
Tair-PMem: A Fully Durable Non-Volatile Memory Database
Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang, Qiulei Fu, Wu Qin,
Long Qian, Rui Chen, Jiang Qi, Ruo Wang, Guoyun Zhu, Chenghu Yang, Wei Zhang, Feifei Li

{caixin.gcx, tianchengjin.tcj, zhengheng.wzh, sh.wang, xiyu.wxy, mobing.fql, qinwu.qw, qianlong.ql,
chenrui_c.pt, qijiang.qj, wangruo.wr, zongdai, yexiang.ych, zwei, lifeifei}@alibaba-inc.com

Alibaba Group

ABSTRACT
In-memory databases (IMDBs) have been the backbone of modern
systems that demand high throughput and low latency. Because of
the cost and volatility of DRAM, IMDBs become incompetent when
dealing with workloads that require large data volume and strict
durability. The emergence of non-volatile memory (NVM) brings
new opportunities for IMDBs to tackle this situation. However, it
is non-trivial to build an NVM-based IMDB, due to performance
degradation, NVM programming complexity, and other challenges.
In this paper, we present Tair-PMem, an NVM-based enterprise-
strength database atop Redis, the most popular IMDB. Tair-PMem
adopts a well-controlled data layout and a log-as-user-data design
to mitigate NVM overheads. It eases the NVM programming com-
plexity by providing a hybrid memory programming toolkit. To
better leverage the enterprise-strength features and implementa-
tions from Redis, Tair-PMem retro�ts it in a less intrusive way to
achieve full compatibility and stability, while retaining its advanced
features. With all of the above techniques elaborately implemented,
Tair-PMem satis�es full durability, high throughput, and low la-
tency at the same time. Tair-PMem has now been publicly available
as a cloud service on Alibaba Cloud. To the best of our knowledge,
Tair-PMem is the �rst cloud service that makes good use of the
persistence capability of NVM.

PVLDB Reference Format:
Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang,
Qiulei Fu, Wu Qin, Long Qian, Rui Chen, Jiang Qi, Ruo Wang, Guoyun Zhu,
Chenghu Yang, Wei Zhang, Feifei Li. Tair-PMem: A Fully Durable
Non-Volatile Memory Database. PVLDB, 15(12): 3346 - 3358, 2022.
doi:10.14778/3554821.3554827

1 INTRODUCTION
In-memory databases (IMDBs) [4, 26, 32, 37] have been playing a
vital role in various applications, such as e-commerce services, web
services, and advertisements. They help to accelerate data access
by caching frequently accessed data in memory. Among di�erent
IMDBs, Redis [37] is one of the canonical choices in most scenarios,
due to its high performance, simplicity, and ease of use. To further
meet enterprise customers’ needs for IMDBs, Alibaba Cloud o�ers
the enterprise-strength in-memory database service, called Tair [10],
which is initially compatible with both Redis and Memcached [32]

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554827

and has now been extended with graph and relational interfaces.
The Tair-for-Redis service enhances the original Redis with many
advanced features, such as read-write separated architecture and
real-time hotspot diagnostics [5]. Tair for Redis has been extensively
used by both cloud customers and Alibaba’s internal businesses.
For instance, it helps Alibaba’s e-commerce platform to sustain sub-
millisecond access latency and billions-of-QPS peak throughput
during the Double 11 Global Shopping Festival, o�ering smooth
shopping experiences to hundreds of millions of consumers.

However, since Redis and all other IMDBs are built on top of
DRAM, they inherently su�er from several limitations that hinder
their broader usage beyond a caching system. First, DRAM is the
most expensive storage medium in terms of per GB price. The cost
of DRAM makes it expensive to expand the capacity of IMDBs for
the ever-growing volumes of application data. Second, due to the
volatility of DRAM, IMDBs can hardly by themselves handle those
scenarios demanding strict data durability. Though some IMDBs,
such as Redis, do provide basic data persistence capability (e.g., via
log and checkpoint), the performance usually slumps when the
full durability option is on. Hence, IMDBs are usually backed by a
separate persistent storage system, such as MySQL [34] and Cas-
sandra [2], when limited budget and full durability are considered.
In this case, the overall performance deteriorates signi�cantly by
heavy disk I/Os from the back-end system.

Fortunately, the emergence of byte-addressable non-volatile
memory (NVM) brings new opportunities for IMDBs to resolve
the above issues. From academia, many NVM-oriented designs
have been proposed to IMDBs [16, 20, 30, 44, 49] as well as other
systems [14, 21, 23, 45, 46, 48]. From industry, the �rst commer-
cial NVM product, Intel® Optane™ Persistent Memory (Optane
PMem) [18], already o�ers appealing characteristics such as high
performance, large capacity, and low cost. Optane PMem stimu-
lates database practitioners to build and o�er enterprise-strength
NVM-backed IMDB services.

In this paper, we target the problem of enhancing Redis towards
an enterprise-strength NVM-backed IMDB. We observe that it is
far from trivial to build such a system, and the major challenges
are three-fold: (1) Performance degradation. Optane PMem has 3⇥
higher read latency and more than 10⇥ lower bandwidth com-
pared with DRAM [47]. It is challenging to support full durability
while sustaining comparable performance against original Redis.
(2) NVM programming complexity. NVM programming is hard and
error-prone [13, 24]. Prior works [15, 24, 25, 31, 42] propose many
libraries or frameworks to convert the volatile data structures to
NVM-backed ones. They help to reduce the engineering complexity
but introduce either high overheads (on running time and memory
footprint) [15, 24, 31] or consistency compromises [15, 25, 42]. It is

3346



challenging to hide NVM programming complexities while preserv-
ing similar behaviors as on DRAM. (3) Stability with full Redis com-
patibility. Existing works often consider one speci�c index structure
onNVM, e.g., a hash [8, 30, 33, 39, 50] or a tree [3, 6, 17, 29, 35, 41, 49].
In practice, Redis provides a set of rich data models with more than
300 APIs [38] in total. For example, it supports index structures like
hashes, lists, skip-lists, and trees, as well as database features like
checkpoint and transaction. An exhaustive NVM-oriented retro�t
for all of them would be error-prone and time-consuming. Main-
taining high stability by reducing engineering complexity during
the retro�tting process is a practical challenge.

To address the above challenges, we propose Tair-PMem, an
enterprise-strength NVM-based IMDB that achieves both full dura-
bility and full Redis compatibility. It has been commercialized on
Alibaba Cloud [9]. From its core, Tair-PMem adopts the following
major designs.

(1) Awell-controlled data layout thatmitigates NVMover-
heads. To reduce the access and persistence overhead of NVM, Tair-
PMem avoids placing all Redis’ data into NVM. Instead, it applies
a DRAM-NVM hybrid data layout, following a carefully weighed
data placement strategy. This strategy determines the location (i.e.,
DRAM or NVM) of distinct data categories (e.g., user data, index,
metadata) according to their di�erent demands on durability, ac-
cess frequency, and volume. For example, as the durability of user
data is a must, we persist it in NVM. In contrast, since the alloca-
tor metadata is frequently accessed and small in size, we pin it in
DRAM. To better �t the access characteristics of NVM, we adopt
the log-as-user-data design on it. In a nutshell, the log entries on
NVM also play the role of user data, which are directly accessed
by user queries through upper-layer indexes. Consequently, the
user data only needs to be written once, lowering the occupation
of NVM bandwidth.

(2) A lightweight hybrid memory programming toolkit
that encapsulates NVMprogramming complexity. The toolkit
is designed speci�cally for performance-critical IMDBs with light-
weight and e�cient features, which contains two components, al-
locator and log & data pool. The former manages both DRAM and
NVM, and enables developers to allocate space following the classic
malloc-and-free style. It supports recovery but does not request
persisting any data, thus obtaining e�cient performance. The latter
provides lightweight transaction semantics that ensures all data
stored is durable and atomic, thus hiding the complex NVM pro-
gramming details for data persistence.

