a big popularity among developers. Therefore, we continued by searching method
that would have similar properties as spherical blending, but would be easier to implement
and friendly to graphics hardware.

To this end, we conducted a theoretical investigation of rigid transformation blending
algorithms [A.8]. We formulated mathematical properties that an ideal rigid transforma-
tion blending for skinning should fulfill (Section 4.2). Based on our survey, we concluded
that no previously described rigid transformation blending algorithm is optimal for skin-
ning. Therefore, we developed new rigid transformation blending algorithms based on dual
quaternions. One of these algorithms, dual quaternion linear blending (Section 4.3) has
been found to be especially advantageous for skinning. This is because it 1) almost exactly
fulfills our set of optimal blending properties and 2) is very efficient and simple to imple-
ment on the GPU. We believe that this technique will finally become an alternative to the
popular but inaccurate linear blend skinning.

Although our study of rigid transformation blending algorithms originated from the goal
to find an optimal blending algorithm for skinning, the resulting methods are general and
potentially useful in other contexts as well. The importance of transformation blending in
computer graphics has been emphasized by Alexa [3].

104 CHAPTER 8. SUMMARY AND CONCLUSIONS

As an interesting by-product, this work demonstrates the utility of dual quaternions – a
tool that did not obtain too much attention in the computer graphics literature so far (in
contrast to regular quaternions). We presume that in future, more applications of dual
quaternions in computer graphics can be found.

In Chapter 7, we presented a method to automatically generate skinned approximations of
arbitrary deformations. To our knowledge, this is the first attempt to extend the popular
matrix palette skinning methods to a more general class of deformations, such as those
of cloth and elastic materials. This allows the benefits of skinned animations (e.g., data
reduction, efficient hardware accelerated rendering, fast collision detection and rest-pose
editing) to be exploited for more general animations than quasi-articulated ones.

8.2 Our Contribution in Collision Detection

Chapters 5 and 6 focus on collision detection algorithms specialized for skeletally de-
formable objects. Although the specialization on a given deformation model can be crit-
icized for the lack of generality, it has one major benefit: it enables to take advantage
of the special properties of the deformation model in question. In our case, this means
that collision detection can be based on joint transformations rather than on vertex dis-
placements (which is the classical approach). This enables us to achieve a considerable
speed-up over previous techniques, because the number of joints is typically much smaller
than the number of vertices. Obviously, no general collision detection technique can offer
this advantage: in the case of general deformations, it is inevitable to process all vertices.
This presents a bottleneck in real-time simulations, as observed on several experimental
scenarios.

Our first collision detection algorithm is designed for linear blend skinning [A.1]. This
might seem surprising in the light of our results in advanced skinning methods. However,
the problem of efficient sphere refitting (which is the key problem in our collision detection
method) is not trivial already in the simple linear blending. Therefore, we have chosen it
as the starting point of our investigation. Another justification of collision detection for
linear blend skinning is that this skinning method is already approved in the videogames
industry.

In order to construct efficient sphere refitting for linear blending, we developed the concept
of convex combination of spheres and generalized convex hulls (Section 5.2). We find these
tools also theoretically interesting, and we hope that they might be useful in other situ-
ations, besides accelerating collision detection. On several benchmarks, we demonstrated
that our collision detection algorithm for linear blend skinning significantly outperforms
previous generic methods (Section 5.4).

Motivated by these results, we continued by designing a similar collision detection algo-
rithm for spherical blend skinning. One might wonder why we did not opt for the more
advantageous dual quaternion skinning. This is because the work on collision detection

CHAPTER 8. SUMMARY AND CONCLUSIONS 105

for spherical blend skinning has been done before discovering the dual quaternion blending
method. Collision detection for dual quaternion skinning would be an interesting work we
would like to pursue in the future.

In contrast to the sphere refitting for linear blending, where it is sufficient to design bounds
of linear combinations, in the case of spherical blending we have to design spherical (quater-
nion) bounds. This is accomplished by introducing the concept of spherical cap (Sec-
tion 6.3). Of course, the possible applications of spherical caps are by no means limited to
collision detection. Even though the derivation and justification of spherical bounds is a
bit more complicated than in the linear case, the resulting algorithm is almost as efficient
as that for linear blending, as has been verified on our experimental scenarios.

From a theoretical viewpoint, we have shown that there exist exact sub-linear collision
detection algorithms for both linear and spherical blend skinning.

8.3 Future Work

8.3.1 Collision Detection for Dual Quaternion Blending

A natural continuation of our work on collision detection would be a sub-linear collision
detection algorithm for dual quaternion skinning. To this end, it would be necessary to
study the geometry of the image space of dual quaternions – a 6-dimensional manifold in
8-dimensional Euclidean space (which can be imagined as the set of tangent planes of a
hypersphere [94]). Based on this investigation, efficient bounding volumes would have to
be designed in this space. The rest would be equivalent to our previous collision detection
algorithms for linear and spherical blend skinning.

8.3.2 Analysis of Dual Quaternion Iterative Blending

In Chapter 4, we omitted a detailed discussion of the dual quaternion iterative blending
(DIB) algorithm. This is due to two reasons. First, the DIB algorithm is not as advan-
tageous in skinning as the dual quaternion linear blending (DLB), because of its higher
computational complexity (the main purpose of DIB is to show that an algorithm with the
desired properties really exists). Second, already the discussion of a simpler spherical case
is quite involved (see [22]). Blending on general manifolds would perhaps be a topic for a
thesis of itself.

8.3.3 Blending of Non-rigid Transformations

We considered only rigid transformations in our study of transformation blending, because
they are the ones most frequently encountered in skinning. However, certain special appli-
cations might require usage of general affine transformations (including scale and shear),

106 CHAPTER 8. SUMMARY AND CONCLUSIONS

for example the animation of muscle bulging. Dual quaternions fall short in representing
this kind of transformations and therefore new methods based on more general geometric
algebras should be explored. This work can be also very interesting theoretically, both by
formulating the desirable properties of affine blending (e.g., finding the analogy of shortest
path and constant speed properties when scale and shear is involved) and by designing new
algorithms to achieve them. This problem has already been slightly tackled in the recent
work of Wareham [133], discussing also some other interesting applications of geometric
algebras in computer graphics.

