
PreQR: Pre-training Representation for SQL Understanding

Xiu Tang
Zhejiang University
tangxiu@zju.edu.cn

Sai Wu∗

Zhejiang University
wusai@zju.edu.cn

Mingli Song
Zhejiang University

brooksong@zju.edu.cn

Shanshan Ying
Alibaba Group

shanshan.ying@alibaba-inc.com

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

Gang Chen
Zhejiang University

cg@zju.edu.cn

ABSTRACT

Recently, the learning-based models are shown to outperform the

conventional methods for many database tasks such as cardinality

estimation, join order selection and performance tuning. However,

most existing learning-based methods adopt the one-hot encod-

ing for SQL query representation, unable to catch complicated

semantic context, e.g. structure of query, database schema defini-

tion and distribution variance of columns. To address such above

problem, we propose a novel pre-trained SQL representation model,

called PreQR, which extends the language representation approach

to SQL queries. We propose an automaton to encode the query

structures, and apply a graph neural network to encode database

schema information conditioned on the query. A new SQL encoder

is then established by adopting the attention mechanism to support

on-the-fly query-aware schema linking. Experimental results on

real datasets show that replacing the one-hot encoding with our

query representation can significantly improve the performances

of existing learning-based models on several database tasks.

CCS CONCEPTS

• Information systems → Structured Query Language; • Com-

puting methodologies → Semantic networks.

KEYWORDS

SQL query, pre-training representation, database schema

ACM Reference Format:

Xiu Tang, Sai Wu, Mingli Song, Shanshan Ying, Feifei Li, and Gang Chen.

2022. PreQR: Pre-training Representation for SQLUnderstanding. In Proceed-

ings of the 2022 International Conference on Management of Data (SIGMOD

’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3514221.3517878

1 INTRODUCTION

Due to the complex and diverse states of modern DBMS (Data-

base Management System), databases are becoming more and more

∗Sai Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517878

Ignoring database schema,query structure, distribution variance.

Input SQL: Schema:

id primary key

product_year

title

id primary key

movie_id foreign key

company_id

movie_companies

 Column set {[0 0 0 0 0 1]}
 Table set {[0 1], [1 0]}
 Join set {[0 0 0 0 0 1 0 1 0 1 0 0 0 0]}
 Predicate set {[0 0 0 1 0 0 1 0 0.72],
 [1 0 0 0 0 0 0 1 0.14]}

One-hot encoding:

Drawbacks:

 SELECT t.id
 FROM title t, movie_companies mc
 WHERE t.id = mc.movie_id
 AND t.product_year > 2010
 AND mc.company_id = 5

Figure 1: One-hot encoding fails to maintain the semantic

information of SQL queries.

complex to optimize and maintain. Hence, a new line of research

emerges which applies learning techniques to support many data-

base tasks, such as cardinality estimation [23], join order selec-

tion [52], cost estimation [42] and performance tuning [28, 54].

Commercial DBMSs, such as Oracle and GaussDB [19], have started

to redesign their core modules by leveraging various neural mod-

els, where SQL queries are normally accepted as one of the inputs.

Therefore, almost all existing models need to address the same

challenge—how to vectorize the representation of SQL queries.

Most existing models adopt the one-hot encoding for SQL query

representation [23, 42]. For example, MSCN [23] adopts one-hot

encoding to represent database table and column in a query to

estimate the cardinality. Sun and Li propose a learning-based cost

model [42] by adopting the one-hot encoding to represent query

plan node. As Figure 1 shows, the one-hot encoding fails to maintain

the semantic information of SQL queries. The example depicts three

drawbacks of existing one-hot encoding for SQL queries:

• The encoding of an SQL query is generated by simply con-

catenating the encodings of all clauses in the query. It con-

tradicts the nature of the SQL by neglecting the structure

information of the query.

• All tables and columns are encoded independently using

a context-free mode, ignoring the definition of database

schema (e.g., types and value domains). Moreover, primary

keys and foreign keys are not explicitly identified, such as

column t.id of table title and column mc.movie_id of table

movie_companies.

• All values in an SQL query are normalized to [0, 1]. E.g.,

2010 and 5 are encoded as 0.72 and 0.14 in our example.

This approach ignores the distribution variance of columns

t.product_year and mc.movie_id.

 SELECT name FROM user WHERE rank IN ('adm','sup')

 SELECT SUM(balance) FROM accounts

 SELECT name FROM user WHERE rank = 'adm'
 UNION SELECT name FROM user WHERE rank = 'sup'

 SELECT SUM(balance) FROM accounts WHERE user_id
 in (SELECT user_id FROM user WHERE rank = 'adm')

 SELECT SUM(accounts.balance) FROM accounts, user
 WHERE accounts.user_id = user.id AND user.rank = 'adm'

q1

q2

q3

q4

q5

Logically Same

 Template
 Related

 Share
 Schema

Query Dependent

Figure 2: Challenges of SQL query embedding.

The above example demonstrates the key factors that affect the

performance of existing database learning tasks. To address the

drawbacks, we need a novel SQL encoding model to effectively

incorporate semantic and context information into word vectors to

improve the representation of structured data.

In fact, the language representation has been well studied by

work on the NLP (Natural Language Processing), where generative

pre-trained sentence encoders [9, 16, 37, 43] have contributed to sig-

nificant performance improvements [44]. However, different from

natural language, SQL is a structured query language, incurring

new challenges as shown in Figure 2. In the example, all queries use

different syntax and rules, and hence existing pre-trained language

model will consider them to be far from each other. In fact, query 𝑞3
is logically equivalent to query 𝑞1, which can be easily identified by

their query structures. Although query 𝑞4 is different from queries

𝑞2 and 𝑞3, they are semantically related. Finally, query 𝑞5 and 𝑞4
are also logically the same, which can be discovered via involved

database schema information.