(3) A set of database components that achieve full Redis
compatibility and advanced features in a low-intrusiveman-
ner. To provide an enterprise-strength product, we prefer to utilize
outstanding designs and implementations from Redis as much as
we can. Tair-PMem’s retro�ts are done in modulized database com-
ponents, such as codec, checkpoint and recovery modules, with low
code intrusion. Hence, Redis’ index structures are completely un-
touched, making it extremely simple to be compatible with various
data models. Furthermore, Tair-PMem utilizes NVM’s persistence
capability to signi�cantly enhance fundamental database features.
For instance, by abandoning Redis’ log, i.e. append only �le (AOF),
and alternatively adopting an instant checkpoint mechanism, Tair-
PMem resolves the periodic latency spike issue in Redis. Based

on this mechanism, Tair-PMem further provides an extremely fast
recovery process after a normal shutdown.

To sum up, our main contributions are as follows:
• We pioneer the problem of enhancing Redis with NVM capa-
bilities and build an enterprise-strength NVM-backed IMDB
service called Tair-PMem on Alibaba Cloud. To the best of our
knowledge, Tair-PMem is the �rst commercial in-memory
cloud database service that makes good use of the NVM’s
persistence capability.

• We propose a suite of vital designs to address the three major
challenges (i.e., performance degradation, NVM program-
ming complexity, and stability with full Redis compatibility)
encountered during the development of Tair-PMem.

• Compared to Redis, we show in experimental evaluation
that Tair-PMem sustains comparable throughput and avoids
periodic latency spikes. To illustrate, the maximum latency
of fully durable Tair-PMem is 219⇥ lower than that of fully
durable Redis and 38⇥ than that of partially durably one.

The rest of this paper is organized as follows. Section 2 discusses
background and challenges. Section 3 overviews Tair-PMem’s core
design concepts and architecture. The hybrid memory program-
ming toolkit is covered in Section 4 and 5, and the core database
components are covered in Section 6. Section 7 discusses NVM pro-
gramming skills used during Tair-PMem’s development. Section 8
evaluates Tair-PMem against other baselines. Section 9 summarizes
the related work and Section 10 concludes the paper.

2 BACKGROUND
In this section, we �rst brie�y introduce Redis and NVM, then
discuss the challenges of integrating NVM into Redis.

2.1 Redis
Redis (Remote Dictionary Server) [37] is a widely used IMDB that
provides high performance, advanced key-value abstraction, and
optional data durability. It adopts a single-threaded processing
model where all requests from clients are queued and executed
sequentially. This model avoids complex concurrency controls and
hence utilizes the CPU resources more e�ciently. It allows Redis to
easily support rich data models, i.e., keys in Redis are always string
objects while values could be complex models such as String, Hash,
List, Set, and ZSet (Sorted Set). Redis supports atomic operations
on all these data types, e.g., inserting many elements into a set.

Redis supports di�erent levels of data durability via command
logging or point-in-time checkpoints. They are implemented by
the following two approaches, respectively. (1) Append only �le
(AOF). It records write commands in an append-only manner, and
data can be recovered by replaying the log. When it is oversized,
the log is converted to a compact one from the latest snapshot.
(2) Redis database (RDB). It is a very compact �le generated by
serializing the latest snapshot. Note that both approaches rely on
the snapshot obtained by the fork [27] system call. The forked
background process generates a compact AOF or RDB, while the
original process continues to serve requests from the foreground
users. During this period, newly arrived requests trigger copy-
on-write operations for the modi�ed memory pages, hence the
generated snapshot is una�ected. Thus, fork is universal enough

3347



to make a snapshot for any structure. For generating a checkpoint
for new structures, Redis only needs to develop new serialization
methods. It is noteworthy that fork is a heavy operation that causes
signi�cant latency spikes, which will be veri�ed in our experiments
(see Section 8.2.2). Moreover, since Redis is not designed as a durable
database, achieving full durability will su�er in both throughput
and latency. As a result, by default, fsync is only called once per
second to persist writes to AOF.

2.2 Non-Volatile Memory
The �rst commercially available NVM product, Intel® Optane™
Persistent Memory (Optane PMem), supports byte-addressability,
high density, and direct persistence. However, despite these ad-
vanced features, Optane PMem has much lower bandwidth and
increased latency compared to DRAM. According to experimental
results [47], the peak read and write bandwidth are 6.6GB/s and
2.3GB/s respectively in a single Optane PMem DIMM setup. The
read latency is about 3⇥ higher than that of DDR4 DRAM (e.g.,
305ns and 101ns for random reads on Optane PMem and DRAM,
respectively). Optane PMem supports the following two working
modes: (1) Memory mode. Optane PMem acts as the addressable
volatile main memory providing large capacity, and DRAM is used
as an upper-layer cache to hide the higher latency of Optane PMem.
(2) App Direct mode. Optane PMem is treated as a separate memory
from DRAM. Applications can directly access it using load/store
instructions. To leverage the persistence of Optane PMem, we focus
on App Direct mode in this paper. Note that at runtime, data might
be bu�ered at many places (e.g., store bu�ers and CPU caches)
before reaching NVM. Hence, some instructions, e.g., SFENSE and
CLWB, are provided to guarantee execution order and durability. In
addition, since the granularity of atomic writes is only 8B on 64-bit
CPUs, writing with a larger payload might result in an unexpected
state from a system crash. Therefore, careful designs are required
to safely use Optane PMem as a non-volatile medium.

2.3 Challenges
Scaling DRAM-based Redis to a larger capacity is costly, and the
application scenarios of Redis are limited due to the volatile nature
of DRAM. NVM is less expensive on capacity and provides persis-
tence support. A natural question is how to introduce NVM into
the Redis design space. TieredMemDB [40] is a Redis branch that
can utilize the large capacity of NVM with a few code changes to
Redis. Its main idea is to provide Redis with a con�gurable memory
allocation policy that enables it to allocate data in DRAM or NVM
according to the prede�ned con�guration. However, TieredMemDB
does not take advantage of the persistence of NVM. It still relies
on AOF and RDB to support persistence. We now discuss the chal-
lenges of leveraging NVM to build a cost-e�cient Redis system
with full transaction durability.

Challenge 1: performance degradation. Putting all of Redis’ data
into NVM will bring signi�cant performance degradation. First of
all, the high access latency and low bandwidth of NVM will signi�-
cantly degrade system performance. In addition, Redis commands
and their operating parameters, i.e. user data, need to be persisted
in AOF, which also causes signi�cant overhead.

Table 1: The characteristics of di�erent data.

Data Type size persistent hot location

User data large yes - NVM
MetaData of Allocator small no yes DRAM
Indexes large no - DRAM/NVM
Runtime variables small no - DRAM/NVM

Challenge 2: complexity of NVM programming. NVM program-
ming is hard and error-prone [13, 24] as even missing a single CLWB
or SFENSE instruction may lead to inconsistent and irrecoverable
data damage. Prior works [15, 24, 25, 31, 42] propose libraries or
conversion frameworks to convert volatile indexes to NVM, but
they all come with various limitations such as additional space cost,
performance penalties [15, 24, 31], or consistency compromises
[15, 25, 42].

Challenge 3: stability with full Redis compatibility. Redis provides
various data models and many database features to accommodate a
wide spectrum of application scenarios. Being fully compatible with
Redis while making the new product stable is complicated. Besides,
some database features (e.g., checkpoint and transaction) need to be
redesigned or reimplemented due to the introduction of NVM. For
example, Redis’ checkpointing relies on the fork system call. How-
ever, the fork may lead to serious latency spikes, not to mention
that existing techniques do not support a similar approach for data
on NVM. Furthermore, Redis supports transactions by specifying a
group of commands to be atomically processed. The introduction
of full transaction durability on NVM by design complicates the
compatibility of transaction atomicity.

3 OVERVIEW OF TAIR-PMEM
In this section, we �rst introduce the core design concepts behind
Tair-PMem, and then discuss the overall architecture.

3.1 Core Design Concepts
We aim to design an enterprise-strength IMDB, which can provide
high stability, high performance, and full durability simultaneously
atop Redis. With these goals in mind, we design Tair-PMem follow-
ing the guidelines below.

Providing DRAM-like performance. To hide most of the slower
NVM accesses, Tair-PMem adopts a DRAM-NVM hybrid structure,
which is based on a well-controlled data placement strategy. This
strategy determines the location of data according to the perspec-
tives of durability, access frequency, and volume, as shown in Ta-
ble 1. The persistence of user data needs to be guaranteed, so it
needs to be placed in NVM. The metadata of the allocator is fre-
quently accessed during writes, and its size is small. Thus, we pin
it in DRAM. Because the size of the indexes and runtime variables
may be large, Tair-PMem does not force all of them to be pinned in
DRAM, the location of which is mainly determined by the space
usage of both DRAM and NVM. To further reduce persistence
overhead, we prefer the log-as-user-data design. In Tair-PMem, log
entries will be accessed by user queries through indexes, playing
the role of user data and thus reducing the occupation of NVM
bandwidth.

