
11 Heavy Hitters

A core mining problem is to find items that occur more than one would expect. These may be called outliers,
anomalies, or other terms. Statistical models can be layered on top of or underneath these notions.

We begin with a very simple problem. There are m elements and they come from a domain [n] (but both
m and n might be very large, and we don’t want to use Ω(m) or Ω(n) space). Some items in the domain
occur more than once, and we want to find the items which occur the most frequently.

If we can keep a counter for each item in the domain, this is easy. But we will assume n is huge (like all
possible IP addresses), and m is also huge, the number of packets passing through a router in a day.

11.1 Streaming
Streaming [5] is a model of computation that emphasizes space over all else. The goal is to compute
something using as little storage space as possible. So much so that we cannot even store the input. Typically,
you get to read the data once, you can then store something about the data, and then let it go forever! Or
sometimes, less dramatically, you can make 2 or more passes on the data.

Formally, there is a stream A = 〈a1, a2, . . . , am〉 of m items where (for this lecture) each ai ∈ [n]. This
means, the size of each ai is about log n (to represent which element), and just to count how many items
you have seen requires space logm (although if you allow approximations you can reduce this). Unless
otherwise specified, log is used to represent log2 that is the base-2 logarithm. The goal is to compute a
summary SA using space that is only poly(log n, logm).

Let fj = |{ai ∈ A | ai = j}| represent the number of items in the stream that have value j. Let

F1 =
∑

j fj = m be the total number of elements seen. Let F2 =
√∑

j f
2
j be the sum of squares of

elements counts, squarerooted. Let F0 =
∑

j f
0
j be the number of distinct elements.

11.2 Majority
One of the most basic streaming problems is as follows:

MAJORITY: if some fj > m/2, output j. Otherwise, output anything.
How can we do this with log n+ logm space (one counter c, and one location `)?
Answer: Maintaining that single label and counter, do the only thing feasible. If you see a new item with

same label, increment the counter. If the label is different, decrement the counter. If the counter reaches
zero and you see a new element, replace the label, and set the counter to 1. The pseudocode is in Algorithm
11.2.1.

Algorithm 11.2.1 Majority(A)
Set c = 0 and ` = ∅
for i = 1 to m do

if (ai = `) then
c = c+ 1

else
c = c− 1

if (c < 0) then
c = 1, ` = ai

return `
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Why is Algorithm 11.2.1 correct? Consider the case where for some j ∈ [n] we have fj > m/2, the only
relevant case. Since then fj >

∑
j′ 6=j fj we can match each stream element with ai 6= j (a “bad element”)

to another element ai′ = j (a “good element”). If we chose the correct pairing (lets assume we did) then
either the good element decremented the counter when the label was not j, or the bad element decremented
the counter when the label was j. This results in a net 0 change in the counter for each pair. Its also possible
that a bad element decremented the counter when the label was not equal to j, but this will only help. After
this cancelation, there must still be unpaired good elements, and since then the label would need to be ` = j
or the counter c = 0, they always end their turn with ` = j and the counter incremented. Thus after seeing
all stream elements, we must terminate with ` = j and c > 0.

11.3 Misra-Gries Algorithm for Heavy Hitters
Now we generalize the MAJORITY problem to something much more useful.
k-FREQUENCY-ESTIMATION: Build a data structure S. For any j ∈ [n] we can return S(j) = f̂j such

that
fj −m/k ≤ f̂j ≤ fj .

From another view, a φ-heavy hitter is an element j ∈ [n] such that fj > φm. We want to build a data
structure for ε-approximate φ-heavy hitters so that it returns

• all fj such that fj > φm

• no fj such that fj < φm− εm
• (any fj such that φm− εm ≤ fj < φm can be returned, but might not be).