To address the problems, the query representation scheme must

have the knowledge on database schema and be sensitive to the

query structure. Therefore, in this paper, we propose the PreQR (Pre-

training Query Representation) model. PreQR is built on top of the

BERT [9] by integrating the database schema, query structure and

other domain knowledge. The pre-trained model only needs to be

trained once for a database and can be used in various learning

tasks. The major contributions of our paper are summarized as

follows:

• We propose the first pretrained representationmodel for SQL

understanding, which outperforms state-of-the-art (SOTA)

results after fine-tuned on a series of database learning tasks.

• Our input embeddings can represent the query structure

via matching sub-automaton states. Moreover, it can learn

the distribution variance of columns during the matching

process.

• A graph-structured model is adopted to encode database

schema definition and the query-aware sub-graph can ex-

tract SQL-related schema information.

• We built an SQL encoder by leveraging the attention mech-

anism to identify the query-aware structural and schema

information in an ad-hoc way.

We evaluate the performance of PreQR on multiple classic data-

base learning tasks. Experimental results show that by replacing the

encoding approach with our semantic representation, all models

can outperform the SOTA results by a large margin.

2 SCHEME OVERVIEW

Figure 3 shows the architecture of PreQR, consisting of three mod-

ules: Input Embedding, Query-Aware Schema, and SQLBERT.

First, Input Embedding generates an initial encoding for an in-

put query based on the SQL structure. We build an automaton to

represent the SQL structure information. The list of states returned

by the automaton is a flat representation of the input SQL query.

Queries with similar structures (e.g., 𝑞1 and 𝑞3 in Figure 2) will

share similar state representations. We also include the token em-

bedding and position embedding to denote words and syntax used

in the query. All three embeddings are concatenated together as

the input for the SQLBERT model.

Next, Query-Aware Schema generates a representation for the

database schema involved in the input query. Schema2Graph applies

a graph neural network to represent the whole database schema by

considering tables and columns as vertices in the graph. Because

a query only involves a small portion of the database schema, we

build a model to adaptively generate a query-aware embedding for

the corresponding schema sub-graph.

Finally, SQLBERT merges the structural embedding from the

Input Embedding module and schema embedding from the Query-

Aware Schema module to generate the final SQL embedding. In

particular, a bidirectional transformer is employed to generate the

SQL encoding conditioned on both the schema and structure infor-

mation. The training process is conducted as the masked language

model in an unsupervised manner, which randomly masks some of

the tokens from the input for prediction.

After the pre-training is done, PreQR model can be further fine-

tuned for any particular database learning tasks. For example, to

estimate the cardinality of a query, we can pick any SOTA model

and replace the query encoding part with PreQR. The fine-tuning is

performed by training the last layer of SQLBERT module together

with the SOTA model.

3 PRE-TRAINING QUERY REPRESENTATION

In this section, we present the detailed designs of PreQR (Pre-

training Query Representation) model.

3.1 Problem Definition

Any input to a neural modelmust be vectorized as a binary encoding.

Using the notations listed in Table 1, the SQL embedding problem

is formally defined as:

Definition 3.1. Given a database 𝐷 and its schema 𝑆 , we train a

model 𝐹 : 𝑄 × 𝐷 × 𝑆 → 𝑌 . 𝑄 denotes the most frequent SQL query

set on 𝐷 and 𝑌 represents the 0-1 vectors of queries.

In this paper, to reduce the training overhead, we have the fol-

lowing assumptions. First, the data distribution of a database does

not change over time, and hence, 𝐹 is not affected by data inser-

tion and deletion on the database. So we rewrite our model as

𝐹 : 𝑄 × 𝑆 → 𝑌 . Second, updating the schema definition is a rare

case. Third, frequent queries can be identified by a limited number

of query templates 𝑄𝑡 . This is true in real systems, where queries

Database Schema

Token Embeddings

Sql State Embeddings

Position Embeddings

Composite Embeddings

y1 y2 yN

E1 E2 EN

Schema2Graph
Trm_g Trm_g

Trm_g Trm_g Trm_g

Trm_gTab

Col

Tab

Col
Col

SQL2Automaton

Query-Aware Schema

Input QueriesInput Queries

Col

Query-Aware Sub-graph
Tab

Col

Tab

Col
Col

Col

Query Representations

Embeddings of Input

Input Embedding

SQLBERT

Figure 3: The architecture of PreQR. SQL2Automaton extracts query structure information as SQL state embedding, which

is one of the initial embeddings. Schema2Graph represents database schema as a relation graph. SQLBERT extracts query

representations by combining Query-Aware Sub-graph with structured content information.

Table 1: Summary of notations.

Notation Definition

𝑄 the SQL query set

𝑆 the database schema

𝑌 the SQL embedding

𝑇𝑟𝑚_𝑔 the Transformer module in SQLBERT

𝑡𝑖 the tokens of SQL query 𝑞
𝑎𝑖 the encoding of state in automaton

𝐺𝑠 the database schema graph

𝑣𝑖 the 𝑖-th vertex in schema graph

𝑐𝑖 the 𝑖-th column vertex

𝑡𝑖 the 𝑖-th table vertex

𝑒𝑞 the BERT encoding of SQL query 𝑞
𝑒𝐺 the global encoding of schema 𝑆
𝑒𝑔 the sub-graph encoding of SQL-related schema

are always submitted via web forms. We also show how PreQR can

be updated when the above assumptions are violated in Section 3.6.