3348



Hybrid 
Memory 

Programming 
Toolkit Memory Management

Filesystem with DAX

NVMDRAM Volatile Data Volatile Data Persistent Data

Data 
Placement Codec GC Checkpoint Transaction

String Hash Set Sorted
Set List Stream

Atomic Durable ListLog & Data Pool

volatile data persistent data

Allocator

Support
Database

Core

Database 
Components 

Redis Data 
Models

Figure 1: The Architecture of Tair-PMem.

Hiding NVM programming details in uni�ed APIs. NVM program-
ming is complex and error-prone when trying to utilize its persis-
tence property. Tair-PMem provides a toolkit to e�ciently manage
both DRAM and NVM in the classic malloc-and-free style. In ad-
dition, the toolkit abstracts uni�ed APIs to guarantee durability,
atomicity, and consistency, hiding complicated NVM programming
skills, such as avoiding partial writes and memory leaks.

Modularizing retro�t to keep code intrusions low for stability and
compatibility. Redis supports abundant data models and dazzling
APIs through many di�erent index structures. To keep code intru-
sions low, durable, atomic, and consistent writes rely on modular-
ized components, such as log & data pool, codec, etc. The original
index implementation can be untouched, leaving the determination
of the data location of indexes to the allocator. As a result, the
implementation of the read operations requires no modi�cation.

Leveraging NVM to enhance fundamental database features. The
byte-addressable and durable characteristics of NVM can be ex-
ploited to further enhance Redis. Speci�cally, the AOF, the rewrit-
ing of which may incur latency spikes, is removed. The instant
checkpoint mechanism further eliminates the heavy fork method,
signi�cantly mitigating latency spikes. To accelerate the recovery
procedure, Tair-PMem supports fast recovery by backing up the
volatile DRAM data (e.g., allocator metadata and indexes).

3.2 Architecture Overview
Figure 1 shows the architecture of Tair-PMem. It consists of two
components: hybrid memory programming toolkit and database core.

Hybrid Memory Programming Toolkit. The toolkit is designed
speci�cally for performance-critical IMDBs and aims to be light-
weight and e�cient. It provides uni�ed APIs to manage di�erent
storage media and hide complicated NVM programming details by
two subcomponents: Allocator and Log & Data Pool. Allocator (see
Section 4.2) is responsible for managing the spaces of both DRAM
and NVM. To support the data placement strategy in DRAM-NVM
hybrid data layout, it divides the storage space into three regions,
i.e., volatile space on DRAM, volatile space on NVM, and persistent
space on NVM. For excellent performance, the allocator metadata

always resides in DRAM. Given the start address and allocated size,
the metadata of the allocated space can be recovered. Log & Data
Pool (see Section 5) organizes all persistent user data by a linked list,
which provides the start addresses and sizes of all allocated spaces
to the allocator for recovery. It o�ers lightweight transaction seman-
tics, which is the core component to support the log-as-user-data
design and hide complex NVM programming details.

Database Core. Database core (see Section 6) contains several
modularized subcomponents to support rich Redis data models.
Utilizing the toolkit and codec component, Tair-PMem can place
di�erent kinds of data according to the strategy shown in Table 1.
User data is encoded as entires of the durable log & data pool and
plays the role of the log, thus removing Redis’ original log (AOF).
The codec component is deliberately designed so that the original
indexes can point directly to the user data encoded in the entry,
and thus the implementation of original indexes is untouched. The
untouched volatile indexes can be recovered by scanning the log
entries to achieve durability. Furthermore, the garbage collection
(GC) component is designed for log order maintenance and e�cient
entry deletion from the data pool. Due to the removal of the original
log (AOF), checkpoint and recovery components are redesigned.
Their capabilities are further enhanced with the help of NVM’s
persistent property. Besides, the transaction component provides
transaction properties, such as atomicity and full durability.

4 MEMORY PROGRAMMING TOOLKIT
The hybrid memory programming toolkit includes two components,
allocator and log & data pool. The former is used to manage the
memory spaces of both DRAM and NVM. The latter is designed to
ease the use of NVM’s persistence property by hiding complex NVM
programming tricks, avoiding partial writes and memory leaks, and
obtaining persistent atomic writes. This section introduces the
toolkit’s APIs that we export to developers, followed by the design
of the allocator component.

4.1 The APIs of the Toolkit
The APIs exported by the toolkit are shown in Table 2, including
the following two parts.

The APIs of Allocator. The allocator manages two storage media,
DRAM and NVM, through three memory spaces. By assigning the
type parameter of malloc, the user can specify the memory space
to be allocated. For volatile data, the user can leave the decision
to the allocator for ease of use. Given the allocated address, the
free function �gures out which space it belongs to and then deal-
locates it correspondingly. The mark_as_allocated, an interface
not provided by the classic allocator, can recover the metadata of
an allocation given its start address and allocated size.

The APIs of Log & Data Pool. These APIs serve to store persistent
data and guarantee durability, atomicity, and consistency. The data
is organized in a linked list in the order of the creation time, which
allows the database to employ the list as a log. The txn_begin,
entry_append and txn_end functions enable the log to support
atomic commits, avoid partial-writing, and guarantee persistence.
The database can also use this linked list as the user-data pool. With
entry_append and entry_free, data can be inserted into and freed

3349



API Description
void* malloc(size_t size, MemType type); Allocates memory with a size located in di�erent memory spaces
enum MemType { which are divided into three kinds, the volatile DRAM, volatile NVM,

VOLATILE_DRAM, VOLATILE_NVM, and persistent NVM.
Allocator PERSISTENT_NVM, VOLATILE VOLATILE, the default value of type, means the location of an object

}; is determined internally by the allocator.
void free(void* ptr); Deallocates the memory space pointed by ptr.
void mark_as_allocated(void* ptr, size_t size); Recovers allocation metadata of an object given by the ptr and size.

log* txn_begin();
Marks the beginning of a transaction and then returns a newly created
log for the transaction.

entry* entry_append(log* txn, codec* method);
Allocates an entry from persistent NVM space, then encodes it by the
codec method, and �nally atomically appends it to the txn log.

Log & Data Pool void txn_end(log* txn, log* global);
Commits the transaction by atomically appending the txn log to the
global log.

void entry_free(entry*);
Atomically removes the entry from its corresponding log, and then
deallocates the entry by free() function.

void recover(log* global);

Recovers the global log by scanning it to obtain each entry’s pointer
and size, thus the overall allocation metadata can be recovered by the
mark_as_allocated() function.

Table 2: The APIs of hybrid memory programming toolkit.

from the pool atomically. The recover method scans all persistent
entries stored in the linked list and restores the metadata of the
memory allocations for these entries.

4.2 Allocator
The design of the allocator follows the high-level idea that all the
metadata is stored in DRAM for achieving high performance. The
allocator structure and allocation process remain almost unchanged
from classical allocators, making the allocator as stable as the clas-
sical ones. The key problem to be addressed is how to recover
metadata after the database crashes or exits.

4.2.1 Allocator Structure. The allocator extends the classical slab
allocator jemalloc [19]. A slab is a contiguous memory region of
DRAM or NVM with a 4KB-aligned start address and a space size
that is amultiple of 4KB. As shown in Figure 2, the allocator contains
a set of size_class objects, each of which manages a set of slabs. All
slabs from a size_class object manage a number of allocation units of
the same size, denoted by s . The size s is recorded in size_class, such
as 32B, 48B in the �gure. Slab metadata, as the primary metadata
of the allocator, contains the start address of the slab and a bitmap
that marks allocated units. The slab size is set to the least common
multiple (LCM) of 4KB and s , denoted by LCM(4KB, s). This slab
size setting was originally introduced to mitigate space waste and
now becomes a key for rebuilding allocator metadata after the
database crashes, which will be discussed later.