8.3.4 Rendering Performance and Visual Quality

The first part of this thesis focuses mainly on improving the realism of skin deforma-
tions. However, recent research records also the opposite trend: improving the run-time
performance of character animation [127, 131, 31, 2], sometimes even at the cost of compro-
mising visual quality. Even though linear blend skinning is a very efficient algorithm, its
speed might not be sufficient in applications such as rendering of large crowds. Therefore,
simplification techniques are sought, using, e.g., less detailed geometries or image based
representations. Therefore, another potential area of future research is to improve the
performance of rendering many animated objects.

On the other hand, other applications need only few models, but a high level of realism.
This might include simulation of muscle bulging and dynamic effects. Even though many
dedicated methods exist, it has been shown that this is possible even in the framework
of skeletal animation [99, 78]. Perhaps, further convergence of the different approaches to
character animation might be achieved in the future.

8.3.5 Adaptive Skinning Arbitrary Deformations

Our method for skinning arbitrary deformations, presented in Chapter 7, distributes the
proxy-joints (skinning transformations) uniformly over the rest-pose mesh. This might be
sub-optimal for certain types of deformations, e.g., when some parts of the model deform
more than others. Therefore, it would be advantageous to consider an adaptive proxy-joint
placement scheme, which would assign more proxy-joints to the areas of high deformations.
Also, nothing prevents us from changing proxy-joints positions from frame to frame, which
could also be exploited for more accurate skinned approximations.

8.4 Conclusion

The presented algorithms might serve as a basis for character animation subsystem in a
real-time application – the conducted experiments indicate that our methods can be useful
in practice. However, it can be only the real industrial experience that will evaluate the

CHAPTER 8. SUMMARY AND CONCLUSIONS 107

impact of our proposed techniques. Also, it remains to test our algorithms on a broader
set of 3D models, as the data sets available in the industrial environment are of course
much more rich than those available for academic purposes.

The problem of skinning, as well as that of character animation, is very young, being devel-
oped for only a couple of decades. We are probably yet starting to discover the variety of
problems involved and their relationships with other disciplines, such as algebra, geometry
and robotics. The industrial importance of skeletal and character animation facilitates
and accelerates prospective research – it might happen that the methods presented in this
thesis will quickly become outdated. At least, we hope that our techniques will play their
role in the unstoppable development.

108 BIBLIOGRAPHY

Bibliography

[1] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM
Comput. Surv., 30(4):412–458, 1998.

[2] J. Ahn, S. Oh, and K. Wohn. Optimized motion simplification for crowd animation:
Research articles. Comput. Animat. Virtual Worlds, 17(3-4):155–165, 2006.

[3] M. Alexa. Linear combination of transformations. In SIGGRAPH ’02: Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, pages
380–387. ACM Press, 2002.

[4] M. Alexa and W. Müller. Representing animations by principal components. Comput.
Graph. Forum, 19(3):411–418, 2000.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

[6] A. Angelidis. Hexanions: 6D space for twists. Technical report OUCS-2004-20,
University of Otago, 2004.

[7] A. Aubel and D. Thalmann. Realistic deformation of human body shapes. Proc.
Computer Animation and Simulation 2000, pages 125–135, 2000.

[8] A. Aubel and D. Thalmann. Musclebuilder: a modeling tool for human anatomy. J.
Comput. Sci. Technol., 19(5):585–595, 2004.

[9] Autodesk. 3D Studio Max. http://www.autodesk.com.

[10] Autodesk. Maya. http://www.autodesk.com.

[11] C. Babski and D. Thalmann. A seamless shape for hanim compliant bodies. In VRML
’99: Proceedings of the fourth symposium on Virtual reality modeling language, pages
21–28, New York, NY, USA, 1999. ACM Press.

[12] C. Belta and V. Kumar. An SVD-based projection method for interpolation on
SE(3). IEEE Transactions on Robotics and Automation, 18(3):334–345, 2002.

[13] C. Bloom, J. Blow, and C. Muratori. Errors and omissions in Marc Alexa’s Lin-
ear combination of transformations. http://www.cbloom.com/3d/techdocs/lcot_

errors.pdf, 2004.

[14] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 147–151. ACM
Press, 2002.

BIBLIOGRAPHY 109

[15] J. Bloomenthal and J. Rokne. Homogeneous coordinates. Vis. Comput., 11(1):15–26,
1994.

[16] O. Bottema and B. Roth. Theoretical kinematics. North-Holland Publishing Com-
pany, Amsterdam, New York, Oxford, 1979.

[17] G. Bradshaw and C. O’Sullivan. Sphere-tree construction using dynamic medial axis
approximation. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 33–40. ACM Press, 2002.

[18] G. Bradshaw and C. O’Sullivan. Adaptive medial-axis approximation for sphere-tree
construction. ACM Trans. Graph., 23(1):1–26, 2004.

[19] H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe. Geometry
videos: a new representation for 3D animations. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
136–146, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[20] J. Brown, S. Sorkin, C. Bruyns, J.-C. Latombe, K. Montgomery, and M. Stephanides.
Real-time simulation of deformable objects: Tools and application. In Computer
Animation 2001, pages 228–236, Nov. 2001.

[21] J. Buchanan. Invited talk at ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games, 2005.

[22] S. R. Buss and J. P. Fillmore. Spherical averages and applications to spherical splines
and interpolation. ACM Trans. Graph., 20(2):95–126, 2001.

[23] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic. Interactive skeleton-
driven dynamic deformations. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 586–593, New
York, NY, USA, 2002. ACM Press.

[24] B. Char, K. Geddes, and G. Gonnet. The Maple symbolic computation system.
j-SIGSAM, 17(3–4):31–42, Aug./Nov. 1983.

[25] Y.-J. Choi, Y. J. Kim, and M.-H. Kim. Self-CD: Interactive self-collision detection
for deformable body simulation using gpus. In AsiaSim, pages 187–196, 2004.

[26] W. Clifford. Mathematical Papers. London, Macmillan, 1882.

[27] G. Collins and A. Hilton. A rigid transform basis for animation compression and
level of detail. In Vision, Video, and Graphics, pages 1–7, 2005.

[28] F. Cordier and N. Magnenat-Thalmann. A data-driven approach for real-time clothes
simulation. Computer Graphics Forum, 24(2):173–183, 2005.

