Asmt 2: Document Similarity and Hashing

Turn in through Canvas by $2: 45 \mathrm{pm}$, then come to class:
Wednesday, January 29
100 points

Overview

In this assignment you will explore the use of k-grams, Jaccard distance, min hashing, and LSH in the context of document similarity.

You will use four text documents for this assignment:

- http://www.cs.utah.edu/~jeffp/teaching/cs5140/A2/D1.txt
- http://www.cs.utah.edu/~jeffp/teaching/cs5140/A2/D2.txt
- http://www.cs.utah.edu/~jeffp/teaching/cs5140/A2/D3.txt
- http://www.cs.utah.edu/~jeffp/teaching/cs5140/A2/D4.txt

As usual, it is recommended that you use LaTeX for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory: http: //www.cs.utah.edu/~jeffp/teaching/latex/

1 Creating k-Grams (50 points)

You will construct several types of k-grams for all documents. All documents only have at most 27 characters: all lower case letters and space. Yes, the space counts as a character in character k-grams.
[G1] Construct 2-grams based on characters, for all documents.
[G2] Construct 3 -grams based on characters, for all documents.
[G3] Construct 2-grams based on words, for all documents.
Remember, that you should only store each k-gram once, duplicates are ignored.
A: (25 points) How many distinct k-grams are there for each document with each type of k-gram? You should report $4 \times 3=12$ different numbers.

B: (25 points) Compute the Jaccard similarity between all pairs of documents for each type of k-gram. You should report $3 \times 6=18$ different numbers.

2 Min Hashing (50 points)

We will consider a hash family \mathcal{H} so that any hash function $h \in \mathcal{H}$ maps from $h:\{k$-grams $\} \rightarrow[m]$ for m large enough (To be extra cautious, I suggest over $m \geq 10,000$; but should work with smaller m too).

A: (35 points) Using grams G2, build a min-hash signature for document D 1 and D 2 using $t=\{20,60,150,300,600\}$ hash functions. For each value of t report the approximate Jaccard similarity between the pair of documents D1 and D2, estimating the Jaccard similarity:

$$
\hat{\mathrm{S}}_{t}(a, b)=\frac{1}{t} \sum_{i=1}^{t} \begin{cases}1 & \text { if } a_{i}=b_{i} \\ 0 & \text { if } a_{i} \neq b_{i}\end{cases}
$$

You should report 5 numbers.

B: (15 point) What seems to be a good value for t ? You may run more experiments. Justify your answer in terms of both accuracy and time.

3 Bonus (3 points)

Describe a scheme like Min-Hashing over a domain of size n for the Andberg Similarity, defined $\operatorname{Andb}(A, B)=$ $\frac{|A \cap B|}{|A \cup B|+\mid A \triangle B \cdot}$. That is so given two sets A and B and family of hash functions, then $\mathbf{P r}_{h \in \mathcal{H}}[h(A)=h(B)]=$ $\operatorname{Andb}(A, B)$. Note the only randomness is in the choice of hash function h from the set \mathcal{H}, and $h \in \mathcal{H}$ represents the process of choosing a hash function (randomly) from \mathcal{H}. The point of this question is to design this process, and show that it has the required property.

Or show that such a process cannot be done.