4.2.2 Allocation Process. Recall that the memory space is divided
into three types. By passing MemType (see Table 2) to malloc, the
allocation will happen in the corresponding memory space. For
data that does not require persistence and does not need to be
pinned in DRAM, the user can leave the MemType unspeci�ed. In
this case, VOLATILE, the default value of MemType, is used to allocate
space fairly from VOLATILE_DRAM and VOLATILE_NVM, according to
a prede�ned DRAM-NVM usage ratio.

8B 16B 32B 48B … 16KB 20KB 24KB …

Slab Meta 1

Addr
Slab Meta 1

Addr
Bitmap

4KB

Allocator Meta

Slab Meta 1

Addr
Bitmap

Slab Meta 2

Addr
Bitmap

… 20KB

size_class
objects

0 1 … 0 1

12KB slab

48 bytes

Figure 2: The simpli�ed structure of an allocator.

After assigning MemType, the allocation size x needs to be further
speci�ed. The allocator �nds the size_class object with the smallest
managed size among all those objects with size greater than x . For
example, when requesting 40B, the 48B size_class object will be
returned. After �nding the suitable size_class object, the allocator
returns the address of a free space unit and marks it as allocated in
the bitmap. If no free space is left, a new slab will be created.

4.2.3 Metadata Rebuilding. There are two methods to rebuild allo-
cator metadata for two distinct recovery scenarios.

Rebuilding after a normal shutdown. During a normal shutdown,
the allocator backups the metadata by scanning all the metadata
shown in Figure 2 and serializing them into a persistent NVM
region. During a restart, the allocator just deserializes them.

Rebuilding after a crash. During the recovery after a crash, the
allocator metadata that manages persistent data should be recov-
ered. Notably, the user of the allocator, i.e. log & data pool to be

3350



discussed in section 5.3, should provide the start addresses and
allocated sizes of all allocations. With the start address ptr and the
allocated size size, mark_as_allocated reconstructs the metadata
of an allocation, i.e., corresponding slab metadata.

The implementation of mark_as_allocated. The size_class ob-
jects are prede�ned and will be automatically initialized at startup.
According to the start addresses and allocated sizes of allocations,
mark_as_allocated reconstructs the metadata of slabs, i.e., start
addresses of slabs and the bitmaps of slabs, by the following three
steps. (1) According to the allocated size, calculate which size_class
object the allocation belongs to, similar to the allocation process
above. (2) The recovery of the start address of a slab is based on the
following proposition (proved in the next paragraph) — among all
the allocation units in a slab, only the start address of the �rst unit,
which is also the start address of the slab, can be divisible by 4KB.
Based on the proposition, keep subtracting the start address of the
allocation by s until the address becomes divisible by 4KB. Then,
the start address of the �rst unit, i.e. the start address of the slab,
can be obtained. (3) Mark the allocation in the bitmap similar to
the allocation process.

The Proof of the Proposition. Assume that the start address of
a non-�rst unit in a slab is divisible by 4KB. Since each unit is s-
aligned, the start address of the non-�rst unit is a common multiple
of 4KB and s , denoted by CM(4KB, s). Since the start address of
a slab is always 4KB aligned, the address of the �rst unit is also
a CM(4KB, s). A slab contains two addresses that are CM(4KB, s),
which con�icts with that the slab size is LCM(4KB, s).

5 LOG & DATA POOL
Log & data pool is another component of the hybrid memory pro-
gramming toolkit. It serves the persistent data, which hides the
complicated NVM programming skills and guarantees durability,
atomicity, and consistency. We �rst explain why we choose a linked
list structure to organize the data in log & data pool. Then, we de-
scribe the reason for employing the S-Linked list [1] as the list
implementation, followed by the enhancements on it. At last, we
present the API implementation of transaction semantics.

5.1 Determination of Data Structure
Sequential File or Linked List. Since we have chosen the design

that log entries will be accessed by user queries through indexes
to reduce the occupation of NVM bandwidth, we need to pick a
structure, i.e., a traditional sequential �le or linked list, to organize
the log. If we select sequential �les, we need to �nd away to compact
several �les and generate new �les for fast access and garbage
collection, as the LSM-tree [36] does. The data will be repositioned
after compaction, and the complex and varied indexes of Redis
should be reset, which complicates the retro�t. In contrast, if we
select linked lists, useless entries can easily be removed without
repositioning the data, thus the indexes need not be reset. Hence,
we favor the linked list for organizing entries of log & data pool.

5.2 The Variant of the S-Linked List
For the classic singly linked list, an entry cannot be e�ectively re-
moved. For the classic doubly linked list, it takes extra two pointers

D0 D1S0 D2 S1 D3 D4 D5 S2

a. The ES-Linked List 

Header Prev
Pointer

User
Data

6bytes n bytes

Node Type
Next Pointer

Reserved Space

b. Header Structure c. Skip-Node d. Data Node

1
47

16

Header

8 bytes 8 bytes

Figure 3: The structure of the ES-linked list.

(16B) for each entry, which is somewhat wasteful of space. We
adopt the variant of S-Linked list [1], called the ES-Linked list (the
Enhanced S-linked list), which reduces the extra pointers to nearly
one per entry and optimizes it for e�ective entry removal.

5.2.1 Structure of the ES-Linked List. As shown in Figure 3(a), an
entry of the list includes a header and a remainder. The former
contains node type (1 bit), next pointer (47 bits), and reserved space
(16 bits), shown in Figure 3(b). The node type is used to identify
the type of node, i.e., data node or skip-node. Since all the nodes
are persisted in the address space created by mapping an NVM
�le, a 47-bit pointer (or o�set) is su�cient, which can index more
than 100TB of data. The reserved space is used by the database core
which will be described in section 6.

The structure is similar to the singly linked list, whose nodes
only point to the next node. The di�erence is that there are special
nodes called skip-nodes containing a backward pointer to another
skip-node, as shown in Figure 3(c). A skip-node will be generated in
every k nodes. k is 16 in Tair-PMem. A backward pointer pointing
to another skip-node makes the sub singly linked list be a circular
linked list. Note that the deletion of a node needs to change the next
pointer of the previous node, which can be located by traversing
the circular linked list from the node to be deleted. The data nodes,
shown in Figure 3(d), store the user data.

Compared to the original S-linked list, skip-nodes of the ES-
linked list do not hold any user data. As a result, the deleting and
adding of skip-nodes need not modify database index structures.
Thus it’s easier and more e�ective to keep a proper number of
the data nodes between two skip-nodes, lowering the space con-
sumption from skip-nodes. Besides, the ES-linked list utilizes the
following technique to optimize deletion.

5.2.2 Group Deletions with Prefetching. The original S-linked list
saves the extra space cost but introduces many more entry accesses
when deleting an entry. Speci�cally, each deletion needs to search
17 entries for locating the previous one. The time to search the
previous node is spent primarily on memory accesses rather than
CPU computations. In addition, Optane PMem has higher latency
than DRAM, making memory accesses take longer.

To hide most of the access latency, every m (say 32) log entries
of the ES-linked list will be deleted in a group to utilize memory
prefetching. Speci�cally, the m nodes to be deleted will be asyn-
chronously prefetched �rst and then accessed one by one. Thus, the
last m-1 NVM accesses are expected to hit the cache, making the

3351



actual number of NVM accesses be 1. Following the same way, the
next node will be accessed until the previous node is found through
the circular linked list.

5.3 Implementation of Operations
Atomic and Durable Log Appending of Multiple Entries. Insert-

ing, updating, or deleting an element in Tair-PMem appends one
redo entry in the log. A command may operate multiple elements,
and users can further specify multiple commands to be atomic and
durable. Thus, we need to ensure the appending of multiple entries
be atomic and durable. Tair-PMem contains two kinds of logs, the
global log and the detached uncommitted transaction log, both of
which are implemented by the ES-linked list. The txn_begin func-
tion will create a detached list. When inserting data, Tair-PMem
�rst records the entries in the detached list by the entry_append
function. When committed by the txn_end, all the entries of the
detached list will be �rst persistent in NVM by calling CLWB instruc-
tions for them, followed by an SFENCE call. Next, the next pointer
of the tail entry on the global list point to the detached list. Lastly,
CLWB and SFENCE are called for the pointer that was just set. Be-
cause of the 8-bytes atomic writing, the pointer setting is atomic.
As a result, log appending of multiple entries is atomic and durable.