110 BIBLIOGRAPHY

[29] E. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation.
Technical Report DIKU-TR-98/5, University of Copenhagen, 1998.

[30] K. Daniilidis. Hand-eye calibration using dual quaternions. International Journal of
Robotics Research, 18:286–298, 1999.

[31] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors: a real-time
geometry / impostor crowd rendering system. In SI3D ’05, pages 95–102. ACM
Press, 2005.

[32] D. Eberly. 3D game engine design: a practical approach to real-time computer graph-
ics. Morgan Kaufmann Publishers Inc., 2001.

[33] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann Publishers Inc., 2004.

[34] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer graphics:
principles and practice (2nd ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990.

[35] D. Fontijne and L. Dorst. Modeling 3D euclidean geometry. IEEE Comput. Graph.
Appl., 23(2):68–78, 2003.

[36] B. Gaertner. Fast and robust smallest enclosing balls. In ESA ’99: Proceedings of
the 7th Annual European Symposium on Algorithms, pages 325–338. Springer-Verlag,
1999.

[37] F. Ganovelli, J. Dingliana, and C. O’Sullivan. BucketTree: Improving collision de-
tection between deformable objects. In Proceedings of the 16th Spring Conference on
Computer Graphics, pages 156–163. Comenius University, Bratislava, 2000.

[38] T. Gonzales. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38(22):293–306, 1985.

[39] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical structure for
rapid interference detection. Computer Graphics, 30(Annual Conference Series):171–
180, 1996.

[40] N. K. Govindaraju, I. Kabul, M. Lin, and D. Manocha. Fast continuous collision de-
tection among deformable models using graphics processors. In Eurographics Virtual
Environments, pages 19–26, 2006.

[41] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M. C. Lin,
and D. Manocha. Interactive collision detection between deformable models using
chromatic decomposition. ACM Trans. Graph., 24(3):991–999, 2005.

BIBLIOGRAPHY 111

[42] N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and reliable collision culling
using graphics hardware. In VRST ’04: Proceedings of the ACM symposium on
Virtual reality software and technology, pages 2–9, New York, NY, USA, 2004. ACM
Press.

[43] N. K. Govindaraju, M. C. Lin, and D. Manocha. Quick-cullide: Fast inter- and
intra-object collision culling using graphics hardware. In VR ’05: Proceedings of the
2005 IEEE Conference 2005 on Virtual Reality, pages 59–66, 319, Washington, DC,
USA, 2005. IEEE Computer Society.

[44] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. Cullide: interactive
collision detection between complex models in large environments using graphics
hardware. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 25–32, Aire-la-Ville, Switzerland, 2003. Eu-
rographics Association.

[45] V. M. Govindu. Lie-algebraic averaging for globally consistent motion estimation.
In CVPR (1), pages 684–691, 2004.

[46] F. S. Grassia. Practical parameterization of rotations using the exponential map.
Journal of Graphics Tools, 3(3):29–48, 1998.

[47] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and interactive techniques,
pages 355–361, New York, NY, USA, 2002. ACM Press.

[48] Z. Guo and K. C. Wong. Skinning with deformable chunks. Computer Graphics
Forum, 24(3):373–381, 2005.

[49] I. Guskov and A. Khodakovsky. Wavelet compression of parametrically coherent mesh
sequences. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 183–192, New York, NY, USA, 2004.
ACM Press.

[50] W. R. Hamilton. On quaternions. In Proceedings of the Royal Irish Academy, 1844.

[51] A. J. Hanson. Visualizing Quaternions. Morgan Kaufmann Publishers Inc., 2006.

[52] J. C. Hart, G. K. Francis, and L. H. Kauffman. Visualizing quaternion rotation.
ACM Trans. Graph., 13(3):256–276, 1994.

[53] A. Hawkins and C. Grimm. Keyframing using linear interpolation of matrices. Jour-
nal of Graphics Tools, 2006.

[54] T. He. Fast collision detection using QuOSPO trees. In SI3D ’99: Proceedings of the
1999 symposium on Interactive 3D graphics, pages 55–62. ACM Press, 1999.

112 BIBLIOGRAPHY

[55] B. Heidelberger, M. Teschner, and M. Gross. Detection of collisions and self-collisions
using image-space techniques. In Proceedings of Computer Graphics, Visualization
and Computer Vision WSCG’04, pages 145–152, 2004.

[56] J. Hejl. Hardware skinning with quaternions. Game Programming Gems 4, Charles
River Media, 487–495, 2004.

[57] D. Hildenbrand, D. Fontijne, C. Perwass, and L. Dorst. Geometric algebra and its
application to computer graphics. EG 2004 tutorial #3, 2004.

[58] V. Houska. Animation using GPU. Master’s thesis, Charles University, 2005.

[59] P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision
detection. ACM Trans. Graph., 15(3):179–210, 1996.

[60] D.-E. Hyun, S.-H. Yoon, J.-W. Chang, J.-K. Seong, M.-S. Kim, and B. Jüttler.
Sweep-based human deformation. The Visual Computer, 21(8-10):542–550, 2005.

[61] D. L. James. Personal communication, 2006.

[62] D. L. James and D. K. Pai. BD-Tree: output-sensitive collision detection for reduced
deformable models. ACM Trans. Graph., 23(3):393–398, 2004.

[63] D. L. James and C. D. Twigg. Skinning mesh animations. ACM Trans. Graph.,
24(3):399–407, 2005.

[64] S. Jianhua, N. Magnenat-Thalmann, and D. Thalmann. Human skin deformation
from cross sections. Proc. Computer Graphics International ’94, 1994.

[65] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: a survey. Computers
& Graphics, 25(2):269–285, 2001.

[66] M. P. Johnson. Exploiting Quaternions to Support Expressive Interactive Character
Motion. PhD thesis, MIT, 2003.

[67] P. Kalra, N. Magnenat-Thalmann, L. Moccozet, G. Sannier, A. Aubel, and D. Thal-
mann. Real-time animation of realistic virtual humans. IEEE Comput. Graph. Appl.,
18(5):42–56, 1998.

[68] A. Karger and J. Novak. Space Kinematics and Lie Groups. Gordon and Breach
Science Publishers, New York, USA, 1985.

