Test 1: Similarity, Clustering, Frequent Items - PRACTICE

This test allows one 8×11.5 inch notes sheet, front and back. Nothing electronic that can transmit/receive information is not (e.g., computers, phones, calculators, ipads). Unlimited blank scratch paper is allowed.

Absolutely <u>no talking allowed</u>, unless a TA is present and you are asking a question. Talking students will have their tests confiscated.

1 *k*-Grams and Jaccard (35 points)

Consider the following two phrases:

A: (15 points) List the sets of distinct 3-character-grams for phrases P_1 and P_2 . This should produce two sets S_1 and S_2 .

B: (10 points) What is the Jaccard Similarity $JS(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$ between S_1 and S_2 ?

C: (10 points) What is the Andberg Similarity $\operatorname{Andb}(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cap S_2| + 2|S_1 \triangle S_2|}$ between S_1 and S_2 ?

2 MinHashing (20 points)

Consider three sets T_1 , T_2 , and T_3 , and the 10-dimensional min-hash vectors for each set.

 $T_1: v_1 = (17, 3, 4, 11, 07, 03, 02, 10, 72, 18)$ $T_2: v_2 = (11, 3, 4, 01, 17, 30, 12, 11, 41, 24)$

(Note: **each entry** in a vector can be thought of as the result of creating a table, permuting the rows, and then returning the index of the highest element in the set.)

A: (10 points) Use v_1 and v_2 to estimate the Jaccard Similarity between T_1 and T_2 ?

B: (5 points) Will changing the 8th entry in v_2 (shown in bold) from an 11 to a 10 decrease the estimated Jaccard Similarity between T_1 and T_2 ? Explain your answer.

C: (5 points) Say we get a new set T_3 , and we still remember the hash functions used to create v_1 , and v_2 . So we create a min-hash vector v_3 to represent T_3 . What part of v_2 if any, do we need to recalculate to estimate the Jaccard similarity between T_3 and T_2 ? Explain your answer.

3 Clustering (45 points)

A: (10 points) Run HAC using Single-Link until there are 3 clusters. Report the resulting 3 clusters as sets.

B: (5 points) Run HAC using Single-Link until there are 2 clusters. Report the resulting 2 clusters as sets.

C: (10 points) Run HAC using Complete-Link until there are 3 clusters. Report the resulting 3 clusters as sets.

D: (5 points) Run HAC using Complete-Link until there are 2 clusters. Report the resulting 2 clusters as sets.

E: (10 points) Run Gonzalez Algorithm (the greedy algorithm for k-center clustering, assignment-based clustering) starting with the first center $c_1 = q_1$ until there are 2 clusters. Report the resulting 2 clusters as sets.

F: (5 points) Run Gonzalez Algorithm (the greedy algorithm for k-center clustering, assignment-based clustering) starting with the first center $c_1 = q_1$ until there are 3 clusters. Report the resulting 3 clusters as sets.