16 Matrix Sketching

The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an
(n x d) matrix A (or n points in R%). Typically n > d. It is typically easy to call a built in version of the
SVD in many programming languages

[U,8,V] = svd(A)

where U = [u1,...,uy], S = diag(c1,...,04),and V = [v1,...,v4]. Then A = USVT and in particular

A= 2?21 ajujva. To approximate A we just use the first k& components to find A = Z?Zl ojujv;r =
Uk.SkaT where Uy = [u, ..., u, S = diag(o1,...,0k), and Vi, = [v1,...,v]T. Then the vectors v,

(starting with smaller indexes) provide the best subspace representation of A.

But, although SVD has been heavily optimized on data sets that fit in memory (via LAPACK, found in
Matlab, and just about every other language), it can sometimes be improved. The traditional SVD takes
O(min{nd?,n%d}) time to compute, which can be prohibitive for large n and/or d. Here we highlight two
of these ways:

e to provide better interpretability of each v;.
e to be more efficient on enormous scale, in a stream, or in distributed settings.

We will mainly focus discussion on streaming algorithms as a way to deal with the extreme scale of the
data. While other models are available, and we will mention, we will focus on the model where A arrives in
the stream, one row a; at a time ¢. So our input is (a1, ag, ..., as,. .., ay,), and at any points a; in the stream,
we would like to maintain a sketch of the matrix B which somehow approximates all rows up to that point.

16.1 Covariance Matrix Summation

The first regime we focus on is when n is extremely large, but d is moderate. For instance n = 100 million,
and d = 1000. The a simple approach in a stream is to make one pass using O(d?) space, and just maintain
the sum of outer products Cy = 25:1 a;al, the d x d covariance matrix of A exactly.

Algorithm 16.1.1 Summed Covariance
Set C' all zeros (d x d) matrix.
for rows (i.e. points) a; € A do
cC=C+ aiaﬁ
return C

We have that any point ¢, where A; = [a1;as;. .., a] in the stream the maintained matrix C' is precisely
C = A;AT. Thus the eigenvectors of C' are the right singular vectors of A, and the eigenvalues of C' are the
squared singular values of C. This only requires O(d?) space, and O(nd?) total time, and incurs no error.

We can choose the top & eigenvectors of C' as V};, and on a second pass of the data, project all vectors on
a; onto Vj, to obtain the best k-dimensional embedding of the dataset.

16.2 Frequent Directions

The next regime assumes that n is extremely large (say n = 100 million), but that d is also uncomfortably
large (say d = 100 thousand), and our goal is something like a best rank k-approximation with k ~ 10. So

k < d < n. In this regime perhaps d is so large that d? space is too much, but something close to dk space
and O(ndk) time is reasonable. We will not be able to solve things exactly in the streaming setting under
these constraints, but we can provide a provable approximation with slightly more space and time.

This approach, called Frequent Directions [8, 6], can be viewed as an extension of the Misra-Gries trick.

We will consider a matrix A one row (one point a;) at a time. We will maintain a matrix B that is 2¢ X d,
that is it only has 2¢ rows (directions). We maintain that one row is always empty (has all Os) at the end of
each round (this will always be the last row By).

We initialize with the first 2/ — 1 rows a; of A as B, again with the last row By left as all zeros. Then
on each new row, we put a; in the empty row of B. We set [U,S,V] = svd(B). Now examine S =
diag(oy, .. .,09¢), which is a length 2¢ diagonal matrix. If o9y = 0 (then a; is in the subspace of B), do

nothing. Otherwise subtract § = o7 from each (squared) entry in S, that is o = y/max{0, 0]2- — 0} and in
general S' = diag(\/0? — §,\/0% —0,...,,/0? , —6,0,...,0).

Now we set B = S'VT. Notice, that since S’ only has non-zero elements in the first £ — 1 entries on the
diagonal, then B is at most rank £ — 1 and we can then treat V' and B as if the £th row does not exist.