[69] Z. Karni and C. Gotsman. Compression of soft-body animation sequences. Computers
& Graphics, 28(1):25–34, 2004.

[70] I. Kenneth E. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d
geometric proximity queries using graphics hardware. In SI3D ’01: Proceedings of
the 2001 symposium on Interactive 3D graphics, pages 145–148, New York, NY, USA,
2001. ACM Press.

BIBLIOGRAPHY 113

[71] S. Kircher and M. Garland. Progressive multiresolution meshes for deforming sur-
faces. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 191–200, New York, NY, USA, 2005. ACM
Press.

[72] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36, 1998.

[73] T. Klug and M. Alexa. Bounding volumes for linearly interpolated shapes. In Com-
puter Graphics International, pages 134–139, 2004.

[74] P. G. Kry, D. L. James, and D. K. Pai. Eigenskin: real time large deformation charac-
ter skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 153–159. ACM Press, 2002.

[75] T. Kurihara and N. Miyata. Modeling deformable human hands from medical images.
In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 355–363, New York, NY, USA, 2004. ACM Press.

[76] J. Lander. Skin them bones: Game programming for the web generation. Game
Developer Magazine, pages 11–16, May 1998.

[77] J. Lander. Over my dead, polygonal body. Game Developer Magazine, pages 17–22,
October 1999.

[78] C. Larboulette, M.-P. Cani, and B. Arnaldi. Dynamic skinning: adding real-time
dynamic effects to an existing character animation. In SCCG ’05: Proceedings of
the 21st spring conference on Computer graphics, pages 87–93, New York, NY, USA,
2005. ACM Press.

[79] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast proximity queries with
swept sphere volumes. Technical report TR99-018, University of N. Carolina, Chapel
Hill, 1999.

[80] T. Larsson and T. Akenine-Moller. Collision detection for continuously deforming
bodies. In Eurographics 2001, Short Presentations, pages 325–333. Eurographics
Association, 9 2001.

[81] T. Larsson and T. Akenine-Moller. Efficient collision detection for models deformed
by morphing. The Visual Computer, 19(2–3):164–174, 2003.

[82] T. Larsson and T. Akenine-Moller. A dynamic bounding volume hierarchy for gen-
eralized collision detection. In Proceedings of the 2nd Workshop on Virtual Reality
Interactions and Physical Simulations, pages 91–100, 2005.

114 BIBLIOGRAPHY

[83] T. Larsson and T. Akenine-Möller. A dynamic bounding volume hierarchy for gen-
eralized collision detection. Computers & Graphics, 30(3):451–460, June 2006.

[84] J. E. Lengyel. Compression of time-dependent geometry. In SI3D ’99: Proceedings of
the 1999 symposium on Interactive 3D graphics, pages 89–95, New York, NY, USA,
1999. ACM Press.

[85] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified approach
to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pages 165–172.
ACM Press/Addison-Wesley Publishing Co., 2000.

[86] J. Li and P. Hao. Smooth interpolation on homogeneous matrix groups for computer
animation. Journal of Zhejiang University, 7(7):1168–1177, 2006.

[87] E. Lindholm, M. J. Kligard, and H. Moreton. A user-programmable vertex engine.
In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 149–158, New York, NY, USA, 2001. ACM Press.

[88] N. Magnenat-Thalmann. Efficient self-collision detection on smoothly discretized
surface animations using geometrical shape regularity. Comput. Graph. Forum,
13(3):155–166, 1994.

[89] N. Magnenat-Thalmann, F. Cordier, H. Seo, and G. Papagianakis. Modeling of
bodies and clothes for virtual environments. In CW ’04: Proceedings of the 2004
International Conference on Cyberworlds (CW’04), pages 201–208. IEEE Computer
Society, 2004.

[90] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent local
deformations for hand animation and object grasping. In Proceedings on Graphics
interface ’88, pages 26–33. Canadian Information Processing Society, 1988.

[91] K. Mamou, T. Zaharia, and F. Preteux. A skinning approach for dynamic 3D mesh
compression: Research articles. Comput. Animat. Virtual Worlds, 17(3-4):337–346,
2006.

[92] A. Manganas, M. Tsiknakis, E. Leisch, M. Ponder, T. Molet, B. Herbelin,
N. Magnenat-Thalmann, and D. Thalmann. Just in time health emergency inter-
ventions: An innovative approach to training the citizen for emergency situations
using virtual reality techniques and advanced it tools. The Journal on Information
Technology in Healthcare, pages 27–37, 2005.

[93] J. Matousek. Lectures on Discrete Geometry. Springer, April 2002.

[94] J. M. McCarthy. Introduction to theoretical kinematics. MIT Press, Cambridge, MA,
USA, 1990.

BIBLIOGRAPHY 115

[95] C. Mendoza and C. O’Sullivan. An interruptible algorithm for collision detection
between deformable objects. In Proceedings of the 2nd Workshop on Virtual Reality
Interactions and Physical Simulations, pages 73–80, 2005.

[96] B. Merry, P. Marais, and J. Gain. Animation space: A truly linear framework for
character animation. ACM Trans. Graph., 25(4):1400–1423, 2006.

[97] J. Mezger, S. Kimmerle, and O. Etzmuß. Hierarchical Techniques in Collision De-
tection for Cloth Animation. Journal of WSCG, 11(2):322–329, 2003.

[98] M. Moakher. Means and averaging in the group of rotations. SIAM Journal on
Matrix Analysis and Applications, 24(1):1–16, 2002.

[99] A. Mohr and M. Gleicher. Building efficient, accurate character skins from examples.
ACM Trans. Graph., 22(3):562–568, 2003.

[100] A. Mohr, L. Tokheim, and M. Gleicher. Direct manipulation of interactive character
skins. In Proceedings of the 2003 symposium on Interactive 3D graphics, pages 27–30.
ACM Press, 2003.

[101] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 413–414, 1994.

[102] S. Oh, H. Kim, N. Magnenat-Thalmann, and K. Wohn. Generating unified model
for dressed virtual humans. The Visual Computer, 21(8-10):522–531, 2005.

[103] R. Ott, D. Thalmann, and F. Vexo. Organic shape modelling. Computer-Aided
Design and Applications, 3(1–4):79–88, 2006.

