
4 Min Hashing

Last time we saw how to convert documents into sets. Then we discussed how to compare sets, specifically
using the Jaccard similarity. Specifically, for two sets A = {0, 1, 2, 5, 6} and B = {0, 2, 3, 5, 7, 9}. The
Jaccard similarity is defined

JS(A,B) =
|A ∩B|
|A ∪B|

=
|{0, 2, 5}|

|{0, 1, 2, 3, 5, 6, 7, 9}|
=

3

8
= 0.375.

Although this gives us a single numeric score to compare similarity (or distance) it is not easy to compute,
and will be especially cumbersome if the sets are quite large.

This leads us to a technique called min hashing that uses a randomized algorithm to quickly estimate the
Jaccard similarity. Furthermore, we can show how accurate it is through the Chernoff-Hoeffding bound.

To achieve these results we consider a new abstract data type, a matrix. This format is incredible useful
conceptually, but often extremely wasteful if fully written out.

4.1 Matrix Representation
Here we see how to convert a series of sets (e.g. a set of sets) to be represented as a single matrix. Consider
sets:

S1 = {1, 2, 5}
S2 = {3}
S3 = {2, 3, 4, 6}
S4 = {1, 4, 6}

For instance JS(S1, S3) = |{2}|/|{1, 2, 3, 4, 5, 6}| = 1/6.
We can represent these four sets as a single matrix

Element S1 S2 S3 S4

1 1 0 0 1
2 1 0 1 0
3 0 1 1 0
4 0 0 1 1
5 1 0 0 0
6 0 0 1 1

represents matrix M =

1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1
1 0 0 0
0 0 1 1

 .

That element in the ith row and the jth column determine if element i is in set Sj . It is 1 if the element is
in the set, and 0 otherwise. This captures exactly the same data set as the set representation, but may take
much more space. If the matrix is sparse, meaning that most entries (e.g. > 90% or maybe > 99% ... or
more conceptually, as the matrix becomes r × c the non-zero entries grows as roughly r + c, but the space
grows as r · c) then it wastes a lot of space. But still it is very useful to think about. There are also sparse
matrix representations built into many languages such as Matlab which do not store all of the 0s, they just
store the locations of the non-zeros.

1

4.2 Min Hashing
The next approach, called min hashing will need to evolve through several steps to become a useful trick.
(Do not implement it this way – see the version below with actual hashing.)

Step 1: Randomly permute the items (by permuting the rows of the matrix).

Element S1 S2 S3 S4

2 1 0 1 0
5 1 0 0 0
6 0 0 1 1
1 1 0 0 1
4 0 0 1 1
3 0 1 1 0

Step 2: Record the first 1 in each column, using a map function m. That is, given a permutation, applied to a
set S, the function m(S) records the element from S which appears earliest in this permutation.

m(S1) = 2

m(S2) = 3

m(S3) = 2

m(S4) = 6

Step 3: Estimate the Jaccard similarity JS(Si, Sj) as

ĴS(Si, Sj) =

{
1 m(Si) = m(Sj)

0 otherwise.

Lemma 4.2.1. Pr[m(Si) = m(Sj)] = E[ĴS(Si, Sj)] = JS(Si, Sj).

Proof. There are three types of rows.

(Tx) There are x rows with 1 in both column
(Ty) There are y rows with 1 in one column and 0 in the other
(Tz) There are z rows with 0 in both column

The total number of rows is x + y + z. The Jaccard similarity is precisely JS(Si, Sj) = x/(x + y). (Note
that usually z � x, y (mostly empty) and we can ignore these.)

Let row r be the min{m(Si),m(Sj)}. It is either type (Tx) or (Ty), and it is (Tx) with probability exactly
x/(x+ y), since the permutation is random. This is the only case that m(Si) = m(Sj), otherwise Si or Sj
has 1, but not both.

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need
to repeat this several (k) times. Consider k random permutations {m1,m2, . . . ,mk} and also k random
variables {X1, X2, . . . , Xk} where

X` =

{
1 if m`(Si) = m`(Sj)

0 otherwise.

Now we can estimate JS(Si, Sj) as ĴSk(Si, Sj) = 1
k

∑k
`=1X`, the average of the k simple random esti-

mates.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

So how large should we set k so that this gives us an accurate measure? Since it is a randomized
algorithm, we will have an error tolerance ε ∈ (0, 1) (e.g. we want |JS(Si, Sj) − ĴSk(Si, Sj)| ≤ ε), and
a probability of failure δ (e.g. the probability we have more than ε error). We will now use Theorem 2.5.2
(L2) where M =

∑k
`=1X` and hence E[M] = k · JS(Si, Sj). We have 0 ≤ Xi ≤ 1 so each ∆i = 1. Now

we can write for some value α:

Pr[|ĴSk(Si, Sj)− JS(Si, Sj)| ≥ α/k] = Pr[|k · ĴSk(Si, Sj)− k · JS(Si, Sj)| ≥ α]

= Pr[|M − E[M]| ≥ α] ≤ 2 exp

(
−2α2∑k
i=1 ∆2

i

)
= 2 exp(−2α2/k).

Setting α = εk and k = (1/(2ε2)) ln(2/δ) we obtain

Pr[|ĴSk(Si, Sj)− JS(Si, Sj)| ≥ ε] ≤ 2 exp(−2(ε2k2)/k) = 2 exp(−2ε2
1

2ε2
ln(2/δ)) = δ.

Or in other words, if we set k = (1/2ε2) ln(2/δ), then the probability that our estimate ĴSk(Si, Sj) is within
ε of JS(Si, Sj) is at least 1− δ.

Say for instance we want error at most ε = 0.05 and can tolerate a failure 1% of the time (δ = 0.01), then
we need k = (1/(2 · 0.052)) ln(2/0.01) = 200 ln(200) ≈ 1060. Note that the modeling error of converting
a structure into a set may be more than ε = 0.05, so this should be an acceptable loss in accuracy.

Top k. It is sometimes more efficient to use the top-k (for some small number k > 1) hash values for
each hash function, than just the top one. For instance, see Cohen and Kaplan (Summarizing Data using
Bottom-k Sketches, PODC 2007). This approach requires a bit more intricate analysis, as well as a bit more
careful implementation.

4.2.1 Fast Min Hashing Algorithm
This is still too slow. We need to construct the full matrix, and we need to permute it k times. A faster way
is the min hash algorithm.

Make one pass over the data. Let n = |E|. Maintain k random hash functions {h1, h2, . . . , hk} chosen
from a hash family at random so hi : E→ [n] (one can use a larger range n′ > n where n′ = 2t is a power
of two). An initialize k values at {v1, v2, . . . , vk} so vi =∞.

Algorithm 4.2.1 Min Hash on set S
for i ∈ S do

for j = 1 to k do
if (hj(i) < vj) then
vj ← hj(i)

On output mj(S) = vj . The algorithm runs in |S|k steps, for a set S of size |S|. Note this is independent
of the size n of all possible elements E. And the output space of a single set is only k = (1/2ε2) ln(2/δ)
which is independent of the size of the original set. The space for N sets is only O(Nk).

Finally, we can now estimate JS(S, S′) for two sets S and S′ as

JSk(S, S′) =
1

k

k∑
j=1

1(mj(S) = mj(S
′))

where 1(γ) = 1 if γ = TRUE and 0 otherwise. This only takes O(k) time, again independent of n or |S|
and |S′|.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