3.2 Model Workflow

For an input query, Input Embedding generates its structural binary

encodings. In particular, SQL2Automaton extracts the structure

information of queries by establishing an automaton for query

template set 𝑄𝑡 . Given any query 𝑞 in 𝑄 , we can extract its corre-

sponding template from 𝑄𝑡 and then guide the query through the

automaton. Let 𝑇 = {𝑡1, ..., 𝑡𝑛} denote the tokens of SQL query 𝑞.
We create an initial embedding for𝑞 as {𝑒 (𝑡1), ..., 𝑒 (𝑡𝑛)}, where 𝑒 (𝑡𝑖)
is defined as (𝑏 (𝑡𝑖), 𝑎(𝑡𝑖), 𝑝𝑜𝑠 (𝑡𝑖)). 𝑏 (𝑡𝑖) is the word embedding of

𝑡𝑖 from BERT model. 𝑎(𝑡𝑖) denotes the 0-1 encoding of 𝑡𝑖 ’s state in
the automaton, and 𝑝𝑜𝑠 (𝑡𝑖) is 𝑡𝑖 ’s position in 𝑞.

Different from Input Embedding module, Query-aware Schema

catches the schema information of the query by building a graph

convolutional model 𝐺 to represent the database schema 𝑆 . It then
projects an input query 𝑞 into the database schema to obtain a

relational graph via attention Transformer 𝑇𝑟𝑚′ : 𝑆 × 𝑞 → 𝑒𝑔 . 𝑒𝑔 is

the 0-1 encoding for the schema information. Note that as a part of

𝐹 , 𝐺 is trained together with 𝐹 .

Finally, SQLBERT tailors the BERT model [9] by accepting the

query initial embedding (structured content information) as its in-

put and integrating 𝑒𝑔 (query-aware schema information) into its

transformer 𝑇𝑟𝑚_𝑔. The outputs 𝑌 are finalized as the query rep-

resentations, which can be used as the input for database learning

tasks.

In what follows, we show the details of our three modules: Input

Embedding, Query-Aware Schema and SQLBERT.

3.3 Input Embedding

3.3.1 SQL-to-Automaton. To unambiguously represent SQL struc-

ture, we propose to convert query structure into a finite-state au-

tomaton. It was shown that automata can recognize syntactically

well-formed strings [15]. Finite-state automata (FA) are machines

with finite numbers of states. An FA can transit from one state

to another in response to an input. The FA can well define the

structure of an SQL query and its states are serializable. Its state

transition information can optimize the prediction of mask words

in the masked language modeling.

Specifically, the FA has a start state 𝑎0 and a set of final states

{𝑎𝑒𝑛𝑑 }. Let 𝑇 = {𝑡1, ..., 𝑡𝑛} denote the tokens of SQL query 𝑞. 𝑇 is

considered as an accepted sequence for the FA, only if we can find

a path starting from 𝑎0 to any final state in {𝑎𝑒𝑛𝑑 }. Table 2 shows
the automaton of example queries in the Figure 2. We observe

that queries 𝑞1 and 𝑞3 share a similar state sequence, indicating

that the automaton can well represent the SQL structure. Since

the automaton has a limited number of states, we use a one-hot

encoding vector to denote each state 𝑎𝑖 . For token sequence 𝑇 =
{𝑡1, ..., 𝑡𝑛}, we can concatenate all state vectors {𝑎(𝑡𝑖)}

𝑛
𝑖=1 as a FA

encoding for the query.

In our approach, we cluster popular queries in a system and

extract a query template for each group. The query template extrac-

tion step is semi-automatically. A hybrid distance metric is adopted

to perform the query clustering. In particular, the column and table

names are replaced with specific tokens, and the string, number, and

category values are represented with different variations. We com-

pute the string similarities between the query clauses and merge

the similarities as cosine distance. Then, for each cluster, we create

a template to denote most queries.

SELECT COUNT(*) FROM title t , movie_companies mc WHERE AND t.production_year > 2010

bSELECT bCOUNT(*)

[CLS] [END]

b[CLS] b[MASK] btitle bt b, bmovie_companies bmc b[MASK] bAND b> b[VALUE
RANGE]

b[END]

a0

pos0 pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos13 pos14 pos15 pos16

a1 a2 a3 a4 a4 a4 a4 a4 a5 a9 a6 a7 a8 a10

Input

Token
Embeddings

Position
Embeddings

SQL State
Embeddings

pos20

bFROM bWHERE

Trm_g modules
Masked Language
Modeling (MLM)

SQLBERT

bt.production_year

b[MASK]

Figure 4: Query representation pre-training. Our query embeddings are refined gradually and finally can represent query

words and structure information.

Table 2: SQL state embedding. For an incoming query, a sub-automaton matches the query. The sequence of state vectors of

the automaton is the query’s SQL State Embedding.

Input Queries 𝑞1 in Section 1 Queries 𝑞3 in Section 1

Automaton

Matching

SELECTSTART Column FROM Table WHERE Column

IN

String=
a0 a1 a2 a3 a4 a5 a6

a7

a8 a9

a10

END
a11

UNION

SQL State

Embedding
𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎9, 𝑎9, 𝑎11) 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎8, 𝑎9, 𝑎10,

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎8, 𝑎9, 𝑎11)

Table 3: The number of query templates in datasets.