Algorithm 16.2.1 Frequent Directions
Set B all zeros (2¢ x d) matrix.
for rows (i.e. points) a; € A do
Insert a; into a zero-valued row of B

if (B has no zero-valued rows) then
[U,S,V] = svd(B)

Set §; = o2 # the /(th entry of S

Set S’ = diag <\/a% —0,\/03 —6,..., o7, —5,0,...,0).

Set B=S'VT # the last rows of B will again be all zeros
return B

The result of Algorithm 16.2.1 is a matrix B such that for any (direction) unit vector 2 € R?
0 < [[Az|* — || Bz||* < [|A = Apll7/ (€ — k)

and [7, 6] ,
|4 = Allg, [} < 7]l 4 - Al

for any k < ¢, including when k& = 0. So setting £ = 1/, then in any direction in R?, the squared mass in
that direction is preserved up to || A||% (that is, ¢ times the total squared mass) using the first bound. And
in the second bound if we set ¢ = [k/e + k] then we have |4 — Allp, ||% < (1 +¢)||4A — Ag||%. Recall

that [[AllF = /3 4, ca llaill?.

o Why does this work?
Just like with Misra-Greis [9], when some mass is deleted from one counter it is deleted from all ¢
counters, and none can be negative. So here when one direction has its (squared) mass decreased, at
least ¢ directions (with non-zero squared mass) are decreased by the same amount. So no direction
can have more than 1/¢ fraction of the total squared mass || A||% decreased from it.

Finally, since squared mass can be summed independently along any set of orthogonal directions, we
can subtract each of them without affecting others. Setting ¢ = 1/¢ implies that no direction z (e.g.,
assume ||z|| = 1, and measure || Az||?) decreases is squared norm (as || Bz||?) by more than ||A[%.

Data Mining: Algorithms, Geometry, and Probability © Jeff M. Phillips, University of Utah

By a more careful analysis that we only shrink the total norm proportional to the “tail” | A — Ag||%,
then we can obtain the bound described above. See [6] for more details, spelled out in a few lines of
linear algebra.

o Why do we use the svd?
The SVD defines the true axis of the ellipse associated with the norm of B at each step. If we shrink
along an basis (or even a set of non-orthogonal vectors) we will warp the ball, and we will not be able
to ensure that each direction of B shrinks in squared norm by at most &;.

e Did we need to use the svd? (its expensive, right)?
The cost is amortized. We only call the svd once every ¢ steps, so at most O(n /) times. Since each
call takes O(d¢?) time, the total cost is O(ndl), or only ¢ times as long as reading the matrix.
It is also possible to call approximate versions of the SVD [5]. This allows versions which have
runtime depending on the number of non-zeros in the input matrix. This makes a big difference for
very sparse word count or recommendation system matrices.

o What happened to U in the svd output?
The matrix U just related the main directions to each of the n points (rows) in A. But we don’t want
to keep around the space for this. In this application, we only care about the directions or subspace
that best represents the points; e.g. PCA only cares about the right singular vectors.

16.3 Row Sampling

We next move to a regime where n and d are again both large, and so might be k. But a runtime of O(ndk)
may be too large — that is we can read the data, but maybe a factor of k times reading the data is also large.
The next algorithms have runtime O(nd) (where O may hide log factors), they are as fast as reading the data.
In particular, if there nnz(A) non-zero entries in a very space matrix, then the runtime is only O(nnz(A)).

The goal is to approximate A up to the accuracy of Ay. Butin Ay the directions v; are linear combinations
of features.

e What is a linear combination of genes?

e What is a linear combination of typical grocery purchases?

Instead our goal is to choose V' so that the columns of V" are also columns of A.

For each row of a; € A, set w; = ||a;||%. Then select £ = (k/e)? - log(1/5) rows of A, each proportional
to w;. Let R be the “stacking” of these rows.