[104] C. C. Paige and M. A. Saunders. Algorithm 583: LSQR: Sparse linear equations and
least squares problems. ACM Trans. Math. Softw., 8(2):195–209, 1982.

[105] S. I. Park, H. J. Shin, and S. Y. Shin. On-line locomotion generation based on motion
blending. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 105–111. ACM Press, 2002.

[106] M. Pratscher, P. Coleman, J. Laszlo, and K. Singh. Outside-in anatomy based char-
acter rigging. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 329–338, New York, NY, USA, 2005.
ACM Press.

[107] X. Provot. Collision and self-collision handling in cloth model dedicated to design
garments. In Proceedings of the Eurographics Workshop on Computer Animation and
Simulation (CAS 1997), pages 177–189. Springer-Verlag, 1997.

[108] S. Quinlan. Efficient distance computation between non-convex objects. In ICRA,
pages 3324–3329, 1994.

116 BIBLIOGRAPHY

[109] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the problem of
collision detection for rigid polyhedral objects. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 3733–3738, 2000.

[110] S. Redon, A. Kheddar, and S. Coquillart. Contact: Arbitrary in-between motions for
collision detection. In Proceedings of IEEE International Workshop on Robot-Human
Communication, pages 106–111, 2001.

[111] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection between
rigid bodies. Comput. Graph. Forum, 21(3):279–288, 2002.

[112] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha. Fast continuous collision detection
for articulated models. In Proceedings of ACM Symposium on Solid Modeling and
Applications, pages 126–137, 2004.

[113] S. Redon, Y. J. Kim, M. C. Lin, D. Manocha, and J. Templeman. Interactive and
continuous collision detection for avatars in virtual environments. In VR ’04: Pro-
ceedings of the IEEE Virtual Reality 2004 (VR’04), pages 117–124. IEEE Computer
Society, 2004.

[114] T. Rhee, J. Lewis, and U. Neumann. Real-time weighted pose-space deformation on
the GPU. Computer Graphics Forum, 25(3):439–448, 2006.

[115] M. Sattler, R. Sarlette, and R. Klein. Simple and efficient compression of animation
sequences. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 209–217, New York, NY, USA, 2005.
ACM Press.

[116] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models.
In SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics
and interactive techniques, pages 151–160, New York, NY, USA, 1986. ACM Press.

[117] K. Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th
annual conference on Computer graphics and interactive techniques, pages 245–254.
ACM Press, 1985.

[118] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R) Programming Guide :
The Official Guide to Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley
Professional, August 2005.

[119] K. Singh and E. Kokkevis. Skinning characters using surface oriented free-form
deformations. In Graphics Interface, pages 35–42, May 2000.

[120] P.-P. J. Sloan, C. F. Rose, III, and M. F. Cohen. Shape by example. In Proceedings
of the 2001 symposium on Interactive 3D graphics, pages 135–143. ACM Press, 2001.

BIBLIOGRAPHY 117

[121] J. Snyder. Interval analysis for computer graphics. In Computer Graphics, volume 26,
pages 121–130, 1992.

[122] P. Steed. Animating Real-Time Game Characters with CDROM. Charles River
Media, 2002.

[123] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross. Opti-
mized spatial hashing for collision detection of deformable objects. In Proc. Vision,
Modeling, Visualization VMV’03, pages 47–54, Munich, Germany, 2003.

[124] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-Thalmann, and W. Strasser. Colli-
sion detection for deformable objects. In Proc. Eurographics, State-of-the-Art Report,
pages 119–135, Grenoble, France, 2004. Eurographics Association.

[125] D. Thalmann, J. Shen, and E. Chauvineau. Fast realistic human body deformations
for animation and VR applications. In CGI ’96: Proceedings of the 1996 Conference
on Computer Graphics International, pages 166–176, Washington, DC, USA, 1996.
IEEE Computer Society.

[126] Turbo Squid. 3D models repository. http://www.turbosquid.com.

[127] B. Ulicny and D. Thalmann. Crowd simulation for interactive virtual environments
and vr training systems. In Proceedings of the Eurographic workshop on Computer
animation and simulation, pages 163–170, New York, NY, USA, 2001. Springer-
Verlag New York, Inc.

[128] G. van den Bergen. Efficient collision detection of complex deformable models using
AABB trees. Journal of Graphics Tools: JGT, 2(4):1–14, 1997.

[129] T. I. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth animation on walking
avatars. Comput. Graph. Forum, 20(3):260–267, 2001.

[130] P. Volino and N. Magnenat-Thalmann. Efficient self-collision detection on smoothly
discretized surface animations using geometrical shape regularity. Comput. Graph.
Forum, 13(3):155–166, 1994.

[131] M. Wand and W. Straßer. Multi-resolution rendering of complex animated scenes.
Computer Graphics Forum, 21(3):483–491, 2002.

[132] X. C. Wang and C. Phillips. Multi-weight enveloping: least-squares approxi-
mation techniques for skin animation. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 129–138. ACM
Press, 2002.

118 BIBLIOGRAPHY

[133] R. Wareham, J. Cameron, and J. Lasenby. Applications of conformal geometric alge-
bra in computer vision and graphics. Lecture Notes in Computer Science, 3519:329–
349, 2005.

[134] J. Weber. Run-time skin deformation. In Proceedings of Game Developers Confer-
ence, 2000.

[135] X. Yang and J. J. Zhang. Stretch it - realistic smooth skinning. In Computer
Graphics, Imaging and Visualization, pages 323–328, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[136] G. Zachmann. Minimal hierarchical collision detection. In VRST ’02: Proceedings
of the ACM symposium on Virtual reality software and technology, pages 121–128,
New York, NY, USA, 2002. ACM Press.

[137] L. Zuo, J.-T. Li, and Z.-Q. Wang. Anatomical human musculature modeling for real-
time deformation. In Proceedings of Computer Graphics, Visualization and Computer
Vision WSCG, 2003.

BIBLIOGRAPHY 119

Publications of the Author

Refereed Journal Papers

[A.1] L. Kavan, J. Žára. Fast Collision Detection for Skeletally Deformable Models. Com-
puter Graphics Forum, 24(3):363–372, 2005.