Recovery of the List. The recover function can recover the al-
locations of all entries by traversing the persistent linked list. It
calls the mark_as_allocated to recover the allocation for an entry
by using its start address and size. Note that, the size information
is provided by the user of the toolkit, i.e., the codec component of
database core (see Section 6.6.1), which obtains the size by the entry
decoding function.

Atomic Deletion of One Entry. Deleting or updating will reclaim
an entry from the data pool via the entry_free function. The
deletion of an entry should be atomic. An entry removal will change
the next pointer of the previous entry, and subsequently call CLWB
and SFENCE to persist the pointer. However, the actual freeing of
the target entry from the allocator may not be completed before a
crash. In such a case, since the allocator is recovered by scanning
the list and the target entry is not in the entry list, the recovered
allocator metadata will not involve it. Thus, it can still be freed
after recovery, avoiding memory leaks. For the atomic deletion of
multiple entries, it is implemented by appending tombstone entries
before the actual deletions, which is done in the database core.

6 DATABASE CORE
One of our primary design goals is to keep intrusive Redis mod-
i�cations low through modularized retro�ts. Speci�cally, Redis’
multifarious index implementations are aimed to be untouched.
Therefore, it can be much easier to ensure the compatibility and sta-
bility of Redis’ APIs. To achieve this, Tair-PMem divides Redis’ data
into two types: volatile and persistent. All volatile data maintains
its original implementation, and only the placement of volatile data
is further optimized via the allocator API. The persistent data (i.e.,
user data) is encoded by the codec component and then persisted
to the log & data pool.

This section details the major retro�ts, including managing
volatile and persistent data in the database, leveraging the toolkit

^

D

A C

B

Hash

A B C D

Skip list

C^ A B ^

List

Index Pointer queue for GC

Volatile

Persistent

Entry List

Volatile data in DRAM Volatile data in NVM Persistent entry in NVM

Figure 4: The basic structure of Tair-PMem.

for transaction atomicity and durability, pursuing advanced feature
bene�ts from the NVM-based durability.

6.1 Volatile Data Placement
Redis’ volatile data primarily contains indexes, various immediate
runtime variables, etc. As shown in Figure 4, a data model may
be indexed by one or two index structures, such as hashes, skip
lists, lists, etc. For example, a hash model is directly indexed by a
hash structure, and a sorted set is indexed by both skip lists and
hashes. With the help of abundant indexes, Redis supports many
data models and dazzling APIs. For easier API compatibility, we
barely modify indexes and keep the original implementation intact.

As described above, volatile data could be presented in a wide
range of formats. The medium on which volatile data is stored
depends on the default behavior of the malloc described in Section
4.2.2. Speci�cally, when the volatile data stored in DRAM exceeds a
certain ratio, say 1/5, an NVM address will be returned. Otherwise, a
DRAM address is returned. By specifying the VOLATILE_DRAM type
for malloc, Tair-PMem pins some hot data structures in DRAM to
optimize performance, such as an array of bucket pointers for the
global hash index.

6.2 Persistent Data Encoding
By providing encoding functions for codec component, user data of
di�erent data models can be persistent as entries of the ES-linked
list in log & data pool. In addition, the encoded user data should
be able to be pointed to directly by the volatile index to maintain
the original index structures. As Redis has varied data models, it
is tedious and unnecessary to explain all detailed entry layouts
here. Instead, we show the layouts of two representative kinds of
models, i.e., the string and KVs models. The string model represents
the simplest case that the value is a string, and the KVs model
represents the case that the value is a complex structure (e.g., hash,
set, sorted set, list) that further contains a number of key-value
pairs. Tair-PMem also supports some other structures, but we omit
them here for clarity.

All entries store two �elds, i.e., opcode (1B) and database id (1B),
in the reserved space of the entry header shown in Figure 3(b).
These �elds are used for recovery, making entries function as a log.

3352



PK

V1

SK1

V2

SK2

SK1 V1

PK

SK2 V2

Volatile data in DRAM A persistent entry in NVM

a. Abstract layout of Redis’ KVs models b. Abstract layout of Tair-PMem’s KVs models

Figure 5: The layout transformation of KVs model. The value
of the primary key (PK) is a complicated structure containing some
KVs, that is <SK1, V1>, <SK2, V2> in this �gure.

The opcode is used to identify write operations, such as inserting
a string, deleting a key, inserting an element into a set, etc. The
database id is used to di�erentiate the internal databases in Redis.

6.2.1 Entry Layout of KVs Models. Although the indexes are dis-
tinct between di�erent KVs models, Figure 5 abstracts them and
shows a common sketch. Redis locates the primary key through
several volatile objects. For brevity, we abstract these objects into
one, as shown in Figure 5(a). In Redis, the volatile indexes of dif-
ferent data models keep three pointers to the primary key (PK),
secondary key (SK), and value, respectively. The PK is shared by all
its KVs. After encoding an element of the KVs models, the persistent
entry contains the entry header, PK, SK, and value, as shown in Fig-
ure 5(b). We extract the PK from the entry with only a key pointer
saved, and thus the PK can be shared by all KVs. The extracted PK
holds the reference counter and will be reclaimed when the counter
decreases to zero. The volatile indexes keep the original pointers to
the PK, SK, and value. Because of the unchanged implementations
of all volatile objects, the implementations of all read logic remain
unchanged too.

6.2.2 Entry Layout of String Model. When the value is a string,
Tair-PMem puts both key and value to the same entry, preceded by
the header. The volatile object also retains the original behavior
that it maintains two pointers to key and value, respectively. The
key and value are stored together for better data locality.

6.2.3 Idempotent Log Entries. An operation encoded by an op-
code should be idempotent. Idempotency means an operation can
be applied several times without changing the result after the
�rst run. Without idempotency, the database might be corrupt
when a recovery is interrupted and restarts. For example, Redis’
ZREMRANGEBYRANK command removes all elements in the sorted
set with rank between a certain range. If the command is redone
many times, the sorted set may be changed after each redoing.
Thus, the command is not idempotent and cannot be encoded in
the log directly. A command transform is necessary. For example,
we transform it to the ZREMRANGEBYSCORE command that removes
all elements in the sorted set with a score in a speci�ed range.

6.3 Transaction Atomicity
The data should be consistent after redoing logs in recovery. There-
fore, modi�cations of the log should be atomic from the database
transaction perspective. Otherwise, the database will go into an

inconsistent state after the recovery. Making the persistent log play
the role of user data minimizes writes to NVM but complicates the
implementation of transaction atomicity.

6.3.1 Redo Log for User Operations. Tair-PMem enables the log &
data pool to function as a redo log to achieve transaction atomic-
ity. An uncommitted log implemented by an ES-linked list is �rst
created via the txn_begin method.

• When inserting, a new entry is atomically appended to the
uncommitted log by the entry_append, and the volatile in-
dex is set to point to that entry.

• When updating, copy-on-write is used instead of in-place-
update. Speci�cally, the original log entry is �rst located by
the index, then a copied entry is updated and appended to
the uncommitted log via the entry_append. After that, the
volatile index is reset to point to the new entry.

• When deleting, a tombstone entry is appended to the un-
committed log by the entry_append. The tombstone entry
only stores the key and contains no value.

Finally, once the transaction is committed, the uncommitted log will
be atomically appended to the global one by the txn_end method.

6.3.2 Order Maintenance of Log Entry. Since the log plays the role
of user data, internal entries of the log may be deleted via the
entry_free. Maintaining the correct order of the entries is crucial
for recovery. To achieve this, the implementation of user operations
should conform to the following two guidelines:

(1) The original entries should not be deleted until the updates
or deletes are committed successfully.

(2) For user deletions, the tombstone should be removed after
the original entry has been deleted.

If a transaction is committed, but the deletion of entries is not
completed before a crash, the corresponding updating entries or
tombstone entries must be in the global log. The incomplete dele-
tions will continue to be executed when these entries are read and
decoded in the recovery process, thus avoiding NVM leaks.

6.4 Garbage Collection for Entries
To better modularize Tair-PMem, we add the garbage collection (GC)
component to reclaim the discarded persistent entries. It serves
two purposes, i.e., pursuing better performance and serving the
checkpoint component (Section 6.5.1). In Tair-PMem, Redis’ original
threads issue the deletions in an ordered fashion to the GC compo-
nent, which is responsible for removing them in the order expected
by the threads.

