4 Min Hashing

Last time we saw how to convert documents into sets. Then we discussed how to compare sets, specifically using the Jaccard similarity. Specifically, for two sets $A = \{0, 1, 2, 5, 6\}$ and $B = \{0, 2, 3, 5, 7, 9\}$. The *Jaccard similarity* is defined

$$\mathsf{JS}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$
$$= \frac{|\{0,2,5\}|}{|\{0,1,2,3,5,6,7,9\}|} = \frac{3}{8} = 0.375.$$

Although this gives us a single numeric score to compare similarity (or distance) it is not easy to compute, and will be especially cumbersome if the sets are quite large.

This leads us to a technique called *min hashing* that uses a randomized algorithm to quickly estimate the Jaccard similarity. Furthermore, we can show how accurate it is through the Chernoff-Hoeffding bound.

To achieve these results we consider a new *abstract data type*, a matrix. This format is incredible useful conceptually, but often extremely wasteful if fully written out.

4.1 Matrix Representation

Here we see how to convert a series of sets (e.g. a set of sets) to be represented as a single matrix. Consider sets:

$$S_1 = \{1, 2, 5\}$$

$$S_2 = \{3\}$$

$$S_3 = \{2, 3, 4, 6\}$$

$$S_4 = \{1, 4, 6\}$$

For instance $JS(S_1, S_3) = |\{2\}|/|\{1, 2, 3, 4, 5, 6\}| = 1/6.$

We can represent these four sets as a single matrix

Element	S_1	S_2	S_3	S_4		/ 1	0	0	1 \
1	1	0	0	1	represents matrix $M =$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	0	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
2	1	0	1	0			1	1 1	0
3	0	1	1	0			1	1 1	1
4	0	0	1	1			0	0	
5	1	0	0	0			0	1	$\begin{bmatrix} 0\\1 \end{bmatrix}$
6	0	0	1	1		10	0	Т	1)

That element in the *i*th row and the *j*th column determine if element *i* is in set S_j . It is 1 if the element is in the set, and 0 otherwise. This captures *exactly* the same data set as the set representation, but may take much more space. If the matrix is *sparse*, meaning that most entries (e.g. > 90% or maybe > 99% ... or more conceptually, as the matrix becomes $r \times c$ the non-zero entries grows as roughly r + c, but the space grows as $r \cdot c$) then it wastes a lot of space. But still it is very useful *to think about*. There are also sparse matrix representations built into many languages such as Matlab which do not store all of the 0s, they just store the locations of the non-zeros.

4.2 Min Hashing

The next approach, called *min hashing* will need to evolve through several steps to become a useful trick. (*Do not implement it this way – see the version below with actual hashing.*)

Step 1: Randomly permute the items (by permuting the rows of the matrix).

Element	S_1	S_2	S_3	S_4
2	1	0	1	0
5	1	0	0	0
6	0	0	1	1
1	1	0	0	1
4	0	0	1	1
3	0	1	1	0

Step 2: Record the first 1 in each column, using a map function m. That is, given a permutation, applied to a set S, the function m(S) records the element from S which appears earliest in this permutation.

$$m(S_1) = 2$$

 $m(S_2) = 3$
 $m(S_3) = 2$
 $m(S_4) = 6$

Step 3: Estimate the Jaccard similarity $JS(S_i, S_j)$ as

$$\hat{\mathsf{JS}}(S_i, S_j) = \begin{cases} 1 & m(S_i) = m(S_j) \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4.2.1. $\Pr[m(S_i) = m(S_j)] = \mathbf{E}[\hat{JS}(S_i, S_j)] = JS(S_i, S_j).$

Proof. There are three types of rows.

- (Tx) There are x rows with 1 in both column
- (Ty) There are y rows with 1 in one column and 0 in the other
- (Tz) There are z rows with 0 in both column

The total number of rows is x + y + z. The Jaccard similarity is precisely $JS(S_i, S_j) = x/(x + y)$. (Note that usually $z \gg x, y$ (mostly empty) and we can ignore these.)

Let row r be the min $\{m(S_i), m(S_j)\}$. It is either type (Tx) or (Ty), and it is (Tx) with probability exactly x/(x+y), since the permutation is random. This is the only case that $m(S_i) = m(S_j)$, otherwise S_i or S_j has 1, but not both.

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need to repeat this several (k) times. Consider k random permutations $\{m_1, m_2, \ldots, m_k\}$ and also k random variables $\{X_1, X_2, \ldots, X_k\}$ where

$$X_{\ell} = \begin{cases} 1 & \text{if } m_{\ell}(S_i) = m_{\ell}(S_j) \\ 0 & \text{otherwise.} \end{cases}$$

Now we can estimate $JS(S_i, S_j)$ as $\hat{JS}_k(S_i, S_j) = \frac{1}{k} \sum_{\ell=1}^k X_\ell$, the average of the k simple random estimates.