Dataset Num Dataset Num Dataset Num

JOB-light 1 WikiSQL 2 IIT Bombay 4

Synthetic 1 JOB 3 PocketData 4

Scale 1 UB Exam 3 StackOverflow 8

We build a sub-automaton for each template, and the final au-

tomaton is constructed by merging all sub-automatons. The merg-

ing process adopts the maximal prefix strategy. Table 3 shows the

number of query templates required for datasets used in our ex-

periments (for detailed descriptions, please refer to the experiment

section). It indicates that a small number of templates can represent

most SQL queries and hence, building FA and matching queries

against the FA incurs negligible cost.

3.3.2 Composite Embeddings. As mentioned, for each token 𝑡𝑖 in
the SQL query, we create a composite embedding 𝑒 (𝑡𝑖) = (𝑏 (𝑡𝑖), 𝑎(𝑡𝑖),
𝑝𝑜𝑠 (𝑡𝑖)). We visualize the embedding of a example query in Figure

4. The first token of an SQL is always a special classification token

([CLS]). In classification task, the hidden state of token [CLS] can be

used as the aggregate representation for the whole token sequence.

The end token of an SQL is also a special token ([END]). As shown

in Figure 4, the composite embedding is created for each token

by concatenating all three embeddings, which is then fed to the

SQLBERT module to generate the final representation for the SQL.

Vocabularies of SQL are quite different from those of the natu-

ral language. To address the problem, we adopt two dictionaries.

For input tokens, we use the WorldPiece embedding [47] with a

30,000 vocabulary. In the pre-training task, we randomlymask some

percentage of the input markers and then predict these masked

markers. For the mask layer, we use database-specific vocabularies,

consisting of schema tokens and SQL keywords. In particular, for

values (e.g., 2010 and 5 in the example query) in SQL queries, we

transform them into discrete ranges and use range tokens to denote

them. For example, we partition values of years into three ranges

[1900, 2000], [2000, 2010] and [2010, 2020]. 2010 will be replaced by

range token 𝑦𝑒𝑎𝑟3, as it belongs to the third range.

3.4 Query-Aware Schema

Database schema plays an important role in data management and

query optimization. It denotes the relationship between tables and

columns. Popular schema structures include star schema, snowflake

schema and chain schema. The PreQR model considers the database

schema as a context during the query embedding process. The

schema context is encoded using a graph convolutional model 𝐺 ,
and dynamically updated by the input query.

At a high-level, ourmodel has the following parts: (a) The schema

is converted to a graph. (b) A graph embedding algorithm generates

node representations in the schema graph. (c) The graph is softly

pruned conditioned on the input query. (d) The query-aware schema

subgraph is fed to our SQLBERT module. We will now elaborate on

each part.

3.4.1 Schema-to-Graph. We first represent the database schema

as a directed graph 𝐺𝑠 = {𝑉 , 𝐸, 𝑅} with nodes 𝑣𝑖 ∈ 𝑉 and labeled

q = SELECT COUNT(*) FROM title t,
movie_companies mc WHERE t.id = mc.movie_id AND
t.production_year > 2010 AND mc.company_id = 5

T = (Title, Movie_keyword, Cast_info, Movie_info,
Movie_companies, ...)

Ctitle = {id, title, kind_id, production_year, ... }
Cmovie_companies = {movie_id, company_id,
company_type_id, ... }
F = {(title.id, movie_companies.movie_id), (title.id,
movie_info.movie_id), ... }

Title

Cast_info

Movie_keyword

id

title
kind_id

production_year

movie_id

person_id

role_id

movie_id keyword_id

Movie_info

movie_id

info_type_id

Movie_companies

movie_idcompany_id

Input Graph

company_type_id

Query:

Tables:

Columns:

Foreign:

Figure 5: The query-aware sub-graph. Left: DB schema and table definitions. Right: A graph representation of the schema.

Bold nodes are tables, other nodes are columns. Dashed red edges are foreign keys edges, black edges are table-column edges.

Table 4: Description of edge types used in the directed schema graph.

Type of (𝑣𝑥 , 𝑣𝑦) Label of Edge 𝑟 Description

(Column, Column) Same-Table 𝑣𝑥 and 𝑣𝑦 belong to the same table.

Foreign-Key-Column-Left 𝑣𝑥 is a foreign key for 𝑣𝑦 .
Foreign-Key-Column-Right 𝑣𝑦 is a foreign key for 𝑣𝑥 .

(Column, Table) Primary-Key-Left 𝑣𝑥 is the primary key of 𝑣𝑦 .
Belongs-To-Left 𝑣𝑥 is a column of 𝑣𝑦 , but is not the primary key.

(Table, Column) Primary-Key-Right 𝑣𝑦 is the primary key of 𝑣𝑥 .
Belongs-To-Right 𝑣𝑦 is a column of 𝑣𝑥 , but is not the primary key.

(Table, Table) Foreign-Key-Table-Left Table 𝑣𝑥 has a foreign key column in 𝑣𝑦 .
Foreign-Key-Table-Right Table 𝑣𝑦 has a foreign key column in 𝑣𝑥 .
Foreign-Key-Table-Both 𝑣𝑥 and 𝑣𝑦 have foreign keys in both directions.

edges (𝑣𝑖 , 𝑟 , 𝑣 𝑗) ∈ 𝐸, where 𝑟 ∈ 𝑅 is a relation type.𝑉 can be further

classified into two types of vertices, table vertex and column vertex.