These ¢ rows will jointly act in place of VkT. However since V' was orthogonal, then the columns v;, v; €
Vi were orthogonal. This is not the case for R, we need to orthogonalize R. Let Iz = RT(RRT)™'R
be the projection matrix for R, so that Arp = Allg describes the projection of A onto the subspace of the
directions spanned by R. Now

|A— Allgllp < ||A — Agllr + <[| Al F
with probability at least 1 — ¢ [4].

o Why did we not just choose the t rows of A with the largest w; values?
Some may point along the same “direction” and would be repetitive. This should remind you of the
choice to run k-means++ versus the Gonzalez algorithm for greedy point-assignment clustering.

o Why did we not factor out the directions we already picked?
We could, but this allows us to run this in a streaming setting. (See next approach)

Data Mining: Algorithms, Geometry, and Probability © Jeff M. Phillips, University of Utah

e But AllR could be rank ¢, can we get it rank k << £?
Yes, you can take its best rank k& approximation [IIzA]; and about the same bounds hold, you may
need to increase £ slightly.

e Can we get a better error bound?
Yes. First take SVD [U, S, V]| = svd(A) and let Uy, be the top k left singular vectors. Let Uy (i) be
the ith row of Uy. Now the leverage score of data point a; is s; = ||U()||?. Using the leverage scores
as weights w; = s; allows one to achieve stronger bounds [2]

A = Allg[|r < (1 +&)[|A = Akl p-

But this requires us to first take the SVD (or other time-consuming procedures), so its is harder to do
in a stream; although some newer approaches address this [3]. In many cases, these approaches do
not seem to provide tangible benefits over the faster ||a;||?-weighted sampling.

There exist more complicated and slower approaches which achieve the same bound with slightly
smaller ¢ [1].

e Can we also sample columns this way?
Yes. All tricks can be run on A7 the same way (in fact most of the literature talks about sampling
columns instead of rows). And, both approaches can be combined. This is known as the CUR-
decomposition of A.

e How do we best do this in a stream?
The classic analysis assumes that this is done with each row selected independently — some are chosen
twice. This can be done in a stream with Reservoir sampling. This requires O(¢d) space at any point
in time, and O(¢ + d) time to process a row. This can be reduced to O(d + log¢) using priority
sampling, which also reduces the variance.

A significant downside of these row sampling approaches is that the (1/c2) coefficient can be quite large
for a small error tolerance. If ¢ = 0.01, meaning 1% error, then this part of the coefficient alone is 10,000.
In practice, the results may be better, but for guarantees, this may only work on very enormous matrices.

16.4 Count Sketch Hashing for Sparse Matrices

This does not give interpretability, but is even more efficient than the column selection, and obtains the
strong error guarantees.

The starting point is a JL projection matrix S € R™*! that maps A to a £ x d matrix B. This preserves
relative error (an oblivious subspace embedding) with £ = O(d/<?) so, for all =

[Az|
(1-¢)< 1Bz <(1+¢).

A very strong bound, that also ensures results from regression are maintained.

Increasing £ to £ = O(d?/<?), then a fast count-sketch based approach can be used. Now S has each row
s; as all Os, except for one randomly chosen entry (a hash to a row of B) that is either —1 or 41 at random.
This works just like a count sketch but for matrices.

The runtime is only O(nnz(A)), truely as fast as reading the data. But the compression of B is not as
interpretable as column selection, or as sparse as Frequent Directions.

Data Mining: Algorithms, Geometry, and Probability © Jeff M. Phillips, University of Utah

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[8]

[9]

Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM Review,
(315-334), 56. arXiv:0808.0163.

Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation algorithm for
the column subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 968-977. Society for Industrial and Applied Mathematics, 2009.

Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
tion via ridge leverage score sampling. SODA, 2017.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank

approximations. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on.
IEEE, 1998.

Mina Ghashami, Edo Liberty, and Jeff M. Phillips. Efficient frequent directions algorithm for sparse
matrices. In KDD, 2016.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple and
deterministic matrix sketching. SICOMP, 2016.

Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approximations.
In ACM-SIAM 25th Symposium on Discrete Algorithms, 2014.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings 19th ACM Conference on
Knowledge Discovery and Data Mining, 2013.

J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143-152, 1982.