11.3.1 Misra-Gries Algorithm
[Misra+Gries 1982] Solves k-FREQUENCY-ESTIMATION in k(logm+ log n) space [4].

The trick is to run the MAJORITY algorithm, but with (k − 1) counters instead of 1. Let C be an array of
(k − 1) counters C[1], C[2], . . . , C[k − 1]. Let L be an array of (k − 1) locations L[1], L[2], . . . , L[k − 1].

• If we see a stream element that matches a label, we increment the associated counter.
• If not, and a counter is 0, we can reassign the associated label, and increment the counter.
• Finally, if all counters are non-zero, and no labels match, then we decrement all counters.

Psuedocode is provided in Algorithm 11.3.1.

Algorithm 11.3.1 Misra-Gries(A)
Set all C[i] = 0 and all L[i] = ∅
for i = 1 to m do

if (ai = L[j]) then
C[j] = C[j] + 1

else
if (some C[j] = 0) then

Set L[j] = ai & C[j] = 1
else

for j ∈ [k − 1] do C[j] = C[j]− 1
return C, L

Then on a query q ∈ [n] to C,L, if q ∈ L (specifically L[j] = q), then return f̂q = C[j]. Otherwise return
f̂q = 0.
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Analysis: Why is Algorithm 11.3.1 correct?

• A counter C[j] representing L[j] = q is only incremented if ai = q, so we always have

f̂q ≤ fq.

• If a counterC[j] representingL[j] = q is decremented, then k−2 other counters are also decremented,
and the current item’s count is not recorded. This happens at most m/k times: since each decrement
destroys the record of k objects, and since there are m objects total. Thus a counter C[j] representing
L[j] = q is decremented at most m/k times. Thus

fq −m/k ≤ f̂q.

We can now apply this to get an additive ε-approximate FREQUENCY-ESTIMATION by setting k = 1/ε.
We return f̂q such that

|fq − f̂q| ≤ εm.

Or we can set k = 2/ε and return C[j] + (m/k)/2 to make error on both sides.
Space is (1/ε)(logm+ log n), since there are (1/ε) counters and locations.

11.4 Quantiles
Another important but simple problem for streaming data is the quantiles problem. For this we consider the
ordering of the elements in [n] as important. In fact, its typically easier to think of each element being a real
value ai ∈ R so that they are continuously valued and we have a comparison operator <. Think of ai as
the number of milliseconds someone spent on a visit to a website before clicking a link. Or ai could be the
amount of money spent on a transaction.

Now instead of searching for frequently occurring items (since we may never see the same item twice)
it is better to treat these as draws from a continuous distribution over R. In this case, two very similar (but
perhaps not identical) values are essentially equivalent. The simplest well-defined interaction with such a
distribution is through the associated cumulative density function. That is, given any value v, we can ask
what fraction of items have value less than or equal to v. We can define the rank of v over a stream A as

rankA(v) = |{ai ∈ A | ai ≤ v}|.

Now an ε-approximate quantiles data structure QA returns a value QA(v) for all v such that

|QA(v)− rankA(v)/m| ≤ ε.

If we are not concerned about streaming, we can easily construct a data structure of size 1/ε. We sim-
ply sort all values in A, and then select a subset B of size 1/ε elements, evenly spaced in that sorted
order. Then QA(v) = rankB(v)/|B|. This is the smallest possible in general. Streaming algorithms are
known of size O((1/ε) log log(1/ε)) [2] (which is the smallest possible size) and efficient variants of size
O((1/ε) log1.5(1/ε)) [6, 7]. By combining two such queries, we can also ask what fraction of data falls
between two values v1 and v2 as QA(v2)−QA(v1).

Additionally, such a summary also encodes properties like the approximate median. This is the value for
which rankA(v)/m = 0.5 (naively one may have to find this by binary search, if the structure is a set B and
QA(v) = rankB(v)/|B|, then we can also maintain this directly. In addition to a basic quantiles sketch, we
will describe a simpler “frugal” variant [3] which can maintain values like the approximate median (or any
other quantile) approximately without maintaining all quantiles. Going backwards from the Misra-Gries to
Majority, is akin to the idea of maintain just a Frugal sketch of the median as opposed to all quantiles.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah



11.4.1 Merging Quantiles
The key idea in efficient quantiles sketches are being able to merge two sketches without increasing the error
or the size [1]. For quantiles, this works be a simple procedure describe below, where each of the QA data
structures is simply a set B which returns rankB(v)/|B|.