𝐸 denotes four types of edges which can be further labeled by 10

tags from 𝑅, as shown in Table 4. For each pair of nodes 𝑣𝑥 and 𝑣𝑦 in

the graph, Table 4 describes how edge (𝑣𝑥 , 𝑟 , 𝑣𝑦) is created, where
𝑟 is the label for the edge. If both 𝑣𝑥 and 𝑣𝑦 represent a column

vertex, we will create an edge, when both 𝑣𝑥 and 𝑣𝑦 belongs to

the same table or they have the primary-foreign key relationship.

For table vertex 𝑣𝑡 and one of its column vertex 𝑣𝑥 , we create edge
(𝑣𝑡 , 𝑟 , 𝑣𝑥) and (𝑣𝑥 , 𝑟 , 𝑣𝑡), and indicate whether 𝑣𝑥 represents the

primary key of the table. For two table vertices 𝑣𝑡 and 𝑣
′
𝑡 , an edge

is created between them, only if they can be joined using primary-

foreign key connection. If the schema definition is updated, our

schema graph can be updated by adding or deleting nodes or edges

correspondingly.

3.4.2 Graph Embedding Algorithm. The schema graph is further

embedded in vertex level before fed to the SQLBERT module. We

have two types of vertices, column vertices 𝑉𝐶 = {𝑐1, ..., 𝑐𝑚} and

table vertices𝑉𝑇 = {𝑡1, ..., 𝑡𝑛}. For each vertex, we use function 𝜌 to

return the corresponding column names and table names. E.g., we

have 𝜌 (𝑐𝑖) = 𝑐𝑖,1, ..., 𝑐𝑖, |𝑐𝑖 | , where 𝑐𝑖, 𝑗 denotes the 𝑗-th token of 𝑐𝑖 ’s
name. Specifically, for column vertex, the first token of its name is

always set as column type (e.g., INT, VARCHAR and BOOL).

We use a bidirectional LSTM (BiLSTM) to generate the encodings

for vertices:

{(𝑐
𝑓 𝑤𝑑
𝑖,𝑗 , 𝑐𝑟𝑒𝑣𝑖, 𝑗) |∀𝑐𝑖, 𝑗 ∈ 𝜌 (𝑐𝑖)} = M𝐶𝑜𝑙 (𝑐𝑖),

{(𝑡
𝑓 𝑤𝑑
𝑖,𝑗 , 𝑡𝑟𝑒𝑣𝑖, 𝑗) |∀𝑡𝑖, 𝑗 ∈ 𝜌 (𝑡𝑖)} = M𝑇𝑎𝑏 (𝑡𝑖).

(1)

M denotes the BiLSTM model, accepting the BERT embedding of

each token as its initial input. We concatenate the output of the first

and last time steps of M to form the initial node representation:

𝑐𝑖𝑛𝑖𝑡𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑐
𝑓 𝑤𝑑
𝑖, |𝑐𝑖 |

, 𝑐𝑟𝑒𝑣𝑖,1),

𝑡𝑖𝑛𝑖𝑡𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑡
𝑓 𝑤𝑑
𝑖, |𝑡𝑖 |

, 𝑡𝑟𝑒𝑣𝑖,1).
(2)

At this point, vertex representations have been created as 𝑣𝑖𝑛𝑖𝑡 =

{𝑐𝑖𝑛𝑖𝑡𝑖 }
|𝐶 |
1 ∪ {𝑡𝑖𝑛𝑖𝑡𝑖 }

|𝑇 |
1 . Now, we would like to imbue these represen-

tations with the information in the schema graph. We formulate

the procedure of graph construction using the vertices and rela-

tionships between vertices. To learn the structure information of

the graph, we apply a relational graph convolutional network 𝐺
to embed the relationships of vertexes in 𝑉 . Graph embedding net-

work aims to embed each vertex into a vertex vector that captures

both the vertex features and edge features. The idea is to conduct

a non-linear mapping, and learn graph representation by training

network weights. We use the following propagation model for cal-

culating the forward-pass update of a vertex denoted by 𝑣𝑖 in the

relational graph:

ℎ
(𝑙+1)
𝑖 = 𝜎 (

∑

𝑒∈𝐸

∑

𝑗 ∈𝑁 𝑒
𝑖

1

𝜆𝑖,𝑒
𝑊

(𝑙)
𝑒 ℎ

(𝑙)
𝑗), (3)

where ℎ
(𝑙)
𝑖 is the hidden state of vertex 𝑣𝑖 in the 𝑙-th layer of the

neural network. 𝑁 𝑒
𝑖 denotes the set of neighbor vertices of 𝑣𝑖 in the

schema graph. 𝜆𝑖,𝑒 is a problem-specific normalization constant that

can either be learned or chosen in advance (e.g., 𝜆𝑖,𝑒 = |𝑁 𝑒
𝑖 |). Eq.(3)

accumulates transformed feature vectors of neighboring nodes

through a normalized sum. It is a relation-specific transformation,

which depends on the type and direction of an edge. We can then

define the global representation 𝑒𝐺 for schema graph𝐺𝑠 = (𝑉 , 𝐸, 𝑅)
as:

𝑒𝐺 = 𝑎𝑣𝑔_𝑝𝑜𝑜𝑙 ({ℎ𝐿𝑖 |∀𝑣𝑖 ∈ 𝑉 }), (4)

𝐿 is the last layer of the neural model. We use average pooling to

reduce the embedding dimension to 𝑑𝐺 .
We also intentionally create a self-connection edge for each

vertex in the graph to ensure that the representation of a vertex at

layer 𝑙 +1 can also be informed by the corresponding representation

at layer 𝑙 . The neural model is trained by gradually updated weights

based on Equation 3. In practice, Equation 3 is computed efficiently

using sparse matrix multiplications to avoid explicit summation

over neighborhoods.