So how large should we set k so that this gives us an accurate measure? Since it is a randomized algorithm, we will have an error tolerance $\varepsilon \in (0, 1)$ (e.g. we want $|JS(S_i, S_j) - JS_k(S_i, S_j)| \le \varepsilon$), and a probability of failure δ (e.g. the probability we have more than ε error). We will now use Theorem 2.5.2 (L2) where $M = \sum_{\ell=1}^{k} X_{\ell}$ and hence $\mathbf{E}[M] = k \cdot JS(S_i, S_j)$. We have $0 \le X_i \le 1$ so each $\Delta_i = 1$. Now we can write for some value α :

$$\begin{aligned} \mathsf{Pr}[|\hat{\mathsf{JS}}_k(S_i, S_j) - \mathsf{JS}(S_i, S_j)| &\geq \alpha/k] &= \mathsf{Pr}[|k \cdot \hat{\mathsf{JS}}_k(S_i, S_j) - k \cdot \mathsf{JS}(S_i, S_j)| \geq \alpha] \\ &= \mathsf{Pr}[|M - \mathsf{E}[M]| \geq \alpha] \leq 2 \exp\left(\frac{-2\alpha^2}{\sum_{i=1}^k \Delta_i^2}\right) = 2 \exp(-2\alpha^2/k). \end{aligned}$$

Setting $\alpha = \varepsilon k$ and $k = (1/(2\varepsilon^2)) \ln(2/\delta)$ we obtain

$$\mathbf{Pr}[|\hat{\mathsf{JS}}_k(S_i, S_j) - \mathsf{JS}(S_i, S_j)| \ge \varepsilon] \le 2\exp(-2(\varepsilon^2 k^2)/k) = 2\exp(-2\varepsilon^2 \frac{1}{2\varepsilon^2}\ln(2/\delta)) = \delta.$$

Or in other words, if we set $k = (1/2\varepsilon^2) \ln(2/\delta)$, then the probability that our estimate $\hat{\mathsf{JS}}_k(S_i, S_j)$ is within ε of $\mathsf{JS}(S_i, S_j)$ is at least $1 - \delta$.

Say for instance we want error at most $\varepsilon = 0.05$ and can tolerate a failure 1% of the time ($\delta = 0.01$), then we need $k = (1/(2 \cdot 0.05^2)) \ln(2/0.01) = 200 \ln(200) \approx 1060$. Note that the modeling error of converting a structure into a set may be more than $\varepsilon = 0.05$, so this should be an acceptable loss in accuracy.

Top *k*. It is sometimes more efficient to use the top-*k* (for some small number k > 1) hash values for each hash function, than just the top one. For instance, see Cohen and Kaplan (*Summarizing Data using Bottom-k Sketches*, PODC 2007). This approach requires a bit more intricate analysis, as well as a bit more careful implementation.

4.2.1 Fast Min Hashing Algorithm

This is still too slow. We need to construct the full matrix, and we need to permute it k times. A faster way is the *min hash algorithm*.

Make one pass over the data. Let $n = |\mathcal{E}|$. Maintain k random hash functions $\{h_1, h_2, \ldots, h_k\}$ chosen from a hash family at random so $h_i : \mathcal{E} \to [n]$ (one can use a larger range n' > n where $n' = 2^t$ is a power of two). An initialize k values at $\{v_1, v_2, \ldots, v_k\}$ so $v_i = \infty$.

```
Algorithm 4.2.1 Min Hash on set S
```

for $i \in S$ do
for $j = 1$ to k do
if $(h_j(i) < v_j)$ then
$v_j \leftarrow h_j(i)$

On output $m_j(S) = v_j$. The algorithm runs in |S|k steps, for a set S of size |S|. Note this is independent of the size n of all possible elements \mathcal{E} . And the output space of a single set is only $k = (1/2\varepsilon^2) \ln(2/\delta)$ which is independent of the size of the original set. The space for N sets is only O(Nk).

Finally, we can now estimate $\mathsf{JS}(S, S')$ for two sets S and S' as

$$\mathsf{JS}_k(S,S') = \frac{1}{k} \sum_{j=1}^k \mathbf{1}(m_j(S) = m_j(S'))$$

where $\mathbf{1}(\gamma) = 1$ if $\gamma = \text{TRUE}$ and 0 otherwise. This only takes O(k) time, again independent of n or |S| and |S'|.