Reviewed Conference Papers

[A.2] L. Kavan, S. Collins, C. O’Sullivan, J. Žára. Skinning with Dual Quaternions. ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2007 (to appear).

[A.3] L. Kavan, R. McDonnell, S. Dobbyn, J. Žára, C. O’Sullivan. Skinning Arbitrary De-
formations. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
2007 (to appear).

[A.4] L. Kavan, J. Žára, C. O’Sullivan. Efficient Collision Detection for Spherical Blend
Skinning. GRAPHITE, Computer graphics and interactive techniques in Australasia
and South East Asia, ACM Press, pages 147–156, 2006.

[A.5] S. Dobbyn, R. McDonnell, L. Kavan, S. Collins, C. O’Sullivan. Clothing the Masses:
Real-Time Clothed Crowds With Variation. Eurographics 2006 Short Papers Pro-
ceedings, pages 103–106, 2006.

[A.6] L. Kavan, J. Žára. Spherical Blend Skinning: A Real-time Deformation of Articu-
lated Models. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 9–16, 2005.

[A.7] L. Kavan, J. Žára. Real-time Skin Deformation with Bones Blending. Winter School
on Computer Graphics 2003 Short papers, pages 69–74, 2003.

Other Publications

[A.8] L. Kavan, S. Collins, C. O’Sullivan, J. Žára. Dual Quaternions for Rigid Transforma-
tion Blending. Research Report TCD-CS-2006-46, Computer Science Department,
Trinity College Dublin, August 2006.

[A.9] L. Kavan, R. McDonnell, S. Dobbyn, J. Žára, C. O’Sullivan. Skinning Arbitrary De-
formations. ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
Posters, 2006.

[A.10] L. Kavan. Simulation of Fencing in Virtual Reality, Master’s thesis, Charles Univer-
sity, Prague, September 2003.

120 APPENDIX A. DETAILED PROOFS

A Detailed Proofs

Two statements in this thesis require a rather lengthy verification. In order to maintain
the continuity of the text in the previous chapters, we present the proofs in this appendix.
Some tedious derivations in these proofs are carried out using Maple (a software package
for automatic manipulation with symbolic expressions [24]).

A.1 Difference between DLB and ScLERP

As stated in Section 4.3, the problem of comparing DLB and ScLERP requires to express
the dual angle β̂t from the formula

cos
β̂t

2
=

1 − t + t cos(α̂
2
)

‖1 − t + tp̂∗q̂‖
and then compare it with α̂t for t ∈ [0, 1]. Before switching to Maple, we start with some
manual simplifications. First, let us recall the formulas for dual number sine and cosine:

cos

(
α̂

2

)
= cos

(α0

2

)
− ε

αε

2
sin

(α0

2

)
sin

(
α̂

2

)
= sin

(α0

2

)
+ ε

αε

2
cos

(α0

2

)

see [30]. For brevity, we will use shortcut C for cos(α0

2
) and S for sin(α0

2
). Using this

shorthand, we derive:

1 − t + tp̂∗q̂ = 1 − t + t cos

(
α̂

2

)
+ n̂t sin

(
α̂

2

)
=

= 1 − t + tC − εt
αε

2
S + (n0 + εnε)t

(
S + ε

αε

2
C
)

=

= 1 − t + tC + n0tS︸ ︷︷ ︸
r0

+ε t
(
−αε

2
S + nεS +

αε

2
n0C

)
︸ ︷︷ ︸

rε

The newly introduced vectors r0 and rε satisfy

‖r̂0‖ =
√

(1 − t + tC)2 + t2S2

〈r̂0, r̂ε〉 =
〈
1 − t + tC + n0tS,−t

αε

2
S + tnεS + t

αε

2
n0C

〉
= (t − 1 − tC)t

αε

2
S +

αε

2
t2CS = (t − 1)t

αε

2
S

because n̂ = n0 + εnε is unit dual quaternion (with zero scalar part). Therefore, the
denominator of our equation can be written as

‖1 − t + tp̂∗q̂‖ = ‖r̂0 + εr̂ε‖ = ‖r̂0‖ + ε
〈r̂0, r̂ε〉
‖r̂0‖

APPENDIX A. DETAILED PROOFS 121

and its inverse
1

‖1 − t + tp̂∗q̂‖ =
1

‖r̂0‖ − ε
〈r̂0, r̂ε〉
‖r̂0‖3

which gives

1 − t + t cos(α̂
2
)

‖1 − t + tp̂∗q̂‖ =
1 − t + tC − εtαε

2
S

‖1 − t + tp̂∗q̂‖ =
1 − t + tC

‖r̂0‖ − ε

(
tαεS

2‖r̂0‖ +
(1 − t + tC)〈r̂0, r̂ε〉

‖r̂0‖3

)

We denote the function above as f(t). Now, we feel inevitable to employ Maple in order to
compute β̂t by taking the arccos of f(t). In the following listing, the norm ‖r̂0‖ is denoted
as r0, non-dual and dual parts of f(t) as f0 and fe. The non-dual component of β̂t is
called ang and the dual one pitch, emphasizing their geometric interpretation. In the first
part of the listing, we actually re-compute the result from Section 3.2, showing that the
maximal angular difference between QLB and SLERP is 0.143 radians, i.e., 8.15 degrees.
In the second part (the dual quaternion-specific one), we derive the difference between the
translational parts of DLB and ScLERP, which turns out to be a linear function of αε (the
input translation). Specifically, the difference between translation of DLB and ScLERP
shows to be always strictly less than 0.151αε.