3.4.3 Query-Aware Sub-graph. Database schema is sometimes very

complex, consisting of hundreds of tables and thousands of columns,

while one typical SQL query may only involve a few tables and

columns. For instance, in Figure 5, only a sub-graph of the schema

is involved when processing the example query. Therefore, instead

of feeding the whole graph embedding to SQLBERT, we use a query-

aware sub-graph embedding.

An attention module is adopted to achieve query-aware selec-

tions, which can be described as a mapping function for a query

and a set of key-value pairs to an output. The architecture of query-

aware sub-graph Transformer which includes the attention module

is illustrated as the red rectangle in Figure 6. The particular attention

in Transformer is called Scaled Dot-Product Attention. The input

consists of query embedding, key embedding and value embedding.

The output is computed as a weighted sum of the values, where the

weight 𝑤𝑖 assigned to each value is computed by a compatibility

function of the query with the corresponding key.

In our case, the query embedding to the transformer is the BERT

encoding of SQL query, denoted as 𝑒𝑞 . Both keys and values are

the global schema graph representation 𝑒𝐺 . Namely, we try to

find the correlations between schema and queries 𝐹 (𝑒𝑞, 𝑒𝐺). We

compute the dot products of the query with all keys, divided by√
𝑑𝐺 , and apply a softmax function to obtain the weights 𝑤𝑖 on

values. Hence, the weights 𝑤𝑖 represent relevance scores of the

graph representation to the query, which is used to create a query-

conditioned sub-graph representation 𝑒𝑔 (defined in the next sub-

section). We compute the matrix of attention outputs as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒𝑞, 𝑒𝐺) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑒𝑞𝑒

𝑇
𝐺√

𝑑𝐺
)𝑒𝐺 . (5)

Input
Embedding

Queries

Multi-Head
Attention

Add & Norm

Linear

Softmax

Output
Probabilities

Add & Norm

Feed
Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

Relation
GCN

Schema

Q V

Concat

K

eg
eq

y

Figure 6: The architecture of𝑇𝑟𝑚_𝑔module. Our𝑇𝑟𝑚_𝑔 com-

bines the original transformer (black rectangle) with the

query-aware sub-graph transformer (red rectangle).

That is, it is the node embeddings in the schema graph multiplied by

the similarity weight𝑤𝑖 between the query and the graph. Figure 5

shows the query-aware sub-graph to our example query.

3.5 SQLBERT

3.5.1 𝑇𝑟𝑚_𝑔 Modules. We discuss the 𝑇𝑟𝑚_𝑔 architecture, a vari-

ant of the transformer from BERT in this section. As shown in

Figure 6, the 𝑇𝑟𝑚_𝑔 model includes the original transformer 𝑇𝑟𝑚
(black rectangle) and our query-aware sub-graph transformer𝑇𝑟𝑚′

(red rectangle). The encoder in Transformer has the multi-head

self-attention mechanism.

Our transformers are composed of a stack of 𝑁 = 4 identical

layers. Each layer has two sub-layers. The first one is a multi-head

attention mechanism, and the second one is a position-wise fully

connected feed-forward network. We employ a residual connection

[13] for the two sub-layers, followed by a layer normalization layer

[3]. At each step, the model is auto-regressive, consuming previ-

ously generated representation as additional input when generating

the next one. We use multi-head attention, which allows the model

to jointly attend to information from different representation sub-

spaces at different positions. That is, the output of each sub-layer

of original transformer 𝑇𝑟𝑚 is

𝑒𝑞 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑒𝑞 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 (𝑒𝑞)). (6)

Similarly, the output of each sub-layer of query-aware sub-graph

transformer 𝑇𝑟𝑚′ is

𝑒𝑔 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑒𝐺 +𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒𝑞, 𝑒𝐺)),

𝑒𝑔 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑒𝑔 + 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 (𝑒𝑔)).
(7)

We concatenate the sub-graph representation 𝑒𝑔 to the output of

the original Transformer 𝑒𝑞 , so that each word is augmented with

Table 5: Update cost of PreQR model.

Case Description Time

Case 1 Incremental learning for the last layer of SQLBERT 15min

Case 2 Incremental Learning for the Schema2Graph part 3.5h

Case 3 Incremental learning for the Input Embedding module 6.7h

Case 4 Train from scratch 18.3h

the graph structure of the schema items that it is linked to. The

final output of the Trm_g model is

𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒𝑞, 𝑒𝑔). (8)

To facilitate these residual connections, all sub-layers in the model,

as well as the embedding layers, produce outputs of dimension

𝑑𝑚𝑜𝑑𝑒𝑙 = 256.

3.5.2 Pre-training Process. The three modules are trained together

by adopting the “masked LM” (MLM) pre-training approach [9]. In

particular, for each incoming SQL query, we mask 15% of all tokens

randomly. The obtained vector representation of the query is then

fed to a softmax layer to predict the missing (masked) tokens from

our pre-defined vocabulary. The training data generator chooses

15% of the token positions at random for prediction. If the 𝑖-th
token is chosen, we replace the 𝑖-th token with: (i) the [MASK]

token 80% of the time, (ii) a random token 10% of the time, and (iii)

the unchanged 𝑖-th token 10% of the time. Then, 𝑦𝑖 will be used to

predict the original token with cross-entropy loss. After trained,

the vector representations of SQL queries can be directly used for

down-stream tasks, such as cardinality estimation and join order

selection.