Lock-free GC. To o�oad the deletion of a large data model, Redis’
main thread delegates it to Redis’ GC thread and only processes the
deletion of the small one. As a result, deletions will be performed by
two threads. These two threads will not con�ict when deleting the
DRAM data of di�erent keys, but they may con�ict in Tair-PMem
because removing two di�erent linked-list entries may operate the
same entry. To avoid such con�icts, we assign all entry deletions to
a new background thread, i.e. the entry-GC thread. The producers
are Redis’ two original threads that generate the deletion jobs for
log entries. The entry-GC thread is the only consumer, orderly

3353



consuming the jobs. As shown in Figure 4, the volatile lock-free
queue records pointers to the log entries freed by the producers.

Lock-free Linked List. Entry deletion may still con�ict with entry
appending. To avoid that, the entry-GC thread does not reclaim the
list tail entry, which is the only entry that will be modi�ed by the
append operation. Thus, no con�icts exist and no locks are needed.

6.5 Checkpoint
Checkpoints are an important mechanism used in many scenarios,
such as backups and replications.

6.5.1 Instant Checkpoint of Tair-PMem. The database can recover
from the log & data pool (Section 6.6.1). Therefore, a sublist of the
global log, starting from the �rst entry and ending with an entry
that was the tail entry of a committed transaction, is a checkpoint.
All thematters to create a checkpoint are recording the ending entry
and closing the GC for the sublist range. The latter relies on the GC
component. This component supports disabling GC for a sublist
range while the log entries remain in the correct order. We omit the
details for clarity. Nevertheless, it can be simply implemented by
stopping consuming all deletion jobs. As a result, a checkpoint can
be generated instantly without negative impacts on performance.
After the checkpoint is released, the GC thread starts consuming
deletion works again.

6.5.2 Compatibility. Since the above checkpoint is not compatible
with Redis’ RDB, we further support RDB generation to maintain
compatibility with other systems in the cloud. A snapshot of persis-
tent user data pointed by volatile indexes can be taken by the above
method. A snapshot of volatile data on DRAM is created by fork as
usual. To reuse Redis’s original implementation, we should further
support fork-like capabilities for volatile data on NVM. However,
there is no existing technology that can be directly exploited.

Note that volatile data on NVM is stored in a memory-mapped
�le that resides on a DAX (direct access) aware �le system. Thus, we
try to utilize the reflink [28] system call to take a snapshot on this
region, similar to what the fork does in memory. The community
�lesystem does not support the reflink function on the DAXmode.
We extend the ability on XFS [43] to achieve that.

6.6 Recovery
By utilizing the durable log appending from log & data pool, all
entries of a transaction are persisted once committed, giving Tair-
PMem full transaction durability. Tair-PMem redos the data opera-
tions encoded in the log entries for disaster recovery. Furthermore,
special backups will be made to speed up recovery after normal
shutdowns.

6.6.1 Disaster Recovery. The recovery process consists of two
stages, the recovery of the log & data pool and that of data indexes.
The former is performed via the recover function, as discussed in
section 5.3. The latter will be discussed below. By traversing the
log, each entry can be parsed to extract the opcode and command
arguments. Redoing the parsed operations will rebuild the volatile
indexes pointing to the existing entries. For example, the opcode
may indicate that it is an operation to insert a string with arguments

Table 3: The address spaces managed by the allocator. Each
type of data resides in either one or two spaces depending on
whether it is stored in two media.

Managed Managed Media Recovery Data
Data Type (address space) Needed Persistent

Log Entries NVM (space A) yes yes

Indexes DRAM (space B) yes no
NVM (space C)

Runtime DRAM (space D) no no
variables NVM (space E)

of key and value. These operations may insert, update or delete
data for any kind of data model.

Experiment Results. For 16GB user data of string model, Redis
takes 306s or 239s to recover depending on whether AOF is pe-
riodically rewritten with a compact AOF header or RDB header,
respectively. Tair-PMem takes 286s to complete recovery, avoiding
the re-generation of user data.

6.6.2 Recovery a�er a Normal Shutdown. For fast recovery, two
kinds of backups are made before a normal shutdown: one for the
metadata of the allocator that manages both log entries and indexes
and the other for indexes themselves. With these backups, normal
recovery becomes fast, which is often used in routine instance
maintenance, such as version upgrades.

Fast Recovery of Allocator Metadata. We rebuild the allocator
metadata by backing up it, as described in Section 4.2.3. To back up
only the allocator metadata of log entries and indexes, we partition
�ve memory spaces as shown in Table 3 and enable the backups in
units of address spaces. Tair-PMem separately back up the metadata
of the address spaces of log entries, DRAM indexes, and NVM
indexes, i.e., space A, B, and C . Since the size of the metadata is
small, the backup and recovery are fast.

Fast Recovery of Indexes and Log Entries. After the allocator meta-
data of spaceA, B, andC are rebuilt, these spaces themselves should
be recovered. Log entries are persisted in space A and thus need
not be touched. For DRAM indexes, before a normal shutdown,
Tair-PMem backs up it by mirror copying the memory space B to
a new persistent NVM space B0, which avoids time-consuming
serialization. During recovery, B0 is mirror copied back to B. For
NVM indexes, it is very e�cient, since the recovery process reuses
the original space C which will be persisted by CLWB instruction
before a normal shutdown.

Experiment Results. For 16GB user data of string model, Redis
takes 164s to generate an RDB and 96s to recover, while Tair-
PMem takes only 4.9s to make the backups and 5.4s to recover.
This veri�es that Tair-PMem can signi�cantly improve the user
experience.

3354



0
20000
40000
60000
80000
100000
120000
140000

1 2 4 8 16 32 64 128 256 512
0

2000

4000

6000

8000

10000

Th
ro
ug
hp
ut
s(
IO
PS

)

99
th
Pe
rc
en
tile

La
te
nc
y(
us
)

The number of Clients

Throughputs
99th Percentile Latency

Figure 6: The throughputs and 99th percentile latencies of
string model for fully durable Redis.

7 TYPICAL NVM PROGRAMMING SKILLS
Tair-PMem employs a number of NVMprogramming skills to achieve
performance similar to that of original Redis. The typical of these
are introduced here.

7.1 Breaking Large Values into Shards for COW
When updating a log entry, the copy-on-write mechanism should
be utilized instead of the in-place updating. Hence, setting a bit for it
will rewrite the whole entry. For example, Redis’ SETBIT command
sets bits for a string model. Tair-PMem breaks a large string into
many shards, each of which is a 256B log entry. These entries are
organized via an index of volatile pointer array, serving as a large
string. To reduce the bandwidth occupation of Optane PMem, a bit
set will copy-on-write only a single shard.

7.2 Single Tombstone Entry When Possible
In Redis, a primary key deletion removes all elements of a KVs
model. Deleting a large string removes all entries of the shards.
If a tombstone entry is generated for each log entry, the deletion
performance will be unsatisfactory. Tair-PMem generates only one
tombstone entry for the above scenarios while encountering the
following challenge. If only partial entries are removed before a
crash, it should ensure that no entries are leaked after recovery.

By redoing the global log during recovery, the unreclaimed ele-
ments will be put into a KVs model. As discussed in Section 6.3.2,
the tombstone is always the last one to be reclaimed. Thus, redo-
ing the tombstone log will remove all existing elements of a KVs
model, ensuring no entries are leaked. Similarly, one tombstone for
a sharded string also guarantees no entry leaks.

7.3 Prefetching
We utilize prefetching to hide the memory access latency, especially
for NVM accesses, which is used for ES-linked list entry removal
and Redis’ index accesses. The former has been described in Section
5.2.2. Since Redis executes commands in groups, the latter can be
implemented similarly. Speci�cally, the data for commands in the
same group will be prefetched �rst before a command is executed.

8 EXPERIMENTS
Since Redis has abundant models and numerous APIs, it’s cumber-
some and unnecessary to evaluate the detailed performances of

every model and API. To illustrate that Tair-PMem achieves the
desired goals, we pick two representative models, string model and
hash model, to evaluate. The former represents a simple model, and
the latter represents a KVs model. The two models are also the most
frequently used models in cloud services.