Now given two such sets B1 and B2, both of size s, representing sets A1 and A2 both of size t. To merge
the summaries, we let B = B1 ∪B2. Its not hard to see that if

|rankA1(v)/t− rankB1(v)/s| ≤ ε and |rankA2(v)/t− rankB2(v)/s| ≤ ε,

then by examining rankA(v) and (t/s)rankB(v),

|rankA(v)/t− rankB(v)/s| ≤ ε.

However, |B| = 2s, so the size has doubled. To reduce the size we do the following simple step. We sort B,
and let Be be all points in B with even indices, and let Bo be all points in B with odd indices. Then we let
the new sketch B′ be either Be or Bo, chosen at random.

With this sketch, we don’t expect (in the expected value sense) to over- or under-count any rank query.
But the process still seems like it should add some error. It turns out not too much is added, since the
previous levels induce far less additive error than the current ones. Moreover, if we increase the sketch size
s from 1/ε to kε = O((1/ε)

√
log(1/ε) log(δ)), then with probability at least 1− δ, the error is never more

than ε after any number of merges.
However, this requires that we only merge summaries B1 and B2 that represent exactly the same size

sets A1 and A2. To deal with this issue, each summary will actually store up to gε = O(log(mε)) sets,
where the jth set B(j) (if it exists) represents a set of size m/2j for some j ∈ [0, gε]. Then on a merge,
starting at the large-index layers, we merge pairwise (if there is more than one of some type), and push the
merged sketches on up the representation, potentially increasing the height of the structure gε by 1. Or in the
streaming setting, we can just add a single point to a buffer of size kε, then merge with the bottom (j = gε)
layer.

This takes overall space O((1/ε) log(εm)
√

log 1/ε log(1/δ)) to guarantee on a data set of size m, that
the normalized rank has at most ε error, with probability at least 1− δ. With some care to how the hierarchy
is managed, the size can be reduced to O((1/ε) log log(1/ε) log(1/δ)) [1, 2].

11.4.2 Frugal Median
The Frugal estimate of the median can be maintained easily as followed over an ordered set of integers. The
simplest version just maintains a single label ` ∈ [n]. Initially set ` = 0 (or any value). Then if ai > `, then
increment `. If ai < `, then decrement `. Psuedocode is in Algorithm 11.4.1.

Algorithm 11.4.1 Frugal Median(A)
Set ` = 0.
for i = 1 to m do

if (ai > `) then
`← `+ 1.

if (ai < `) then
`← `− 1.

return `.

This can be generalized to any quantile, say trying to find just the value v such that rankA(v)/m = 0.75.
Then we use a bit of randomization.
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Algorithm 11.4.2 Frugal Quantile(A, φ) e.g. φ = 0.75

Set ` = 0.
for i = 1 to m do
r = Unif(0, 1) (at random)
if (ai > ` and r > 1− φ) then
`← `+ 1.

if (ai < ` and r > φ) then
`← `− 1.

return `.

The bounds for this algorithm are not as absolutely strong as for the Misra-Gries algorithm, but it uses far
less space. For instance, for the median version let M be the integer value of the true median, and say we
are happy with any value v such that rankA(v)/m ∈ [1/2− ε, 1/2 + ε] for some small value ε ∈ (0, 1/2).
The with probability at least 1− δ after M log(1/δ)

ε steps, our estimate will be within the desired range.
The bounds are better if we start our estimate at a value closer to v∗ than 0. Also, if we are using an extra

small counter, then we can adaptively change the amount we increment or decrement the label, and decrease
the number of steps we need.
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