3.6 Model Update

Previous solution is based on the assumption that the database

scheme does not change and the data distribution remains the same.

In this section, we discuss how PreQR updates its model when such

assumption is violated. Based on the update costs, we have four

cases.

Case 1: The distribution of data changes significantly, but the

database schema and query patterns remain the same. This only

affects the token embedding part of the Input Embedding module.

Our solution is to generate a few samples and perform an incremen-

tal training for the layer of SQLBERT, which can be accomplished

within a few minutes.

Case 2: If the database schema is updated (namely, new tables or

columns are created), we need to update the schema graph model

𝐺𝑠 . 𝐺𝑠 adopts a typical graph incremental training process [45],

which normally lasts for a few hours.

Case 3: When query patterns change, we may need to update

the FA to handle new queries. This requires a full retraining process

for the Input Embedding module, while the Query-Aware Schema

module is not affected. The training takes about 5-10 hours.

Case 4: Finally, to train a new embedding model for a database

from scratch normally takes less than 20 hours.

We summarize the average update costs of different cases on our

experiment datasets in Table 5.

Table 6: Distribution of joins.

Number of Joins 0 1 2 3 4 overall

Synthetic 1636 1407 1957 0 0 5000

Scale 100 100 100 100 100 100

JOB-light 0 3 32 23 12 70

4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate our

pre-training method for four downstream tasks, query clustering,

query cardinality estimation, cost estimation and SQL-to-Text gen-

eration.

4.1 Datasets

4.1.1 Query Clustering. Clustering is an effective way to under-

stand massive query logs [25], because it evaluates the similarity

between queries, where query representation schemes will play an

important role. In this test, we use two types of query workloads:

The first workload contains queries that are clustered according

to logical equality: (i) student-authored queries released by IIT Bom-

bay [6], (ii) student queries gathered at the University at Buffalo1

(denoted as UB Exam), and (iii) SQL query logs of the Google+ app

extracted from PocketData dataset [22].

The second workload contains queries with similarity scores

based on the intersection of query result sets. In particular, we

generated 600 random queries using the CH-benchmark [7], and

classify them into three categories: logically equivalent queries,

queries with same templates and irrelevant queries. And we use the

ratios of common row_id between query result sets as the similarity

scores to measure the similarity between queries.

4.1.2 Estimation Tasks. For query cardinality and cost estimation,

we use the IMDB dataset, where columns and tables have high

correlations, and therefore the dataset proves to be very challenging

for all types of database tasks. It includes 22 tables, connected by

the primary-foreign key relationships. We use two types of query

workloads:

The first workload contains predicates with numeric attributes

only [23]. It contains three sub-workloads with only numeric pred-

icates: (i) a Synthetic workload with 5,000 unique queries contain-

ing both (conjunctive) equality and range predicates on non-key

columns with zero to two joins; (ii) another synthetic workload

Scalewith 500 queries designed to show how the model generalizes

to more joins; (iii) JOB-light, a workload derived from the Join

Order Benchmark (JOB) [27] containing 70 queries which does not

contain any predicates on strings nor disjunctions and limits to

four joins at most. Table 6 shows the distribution of queries with

respect to the number of joins in the three query workloads.

The second workload is from the JOB benchmark, where queries

contain complex predicates on string attributes. The number of

joins for queries in the JOB workload ranges from 4 to 28.

4.1.3 SQL-to-Text Generation. The goal of the SQL-to-Text task

is to automatically generate natural language descriptions that

explain the meaning of a given SQL query. This task is critical to

1http://odin.cse.buffalo.edu/public_data/2016-UB-Exam-Queries.zip

the natural language interface of the database because it helps non-

expert users to understand the esoteric SQL queries. For generation

task, we evaluate our model on two datasets, WikiSQL [55] and

StackOverflow [20]. (i) WikiSQL2 consists of a corpus of 87,726

hand-annotated SQL query and natural language question pairs. (ii)

StackOverflow3 consists of 32,337 SQL query and natural language

question pairs.

4.2 Evaluation Metrics

For query clustering, the similarity metrics are evaluated using

BetaCV measure [53] and Normalized Discounted Cumulative Gain

(NDCG) [21]. BetaCV is a standard clustering evaluation metric, a

smaller value of BetaCV indicates a better clustering result. NDCG

is a standard IR evaluation metric to measure ranking accuracy, a

larger value of NDCG indicates a better ranking result. Since only

CH workload have ground truth of query similarity ranking, we

only use NDCG evaluation on CH workload.

For cardinality estimation and cost estimation tasks, we adopt

the q-error metric, defined as:

𝑞𝑒𝑟𝑟𝑜𝑟 (𝑦,𝑦) =
1

𝑛

𝑛∑

𝑖=1

𝑚𝑎𝑥 (𝑦𝑖 , 𝑦𝑖)

𝑚𝑖𝑛(𝑦𝑖 , 𝑦𝑖)
, (9)

where 𝑦 denotes the ground-truth value and 𝑦 is the predicted one.