8.1 Experiment Setup
Our experimental platform is based on the Alibaba cloud server
of ecs.ebmre6p.26xlarge instance type. The server is equipped with
2.50 GHz Intel Xeon Platinum 8269 processors, 384 GB DRAM,
1536 GB Intel® Optane™ Persistent Memory, 2 TB Alibaba cloud
Enhanced SSD (ESSD) of Performance Level 1 (PL1), just the same
as the deployments of our cloud service. The operating system is
Alibaba Cloud Linux 2, and the �le system for ESSD is ext4.

The evaluation is based on Yahoo! Cloud Serving Benchmark
(YCSB) [11], including loading and transaction phases. The latter
contains six workloads by default, namely workload A, B, C, D, E,
and F. We evaluate all of them except workload E which contains
short scan operations not supported by Redis.

We choose Redis and TieredMemDB [40] for comparison. The
latter extends Redis with Optane PMem only to save costs. Like
Redis, it supports the optional durability by utilizing the AOF and
RDB. This means that when durability is requested, the data space
needs to be doubled to store one additional copy of data stored
in persistent media. By default, Redis with AOF on �ushes the
bu�ered data to the persistent storage device every second. In cloud
services, the persistent medium is always an SSD for economic and
technical reasons. Both Redis and TieredMemDB are evaluated
with two con�gurations, i.e., AOF synchronized per second and
AOF synchronized per transaction. The former con�guration may
lose the data written in the last second, and the latter achieves full
transaction durability. All the tests are evaluated by loading 16GB
of user data with a value of 128B.

8.2 Results
Before discussing Tair-PMem’s performance, we evaluated the inser-
tion performance of fully durable Redis. As shown in Figure 6, the
throughput increases with the number of clients, while the latency
also increases. As Redis serves as an IMDB, users are sensitive to la-
tency. We evaluate the fully durable Redis and TieredMemDB with
128 clients, which allows for the best balance between throughput
and tail latency, rather than blindly pursuing the highest through-
puts but su�ering very high latencies. In all the other tests, the
number of clients is set to 48, which is the minimum number of
clients to achieve the highest throughput.

8.2.1 The Throughput Results.

Loading Throughputs. As shown in Figure 7, Tair-PMem is fully
durable (FD) natively and thus is denoted by FD Tair-PMem in the
�gures. For the loading phase, Tair-PMem achieves 1.8⇥ and 2.2⇥
throughputs compared to the FD Redis and the FD TieredMemDB,
respectively. The improvement attributes to the removal of writes
to the traditional persistent media, here PL1 ESSDs. It is worth
noting that the removal also eliminates an additional copy of data.
Compared with the default partially durable (PD) Redis, Tair-PMem
achieves 81% of its write performances. The performance loss is

3355



0

50000

100000

150000

200000

250000

Load A B C D F

Th
ro
ug
hp
ut
s(
IO
PS

)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 7: The throughputs of string model.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Load A B C D F

Th
ro
ug
hp
ut
s(
IO
PS

)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 8: The throughputs of hash model.

0

500

1000

1500

2000

2500

3000

3500

4000

Load A B C D F

99
th
Pe
rc
en
til
e
La
te
nc
y(
us
)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 9: The 99 percentile latencies of string model.

0

1000

2000

3000

4000

5000

6000

7000

8000

Load A B C D F

99
th
Pe
rc
en
til
e
La
te
nc
y(
us
)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 10: The 99 percentile latencies of hash model.

mainly due to the persistent writes to log & data pool for each
transaction with the CLWB and SFENCE instructions. Interestingly,
Tair-PMem achieves 5% enhancements over PD TieredMemDB. Fig-
ure 8 shows the results of the hashmodel serving as a representative
of KVs models. The write performance is similar to that of the string
model.

Read Throughputs. Figure 7 shows that Tair-PMem obtains sim-
ilar read performance as Redis in the string model, illustrated by
the results of read-only workload C. However, TieredMemDB loses
14% of its throughput. The performance loss is due to the access
of NVM data, for both volatile and persistent ones. Tair-PMem has
the same challenge, but the prefetching technique tackles it.

For the results of the hash model shown in Figure 8, a single read
request gets all 10 KVs of the model with 73% of the throughput of
the original Redis. The throughput for reading a single KV from
the hash increases to 90% of that of the original Redis (not shown
in the �gure). Prefetching techniques are more di�cult to e�ect
for complex queries. Anyway, Tair-PMem still performs better than
TieredMemDB.

Mixed-Workload Throughputs. For other workloads, it is a mix of
reads and writes. For workloads containing many writes, namely
workload A and F, it is similar to the loading performance. For the
workloads containing mostly reads, namely workload B and D, it is

similar to the read-only workload C. No other special observation
worth mentioning further.

8.2.2 The Tail-Latency Results.

The 99th Percentile Latency. Figure 9 and Figure 10 show the 99th
percentile latency. In general, Tair-PMem performs similar with
PD Redis and TieredMemDB, but much better than FD Redis and
TieredMemDB. For example, the FD Redis and TieredMemDB su�er
4.7⇥ and 5.6⇥ longer 99th percentile latencies than Tair-PMem for
the loading string workload, respectively.

The Maximum Latency. The maximum latency is another im-
portant indicator of system stability. Many cloud users are very
sensitive to it, especially for IMDB. In our cloud service, a high
percentage of tickets raise that their systems su�er from occasional
or periodic high latency spikes of hundreds of milliseconds or more.

As shown in Figure 11 and Figure 12, Tair-PMem obtains very
small maximum latency, achieving an extremely stable performance.
Speci�cally, it is less than 22ms for write-heavy workloads, and
less than 9ms for read-heavy workloads. For the write-heavy sce-
narios, i.e., the loading phase and transaction phase of workload A
and F, both Redis and TieredMemDB su�er serious latency spikes.
Speci�cally, for the global maximum latency incurred in all the
write-heavy scenarios, FD Redis and TieredMemDB su�er 219⇥
and 403⇥ longer latency, and PD ones su�er 38⇥ and 67⇥ worse

3356



1000

10000

100000

1x106

1x107

1x108

Load A B C D F

M
ax
im
um

La
te
nc
y(
us
)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 11: The maximum latencies of string model.

1000

10000

100000

1x106

1x107

Load A B C D F

M
ax
im
um

La
te
nc
y(
us
)

FD Redis
PD Redis

FD TieredMemDB
PD TieredMemDB

FD Tair-PMem

Figure 12: The maximum latencies of hash model.

performance, respectively. The results of the hash model are similar.
For reading mostly or only workloads, namely workload B, C, and
D, Tair-PMem and TieredMemDB achieve more stable performance
than that of write-heavy workloads, but are still unsatisfactory.

By checking the runtime log, we �nd the latency spikes are
caused by AOF rewrites. The latency spikes speci�cally come from
calling fork and writing the log commands accumulated in the
checkpoint phase to the new AOF. In contrast, since no AOF exists
in Tair-PMem, extremely stable performance is obtained.

9 RELATEDWORK
There are a large body of works on designing high-performance
persistent NVM indexes, including NVM-based hash tables [8, 30,
33, 39, 50], and NVM-based tree structures [3, 6, 17, 29, 35, 41, 49].
These works mainly focus on reducing the overhead of crash con-
sistency and improving concurrency. Among them, several recent
studies [12, 15, 24, 25, 31, 42] aim at converting volatile indexes
into persistent and crash-consistent NVM counterparts. Recipe [25]
introduces a set of conditions specifying what kind of DRAM in-
dexes can be converted using the Recipe approach. PRONTO [31]
introduces asynchronous semantic logging to convert each oper-
ation of the volatile index into a failure-atomic operation. TIPS
[24] proposes a near black-box conversion strategy, which lever-
ages a hybrid logging technique to guarantee crash consistency,
prevent memory leaks, and promise durable linearizability. These
works reduce the engineering complexity but introduce either high
overheads (on runtime or memory space) or consistency compro-
mises. Tair-PMem addresses these issues by providing a lightweight
and high-performance programming toolkit, especially for building
NVM-backed IMDBs.

