
15 Metric Learning

When using PCA, one should enforce that the input matrix A has the same units in each column (and each
row). What should one do if this is not the case?

Lets re-examine the root of the problem: the Euclidean distance. It takes two vectors p, q ∈ Rd (perhaps
rows of A) and measures:

dEuc(p, q) = ‖p− q‖ =
√
〈p− q, p− q〉 =

√√√√ d∑
i=1

(pi − qi)2.

If each row of a data setA represents a data point, and each column and attribute, then the operation (pi−qi)2
is fine since pi and qi have the same units (they quantify the same attribute). However the

∑d
i=1 over these

terms adds together quantities that have the same units.
The braindead solution is to just brush away those units. These are normalization approaches where all

values pi and qi (in column i) are divided by a constant si with the same units as the elements in that column,
and maybe adding a constant. In one approach it is chosen so all values in each column lie in [0, 1]. In the
other common approach, they are normalized so that the mean value in each column is 0, and the standard
deviation in each column is 1. Note that both of these approaches are affected oddly by outliers – a single
outlier can significantly change the effect of various data points. Moreover, if new dimensions are added
which have virtually the same value for each data point; these values are inflated to be as meaningful as
another signal direction. As a result, these normalization approaches can be brittle and affect the meaning
of the data in unexpected ways. However, they are also quite common, for better or worse.

We will approach 3 related settings and discuss more principled ways to compare high dimensional data
with inconsistent of missing units.

15.1 Multidimensional Scaling
Dimensionality reduction is an abstract problem with input of a high-dimensional data set P ⊂ Rd and a
goal of finding a corresponding lower dimensional data set Q ⊂ Rk, where k << d, and properties of P
are preserved in Q. Both low-rank approximations through direct SVD and through PCA are examples of
this: Q = πVk(P). However, these techniques require an explicit representation of P to start with. In some
cases, we are only presented P more abstractly. There two common situations:

• We are provided a set of n objects X , and a bivariate function d : X ×X → R that returns a distance
between them. For instance, we can put two cities into an airline website, and it may return a dollar
amount for the cheapest flight between those two cities. This dollar amount is our “distance.”

• We are simply provided a matrix D ∈ Rn×n, where each entry Di,j is the distance between the ith
and jth point. In the first scenario, we can calculate such a matrix D.

Multi-Dimensional Scaling (MDS) has the goal of taking such a distance matrixD for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had some original data set A which resulted in D, we could
just apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just
given D, and not the original data A. However, as we will show next, we can derive a matrix that will act
like AAT using only D.

1

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot
product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

and hence

〈ai, aj〉 =
1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (15.1)

Next we observe that for the n× n matrix AAT the entry [AAT]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (15.1). That is we can set ‖ai − aj‖2 = D2

i,j . However, we need also
need values for ‖ai‖2 and ‖aj‖2.

Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (15.1), we can then derive the similarity
matrixAAT . Then we can run the eigen-decomposition onAAT and use the coordinates of each point along
the first k eigenvectors to get an embedding. This is known as classical MDS.

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, where as this approach

is essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigenvectors
– if they exist. However, as mentioned, there may be less than n eigenvectors, or they may be associated
with complex eigenvalues. So if our goal is an embedding into k = 3 or k = 10, there is no guarantee that
this will work, or even what guarantees this will have. But MDS is used a lot nonetheless.

15.2 Linear Discriminant Analysis
Another tool that can be used to learn Euclidian distance for data is a Linear Discriminant Analysis (or
LDA). This term has a few variants, we focus on the multi-class setting. This means we begin with a data
set X ⊂ Rd, these is known a partition of X into k classes (or clusters) S1, S2, . . . , Sk ⊂ X , so

⋃
Si = X

and Si ∩ Sj = ∅ for i 6= j.
Let µi = 1

|Si|
∑

x∈Si
x be the mean of class i, and let Σi = 1

|Si|
∑

x∈Si
(x−µi)(x−µi)T by its covariance.

Similarly, we can represent the overall mean as µ = 1
|X|
∑

x∈X x. Then we can then represent the between
class covariance as

ΣB =
1

|X|

k∑
i=1

|Si|(µi − µ)(µi − µ)T .

In contrast the overall within class covariance is

ΣW =
1

|X|

k∑
i=1

|Si|Σi =
1

|X|

k∑
i=1

∑
x∈Si

(x− µi)(x− µi)T .

The goal of LDA is a representation of X in a k′-dimensional space that maximizes the between class
covariance while minimizing the within class covariance. This often formalized as finding the set of vectors
u which maximize

uTΣBu

uTΣWu
.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

For any k′ ≤ k − 1, we can directly find the orthogonal basis U = {u1, u2, . . . , uk′} that maximizes the
above goal with an eigen-decomposition. In particular, U is the top k′ eigenvectors of Σ−1W ΣB . Then to
obtain the best representation of X we set the new data set as

X̃ ← πU (X)

so x̃ = πU (x) = (〈x, u1〉, 〈x, u2〉, . . . , 〈x, uk′〉) ∈ Rk′ .
This retains the dimensions which show difference between the classes, and similarity among the classes.