> r0 := sqrt((1-t+t*cos(alpha_0/2))^2 + t*t*sin(alpha_0/2)^2):

> f0 := (t*cos(alpha_0/2) + 1-t)/r0:
> fe := - t*alpha_e/2*sin(alpha_0/2)/r0 - (1-t +

> t*cos(alpha_0/2))*(t-1)*t*alpha_e/2*sin(alpha_0/2) / r0^3:

> ang := 2*arccos(f0);

ang := 2 arccos

⎛
⎜⎜⎝ 1 − t + t cos(

1

2
alpha 0)√

(1 − t + t cos(
1

2
alpha 0))2 + t2 sin(

1

2
alpha 0)2

⎞
⎟⎟⎠

> plot(subs(alpha_0 = Pi, t -> ang(t)), t = 0..1, y = -0.1..3.14);

> anglediff := ang - alpha_0*t:

> evalf(minimize(subs(alpha_0 = Pi, t -> anglediff(t)), t = 0..1));

−.1422292715

> evalf(maximize(subs(alpha_0 = Pi, t -> anglediff(t)), t = 0..1));

.1422292755

> pitch := simplify(-2*fe/sin(ang/2));

122 APPENDIX A. DETAILED PROOFS

0

0.5

1

1.5

2

2.5

3

y

0.2 0.4 0.6 0.8 1
t

pitch := t2 alpha e sin(
1

2
alpha 0) (−%1 − t + t %1)

/
(

(−1 + 2 t − 2 t %1 − 2 t2 + 2 t2 %1)
√

1 − 2 t + 2 t %1 + 2 t2 − 2 t2 %1√
t2 (−1 + %12)

−1 + 2 t− 2 t %1 − 2 t2 + 2 t2 %1
)

%1 := cos(
1

2
alpha 0)

> plot(subs(alpha_0 = Pi, alpha_e=1, t -> pitch(t)), t = 0..1, y =

> -1..1);

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1
t

> pitchdiff := pitch - alpha_e*t:

APPENDIX A. DETAILED PROOFS 123

> evalf(minimize(subs(alpha_0 = Pi, alpha_e=1, t -> pitchdiff(t)), t =

> 0..1));

−.1501415529
> evalf(maximize(subs(alpha_0 = Pi, alpha_e=1, t -> pitchdiff(t)), t =

> 0..1));

.1501415529

A.2 Log-matrix Blending Is Not Constant Speed

The constant speed property of log-matrix blending [3] has an interesting history. The
author of log-matrix blending claims, without proof, that his method is not constant speed.
Subsequently, a critique is posted on-line [13], which points out mistakes in the log-matrix
blending paper [3]. Among several good insights, it unfortunately also mentions the fact
that log-matrix blending actually is constant speed. This is not true, as we prove in this
section.

A.2.1 Background on Log-matrix Blending

Before we start with the actual proof, we review the log-matrix blending method with
a special focus on blending of rotations. This will be advantageous for the subsequent
discussion.

Let us consider a simple situation of two 3 × 3 rotation matrices R0 and R1. Let Rt be
an interpolation between those two matrices, i.e., a matrix which for t = 0 becomes R0,
for t = 1 becomes R1 and for 0 < t < 1 is a valid rotation matrix. What we informally
referred as speed in the above, is actually an angular velocity of Rt. The formula expressing
angular velocity in the body (moving) coordinate system is

M(ωt) = R−1
t

∂Rt

∂t
(A.1)

see [101]. Alternatively, we could also use a similar formula for angular velocity expressed in
the spatial coordinate system. This angular velocity differs only by the reference coordinate
system, and thus its magnitude (which we aim to compute) is the same. In our analysis,
we will work with the body angular velocity, although we could equally well work with
the spatial angular velocity. In Formula (A.1), M(a) is a function mapping vector a =
(a1, a2, a3) to an anti-symmetric matrix

M(a) =

⎛
⎝ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞
⎠ (A.2)

The multiplication of any vector x = (x1, x2, x3) by this matrix corresponds to the cross
product, i.e., M(a)x = a × x. Therefore, the vector ωt in Formula (A.1) is the common

124 APPENDIX A. DETAILED PROOFS

vector representation of angular velocity. The anti-symmetric matrix M(a) is connected
with matrix logarithms. If R is a rotation about axis a/‖a‖ with angle ‖a‖, then its
logarithm log R = M(a). This gives us an intuitive explanation of the rotation matrix
logarithm. To verify this fact, consider a differential equation describing rotation of a
point p at time t with angular velocity a:

∂p(t)

∂t
= a× p(t) = M(a)p(t)

The solution of this differential equation can be expressed using the matrix exponential

p(t) = exp(M(a)t)p(0) (A.3)

where p(0) is the initial condition, i.e., the position of the point at time 0. We can observe
that the term exp(M(a)t) in Formula (A.3) is nothing but the matrix of rotation about
axis a/‖a‖ with angle t‖a‖. Therefore, the matrix R describing rotation about axis a/‖a‖
with angle ‖a‖ can be written as R = exp(M(a)). From this, it immediately follows that
log R = M(a), as we wanted to show.

In the following, Rt will denote the result of log-matrix blending, given according to [3] as

Rt = exp((1 − t) log R0 + t log R1) (A.4)

where exp and log denote the matrix exponential and logarithm. The geometrical interpre-
tation of matrix logarithm gives us an insight into what the log-matrix blending (limited
to rotations) actually does: linear blending of the axis-angle representation of rotations.

A.2.2 Log-Matrix Blending in Maple

To show that log-matrix blending is not constant speed, it is sufficient to find two rotation
matrices R0, R1, and show that the magnitude of angular velocity of their blend Rt,
i.e., ‖ωt‖ according to Formula (A.1), is not a constant function. Let us define R0 as a
rotation about axis (1, 0, 0) with angle 1 radian, and matrix R1 as a rotation about axis
(1/

√
2, 1/

√
2, 0) with angle

√
2 radians. This choice simplifies the following computations.

The logarithms of R0 and R1 are

log R0 =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , log R1 =

⎛
⎝ 0 0 1

0 0 −1
−1 1 0

⎞
⎠

and therefore

(1 − t) log R0 + t log R1 =

⎛
⎝ 0 0 t

0 0 −1
−t 1 0

⎞
⎠

We denote this matrix as Lt := (1 − t) log R0 + t log R1. The next step is to compute the
exponential of matrix Lt. This can be easily done in Maple (it would also be possible to

APPENDIX A. DETAILED PROOFS 125

use the Rodriguez formula [101], but the equations quickly become awkward for manual
derivations).