Other works aim to exploit DRAM-NVM hybrid architectures
for modern data-intensive systems, such as database systems, key-
value stores, and �le systems [7, 14, 21–23, 45, 46, 48]. Yan et al.
[46] leverages NVM to revisit the conventional LSM-tree, which
eliminates theWAL and proposes several log-free designs to further
mitigate the persistence overhead of NVM. SLM-DB [22] is a key-
value store that achieves high read performance by maintaining a
B+-tree index in DRAM and reduces write ampli�cation by adopting
a single-level LSM-tree in NVM. NOVA [45] is a log-structured �le
system that stores each inode to a separate linked-list log to improve

concurrency, and stores �le data outside the log to minimize the
log size and reduce garbage collection overheads. These works
utilize NVM to propose new designs like eliminating WAL and
reducing log size, therefore to better adapt NVM to existing systems.
Similar to these works, Tair-PMem introduces design decisions like
log-as-user-data to eliminate the logging overhead of Redis’ AOF
mechanism, so as to fully exploit the performance of NVM.

10 CONCLUSION
As the cloud service provider, we see NVM as a game-changer
for IMDBs. Alibaba Cloud supported Redis-6.0 in May 2020 and
provided Tair-PMem which is compatible with the former four
months later. Till now, 5⇥ more data is stored in Tair-PMem than
Redis-6.0. We analyzed the major scenarios in which customers
choose NVM services, including: the enterprise cloud migrations
to reduce the Total Cost of Ownership (TCO); the advertisement
systems requiring extremely low latency and hardly tolerating any
latency spikes; the �ntech replacing the combination of Redis and
MySql with NVM services only; the online feature stores demanding
high capacity and performance, and so on. Improving the durability,
latency, data volume, and TCO while obtaining system stability
makes the service attractive.

This paper shows howwe leverage NVM to design a fully durable
and enterprise-strength IMDB. Tair-PMem is the �rst cloud service
that makes good use of the persistence capability of NVM. Specif-
ically, Tair-PMem (1) provides the hybrid memory programming
toolkit to hide complicated NVM programming details, (2) adopts
the DRAM-NVM hybrid design according to a well-controlled data
placement strategy, thus reducing the NVM access and persistence
overhead. (3) develops a set of database components that achieve
full Redis compatibility and advanced features in a low-intrusive
manner for high stability. Our evaluation shows that, compared
to Redis, Tair-PMem obtains full transaction durability, compara-
ble throughput, an extremely fast recovery process after a normal
shutdown, and avoids periodic latency spikes.

REFERENCES
[1] O Akinde Aderonke, O Okolie Samuel, and O Kuyoro‘Shade. 2013. The S-Linked

List–A Variant Of The Linked List Data Structure. Journal of Emerging Trends in
Computing and Information Sciences 4, 6 (2013).

3357



[2] Apache. 2008. Cassandra. Retrieved January 25, 2022 from http://cassandra.
apache.org

[3] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
BzTree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[4] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. Faster: A concurrent key-value store
with in-place updates. In Proceedings of the 2018 International Conference on
Management of Data. 275–290.

[5] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu,
and Feifei Li. 2020. HotRing: A Hotspot-Aware In-Memory Key-Value Store. In
18th USENIX Conference on File and Storage Technologies (FAST 20). 239–252.

[6] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[7] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An e�cient log-structured key-value storage engine for persistent
memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 1077–1091.

[8] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free concurrent
level hashing for persistent memory. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 799–812.

[9] Alibaba Cloud. 2021. Persistent memory-optimized instances. Retrieved January
25, 2022 from https://www.alibabacloud.com/help/en/doc-detail/183956.html

[10] Alibaba Cloud. 2022. ApsaraDB for Redis. Retrieved January 25, 2022 from
https://www.alibabacloud.com/product/apsaradb-for-redis

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[12] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch, and Erez
Petrank. 2020. NVTraverse: In NVRAM data structures, the destination is more
important than the journey. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 377–392.

[13] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail,
Sunny Wadkar, Changwoo Min, and Dongyoon Lee. 2020. WITCHER: Detect-
ing Crash Consistency Bugs in Non-volatile Memory Programs. arXiv preprint
arXiv:2012.06086 (2020).

[14] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.
2020. Single machine graph analytics on massive datasets using Intel optane DC
persistent memory. Proceedings of the VLDB Endowment 13, 8 (2020), 1304–1318.

[15] Swapnil Haria, Mark D Hill, and Michael M Swift. 2020. MOD: Minimally ordered
durable datastructures for persistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 775–788.

[16] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and
Steve Byan. 2018. Closing the Performance Gap Between Volatile and Persistent
Key-Value Stores Using Cross-Referencing Logs. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 967–979.

[17] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable transient inconsistency in byte-addressable persistent b+-tree. In 16th
USENIX Conference on File and Storage Technologies (FAST 18). 187–200.

[18] Intel. 2018. Intel® Optane™ Memory - Responsive Memory, Accelerated Perfor-
mance. Retrieved January 25, 2022 from https://www.intel.com/content/www/
us/en/products/details/memory-storage/optane-memory.html

[19] jemalloc. 2005. jemalloc memory allocator. Retrieved January 25, 2022 from
http://jemalloc.net/

[20] Hai Jin, Zhiwei Li, Haikun Liu, Xiaofei Liao, and Yu Zhang. 2019. Hotspot-aware
hybrid memory management for in-memory key-value stores. IEEE Transactions
on Parallel and Distributed Systems 31, 4 (2019), 779–792.

[21] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: Reducing software overhead in �le
systems for persistent memory. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 494–508.

[22] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H Noh, and Young-ri
Choi. 2019. SLM-DB: single-level key-value store with persistent memory. In
17th USENIX Conference on File and Storage Technologies (FAST 19). 191–205.

[23] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for nonvolatile memory with
NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 993–
1005.

[24] R Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar Monga, Hee Won
Lee, Minsung Jang, Ajit Mathew, and ChangwooMin. 2021. TIPS: Making Volatile
Index Structures Persistent with DRAM-NVMM Tiering. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 773–787.

[25] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: Converting concurrent DRAM indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 462–477.

[26] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. 2014.
MICA: A holistic approach to fast in-memory key-value storage. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). 429–444.

[27] Linux. 2021. fork(2) — Linux manual page. Retrieved January 25, 2022 from
https://man7.org/linux/man-pages/man2/fork.2.html

[28] Linux. 2021. ioctl_�clonerange(2) — Linux manual page. Retrieved January 25,
2022 from https://man7.org/linux/man-pages/man2/ioctl_�clone.2.html

[29] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. Lb+ trees: optimizing persistent
index performance on 3dxpoint memory. Proceedings of the VLDB Endowment
13, 7 (2020), 1078–1090.

[30] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proceedings of the VLDB Endowment 13, 8 (2020),
1147–1161.

[31] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:
Easy and fast persistence for volatile data structures. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems. 789–806.

[32] Memcached. 2012. Memcached. Retrieved January 25, 2022 from https://
memcached.org

[33] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok Nam.
2019. Write-optimized dynamic hashing for persistent memory. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). 31–44.

[34] Oracle. 2009. MySQL. Retrieved January 25, 2022 from https://www.mysql.com/
[35] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data. 371–386.

[36] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[37] Redis. 2009. Redis. Retrieved January 25, 2022 from https://redis.io
[38] Redis. 2022. Redis Command. Retrieved January 25, 2022 from https://redis.io/

commands
[39] David Schwalb, Markus Dreseler, Matthias U�acker, and Hasso Plattner. 2015.

NVC-hashmap: A persistent and concurrent hashmap for non-volatile memories.
In Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and
Analytics. 1–8.

[40] TieredMemDB. 2022. TieredMemDB. Retrieved January 25, 2022 from https:
//tieredmemdb.github.io/TieredMemDB/

[41] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free
indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[42] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján. 2020.
PMThreads: Persistent memory threads harnessing versioned shadow copies.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 623–637.

[43] xfs.org. 2013. Main Page. Retrieved January 25, 2022 from https://xfs.org/index.
php/Main_Page

[44] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index key-
value store for DRAM-NVM memory systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 349–362.

[45] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File
and Storage Technologies (FAST 16). 323–338.

[46] Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang, Jianying
Wang, Gui Huang, Xinjun Yang,Wei Cao, and Feifei Li. 2021. Revisiting the design
of LSM-tree Based OLTP storage engine with persistent memory. Proceedings of
the VLDB Endowment 14, 10 (2021), 1872–1885.

[47] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). 169–182.

[48] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat:
a tiered �le system for non-volatile main memories and disks. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). 207–219.

[49] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
di�erential indexing for persistent memory. Proceedings of the VLDB Endowment
13, 4 (2019), 421–434.

[50] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 461–476.

3358