The removed dimensions will tend to show variance within classes without adding much difference between
the classes. Conceptually, if the data set can be well-clustered under the k-means clustering formulation,
then the U (say when rank k′ = k − 1) describes a subspace with should pass through the k centers
{µ1, µ2, . . . , µk); capturing the essential information needed to separate the centers.

15.3 Distance Metric Learning
The first approach MDS required that all distances were known ahead of time, and then a low-dimensional
Euclidean embedding can be generated. The second approach LDA requires that the data X is somehow
clustered or labeled into k classes before the analysis starts. In many settings these assumptions may be
unrealistic.

However, if we are to choose a good metric, we must know something about which points should be close
and which should be far. In the distance metric learning problem we assume that we have two sets of pairs;
the close pairs C ⊂ X ×X and the far pairs F ⊂ X ×X . This process starts with a dataset X ⊂ Rd, and
close and far pairs C and F and tries to find a metric so the close pairs are as small as possible, while the far
pairs are as large as possible.

In particular, we restrict to a Mahalanobis distance defined with respect to a positive semidefinite matrix
M ∈ Rd×d on points p, q ∈ Rd as

dM (p, q) =
√

(p− q)TM(p− q).

So given X and sets of pairs C and F , the goal is to find M to make the close point have small dM distance,
and far points have large dM distance. Specifically, we will consider finding the optimal distance dM∗ as

M∗ = max
M

min
{xi,xj}∈F

dM (xi, xj)
2

such that
∑

{xi,xj}∈C

dM (xi, xj)
2 ≤ κ.

That is we want to maximizes the closest pair in the far set F , while restricting that all pairs in the close set
C have their sum of squared distances are at most κ, some constant. We will not explicitly set κ, but rather
restrict M in some way so on average it does not cause much stretch. There are other reasonable similar
formulations, but this one will allow for simple optimization (following Ying+Li in JMLR12).

The standard approaches in the literature set up an optimization procedure and then run a “solver” to find
the best M . We will instead describe an approach which is a bit less opaque.

Notational Setup. Let H =
∑
{xi,xj}∈C(xi− xj)(xi− xj)T ; note that this is a sum of outer products, so

H is in Rd×d. For this to work we will need to assume that H is full rank; otherwise we don’t have enough
close pairs to measure. Or we can set H = H + δI for a small scalar δ.

Further, we can restrict M to have trace Tr(M) = d, and hence satisfying some constraint on the close
points. Recall that the trace of a matrix M is the sum of M ’s eigenvalues. Let P be the set of all positive

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

semidefinite matrices with trace d; hence the identity matrix I is in P. Also, let

4 = {α ∈ R|F | |
∑

αi = 1 & all αi ≥ 0}.

Let τi,j ∈ F (or simply τ ∈ F when the indexes are not necessary) to represent a far pair {xi, xj}. And
let Xτi,j = Xi,j = (xi − xj)(xi − xj)T ∈ Rd×d, an outer product. Let X̃τ = H−1/2XτH

−1/2. It turns out
our optimization goal is now equivalent (up to scaling factors, depending on κ) to finding

arg max
M∈P

min
α∈4

∑
τ∈F

ατ 〈X̃τ ,M〉.

Here 〈X,M〉 =
∑

s,tXs,tMs,t, a dot product over matrices, but because since X will be related to an outer
product between two data points, this makes sense to think of as dM (X).

Optimization procedure. Given the formulation above, we will basically try to find anM which stretches
the far points as much as possible while keeping M ∈ P. We do so using a general procedure referred to
as Frank-Wolfe optimization, which increases our solution using one data point (in this case a far pair) at a
time.

Set σ = d · 10−5 as a small smoothing parameter. Define a gradient as

gσ(M) =

∑
τ∈F exp(−〈X̃τ ,M〉/σ)X̃τ∑
τ∈F exp(−〈X̃τ ,M〉/σ)

.

Observe this is a weighted average over the X̃τ matrices. Let vσ,M be the maximal eigenvector of gσ(M);
the direction of maximal gradient.

Then the algorithm is simple. Initialize M0 ∈ P arbitrarily; for instance as M0 = I . Then repeatedly
find for t = 1, 2, . . . as (1) find vt = vµ,Mt−1 , and (2) set Mt = t−1

t Mt−1 + 1
t vtv

T
t . This is summarized in

Algorithm 15.3.1.

Algorithm 15.3.1 Optimization for DML
Initialize M0 = I .
for t = 1, 2, . . . , T do

Set G = gσ(Mt−1)
Let vt = vσ,Mt−1 ; the maximal eigenvalue of G.
Update Mt = t−1

t Mt−1 + 1
t vtv

T
t .

return M = MT .

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

