Chapter 4 Linear Filters

Simple view:

- An image is a 2D array of discrete values
- A mask is given which is a \(2k+1 \times 2k+1 \) array

\[
R(i,j) = \sum_{u=i-k}^{i+k} \sum_{v=j-k}^{j+k} H(u-(i-k)+1, v-(j-k)+1) F(u,v)
\]

The average value at a pixel is given by setting:

\[
H = \frac{\text{ones}(2k+1, 2k+1)}{(2k+1)^2}
\]

- Shift invariant: depends on region, not location
- Linear: \(\text{convolve} (F+G) = \text{conv} (F) + \text{conv} (G) \)

Linear filtering
window: kernel

blurring with Gaussian

$$G_r(x, y) = \frac{1}{2\pi \sigma^2} \exp \left(\frac{x^2 + y^2}{2\sigma^2} \right)$$

σ is standard deviation units: pixels

discrete version

$$H_{k,j} = \frac{1}{2\pi \sigma^2} \exp \left(\frac{(i-k-1)^2 + (j-k-1)^2}{2\sigma^2} \right)$$

for many kernels, use Matlab fspecial

```matlab
H = fspecial('gaussian', 21, 2)
surf(H)
```
% looks like p.109

Derivatives

$$\frac{df}{dx} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

Set $\varepsilon \approx 1$

$$f(x+1, y) - f(x, y)$$

better to use central symmetric difference:

$$f(x+1, y) - f(x-1, y)$$

+ use kernel $H = [0, 1, 0]$ (book has it backward)
There is a function to apply kernels to images:

\[\text{filter2} (H, F) \]

Try on trees \(H = \begin{bmatrix} E & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)

Shift Invariant Linear Systems

The book shows that the response of a system (camera) to any signal can be characterized by its response to a simple input (impulse response).

(Image processing goes deeper into the math of this and Fourier transforms.)

Simple use of Fourier Transform

Given a function \(f(x) \), it can be represented as a sum of basis functions: (sines, cosines) of various frequencies.

\[f(x) = \sum \text{basis terms} \sin(t) + \sum \text{basis terms} \sin(2t) \]

The Fourier Transform (FT) helps find which functions contribute to the function (see Matlab).
FT can be zeroed out for higher frequencies in order to smooth the image (or signal).

Filters as templates

\[
\text{view as vector} \downarrow \quad \text{dot product}
\]

\[\Rightarrow \text{if } \vec{u} + \vec{w} \text{ are similar then:} \]

\[
\cos \theta = \frac{\vec{u} \cdot \vec{w}}{||\vec{u}|| ||\vec{w}||}
\]

- is near 1 when similar
- near -1 when opposite

See Matlab
Gaussian Pyramid

16 x 16

\(\frac{1}{2^0} \)

Smooth + \(\frac{1}{2^n} \)

re sample size

use nearest 2^n x 2^n