> with(linalg):

> Lt := matrix(3,3,[0,0,t,0,0,-1,-t,1,0]);

Lt :=

⎡
⎣ 0 0 t

0 0 −1
−t 1 0

⎤
⎦

> E := simplify(evalm(exponential(Lt)));

E :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2

2 + t2 %2 + t2 %1

1 + t2
−1

2

t (%2 + %1 − 2)

1 + t2
1

2

t (−%2 + %1)√−1 − t2

−1

2

t (%2 + %1 − 2)

1 + t2
1

2

2 t2 + %2 + %1

1 + t2
−1

2

−%2 + %1√−1 − t2

1

2

t (%2 − %1)√−1 − t2
−1

2

%2 − %1√−1 − t2
1

2
%2 +

1

2
%1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

%1 := e(
√−1−t2)

%2 := e(−√−1−t2)

> Esubs := map(x -> subs(sqrt(-1-t^2) = i*B, 1/sqrt(-1-t^2) = 1/(i*B),

> x), E);

Esubs :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2

2 + t2 e(−i B) + t2 e(i B)

1 + t2
−1

2

t (e(−i B) + e(i B) − 2)

1 + t2
1

2

t (−e(−i B) + e(i B))

i B

−1

2

t (e(−i B) + e(i B) − 2)

1 + t2
1

2

2 t2 + e(−i B) + e(i B)

1 + t2
−1

2

−e(−i B) + e(i B)

i B

1

2

t (e(−i B) − e(i B))

i B
−1

2

e(−i B) − e(i B)

i B

1

2
e(−i B) +

1

2
e(i B)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> Esubs2 := simplify(map(x -> subs(exp(i*B) = cos(B) + i*sin(B),

> exp(-i*B) = cos(B) - i*sin(B), x), Esubs));

Esubs2 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + t2 cos(B)

1 + t2
−t (cos(B) − 1)

1 + t2
t sin(B)

B

−t (cos(B) − 1)

1 + t2
t2 + cos(B)

1 + t2
−sin(B)

B

−t sin(B)

B

sin(B)

B
cos(B)

⎤
⎥⎥⎥⎥⎥⎥⎦

> Efinal := map(x -> subs(B=sqrt(1+t*t), x), Esubs2);

126 APPENDIX A. DETAILED PROOFS

Efinal :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 + t2 %1

1 + t2
−t (%1 − 1)

1 + t2
t %2√
1 + t2

−t (%1 − 1)

1 + t2
t2 + %1

1 + t2
− %2√

1 + t2

− t %2√
1 + t2

%2√
1 + t2

%1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

%1 := cos(
√

1 + t2)

%2 := sin(
√

1 + t2)

We had to help Maple with the substitution in order to obtain a real matrix (instead of
complex). The result of log-matrix blending therefore is Rt := exp Lt, where

exp Lt =

⎛
⎜⎜⎜⎜⎝

1+t2 cos(
√

1+t2)
1+t2

− t(cos(
√

1+t2)−1)
1+t2

t sin(
√

1+t2)√
1+t2

− t(cos(
√

1+t2)−1)
1+t2

t2+cos(
√

1+t2)
1+t2

− sin(
√

1+t2)√
1+t2

− t sin(
√

1+t2)√
1+t2

sin(
√

1+t2)√
1+t2

cos(
√

1 + t2)

⎞
⎟⎟⎟⎟⎠

Now we compute the inverse and derivative of Rt (Efinal), whose multiplication gives the
angular velocity matrix M(ωt), according to Formula (A.1).

> dEfinal := map(x->diff(x,t), Efinal):

> iEfinal := inverse(Efinal):

> AngVelMat := simplify(evalm(iEfinal&*dEfinal));

AngVelMat :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −cos(
√

1 + t2) − 1

1 + t2

√
1 + t2 t2 + %1

(1 + t2)(3/2)

cos(
√

1 + t2) − 1

1 + t2
0

(−√
1 + t2 + %1) t

(1 + t2)(3/2)

−t4 + t2 + %1
√

1 + t2

(1 + t2)2
−(−t2 − 1 + %1

√
1 + t2) t

(1 + t2)2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

%1 := sin(
√

1 + t2)
> simplify(evalm(AngVelMat + transpose(AngVelMat)));⎡

⎣ 0 0 0
0 0 0
0 0 0

⎤
⎦

The last command verifies that AngVelMat is indeed an anti-symmetric matrix, as expected,
and therefore has the structure from Formula (A.2). Now we extract the angular velocity
vector ω according to Formula (A.2), and compute its norm:

> omegat := matrix(1,3,[AngVelMat[3,2], -AngVelMat[3,1],

> AngVelMat[2,1]]):

APPENDIX A. DETAILED PROOFS 127

> omegatLen := simplify(sqrt(AngVelMat[3,2]^2 + AngVelMat[3,1]^2 +

> AngVelMat[2,1]^2));

omegatLen :=

√
−−t4 − t2 − 2 + 2 cos(

√
1 + t2)

(1 + t2)2

Obviously, the function ωt is not constant for t ∈ [0, 1], see also its graph in Figure A.1.

0

0.962

0.960

0.958

0.956
0.2 0.4 0.6 0.8 1.0

t

�

Figure A.1: Graph of ‖ωt‖ for t ∈ [0, 1]

Although we have just shown that the speed of log-matrix blending is not constant, we
observe that it is actually not far from constant. This is probably what accounts for
the confusion of Bloom et al. [13] because, with numerical calculations, the slight non-
constantness could be incorrectly explained as a numerical error. The observation that the
speed of log-matrix blending is almost constant is in accordance with Alexa’s statement that
the blending is visually pleasing [3] (as motion with large variations of angular acceleration
would not look pleasing). An interesting future work would be to find an upper bound of
the angular acceleration of log-matrix blending in general.

128 APPENDIX B. ACRONYMS AND SYMBOLS

B Acronyms and Symbols

AABB Axis Aligned Bounding Box

BVH Bounding Volumes Hierarchy

CD Collision Detection

CH Convex Hull

DIB Dual quaternion Iterative Blending

DLB Dual quaternion Linear Blending

DOP Discrete Oriented Polytope

FFD Free Form Deformation

FLOPS Floating Point Operations

FPS Frames Per Second

GPU Graphics Processing Unit

LBS Linear Blend Skinning

OBB Oriented Bounding Box

PCA Principal Component Analysis

QLB Quaternion Linear Blending

SAD Skinning Arbitrary Deformations

SBS Spherical Blend Skinning

ScLERP Screw Linear Interpolation

SLERP Spherical Linear Interpolation

SMA Skinned Mesh Animations

SVD Singular Value Decomposition