For SQL-to-Text generation, we adopt the BLEU [33] score, a

widely used benchmark for machine translation task, as our eval-

uation metric, which is defined based on the 𝑛-gram precision as

follows:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · 𝑒𝑥𝑝 (
𝑁∑

𝑛=1

𝑤𝑛 log𝑝𝑛), (10)

where 𝐵𝑃 stands for the brevity penalty,𝑤𝑛 is the weight for the

𝑛-gram, 𝑝𝑛 is the precision of the predicted 𝑛-grams.

4.3 Baseline Approaches

In this work, we denote the number of layers (i.e., Transformer

blocks) as 𝐿, the hidden state size as 𝐻 , and the number of self-

attention heads as𝐴. By default, we report results with a pre-defined
configuration (𝐿=4, 𝐻=256, 𝐴=4), where the number of total param-

eters of our neural model is about 40 millions.

4.3.1 Query Clustering. For query clustering task, we use the fol-

lowing five approaches to measure pairwise similarity4 between

queries as comparative baselines:

(i) Aouiche et al. [2] is the first work that proposes a pairwise

similarity measurement between two SQL queries. Their target is

to optimize view selection in data warehouses based on historical

queries. They consider different SQL clauses, such as the selection,

joins and group by clauses, and generate vectors for each query.

The Hamming distance between those vectors is used to measure

the similarity between two queries.

(ii) Aligon et al. [1] compare session similarity via investigating

query similarity measurement. They identify selection and join

parts as the most important features in a query followed by the

2https://github.com/salesforce/WikiSQL
3https://github.com/sriniiyer/codenn/tree/master/data/StackOverflow
4https://github.com/UBOdin/EttuBench

group by terms. Jaccard coefficient is applied to calculate the set

similarity between two queries.

(iii) Makiyama et al. [29] extract selection, joins, projection, from,

group-by and order-by terms from queries separately and record

their appearance frequency. They use the frequency of these terms

to create a feature vector to compute the pairwise similarity of

queries with cosine distance.

(iv) One-hotDis [23]: We use a one-hot encoding model to repre-

sent queries, and then compute the pairwise similarity of queries

using cosine distance.

(v) Seq2SeqDis [12]: We use an attention-based Seq2Seq model to

generate the embedding of queries, and then compute the pairwise

similarity of queries with cosine distance.

For comparison, we directly calculate the pairwise cosine simi-

larity of queries with PreQR encoding.

4.3.2 Estimation Tasks. For the two estimation tasks, the following

four approaches are used as baselines. (i) PostgreSQL(PG): Post-

greSQL estimates the cost and cardinality using statistics and cost

models [36]. (ii) MSCN5: a CNN-based model is employed to per-

form cardinality estimation in query level [23]. (iii) LSTM6: A LSTM-

based model is trained to estimate query cost, and can also be

employed to estimate query cardinality [42]. (iv) NeuroCard7: A

join cardinality estimator that builds a single neural density esti-

mator over an entire database [50]. It’s the state-of-the-art neural

cardinality estimator for join queries.

Both MSCN and LSTM approaches adopt an optimization tech-

nique by employing bitmap samples. Interestingly, using the bitmap

sampling as an example, we show that optimization tricks can ben-

efit PreQR embedding approach as well.

To show the advantage of the PreQR model, we adopt a very

simple 3-layer fully-connected (FC) model as our prediction model.

For each query, its PreQR embedding is generated, concatenated

with bitmaps and fed to the FC layers to generate the prediction re-

sult. The intuition is to prove that a well pre-trained representation

can produce good enough results even with very simple prediction

models.

4.3.3 SQL-to-Text Generation. For SQL-to-Text generation, we com-

pare the encoding of PreQR model against the Seq2Seq, Tree2Seq

and Graph2Seq:

(i) Seq2Seq8: We use three Seq2Seq models as our baselines. The

first one is a basic attention-based Seq2Seq model [4]. The second

one additionally introduces the copy mechanism (cp) in the decoder

side [11] and the third one also applies the latent variable in the

decoder side [12]. (ii) Tree2Seq9: Tree2Seq is a tree-to-sequence

model [10]. It uses the SQL Parser tool to convert a SQL query

into the tree structure which is fed to the Tree2Seq model. (iii)

Graph2Seq10: Graph2Seq is a a graph-to-sequence model [48]. It

represents the SQL query as a directed graph and then encodes the

global structure information into node embeddings.

5https://github.com/andreaskipf/learnedcardinalities
6https://github.com/greatji/Learning-based-cost-estimator
7https://github.com/neurocard/
8https://github.com/guoday/Question-Generation-VAE
9https://github.com/tempra28/tree2seq
10https://github.com/IBM/SQL-to-Text

Table 7: Overall performance with the same training settings.

Task Methods Encoding Model Distance Function
BetaCV (smaller is better) NDCG

IIT Bombay UB Exam PocketData CH

Query Clustering

Aouiche [2] Binary code Hamming distance 0.577 0.923 0.893 0.131

Aligon[1] String set Jaccard coefficient 0.535 0.799 0.898 0.120

Makiyama [29] Item frequency Cosine similarity 0.665 0.897 0.879 0.214

One-hotDis[23] One-hot Cosine similarity 0.565 0.852 0.883 0.191

Seq2SeqDis[4] RNN Cosine similarity 0.459 0.761 0.801 0.584

PreQRDis PreQR Cosine similarity 0.387 0.622 0.752 0.710

Task Methods Encoding Model Estimation Model
Q-error (smaller is better)

JOB-light Synthetic Scale JOB

Cardinality Estimation

PGCard [36] No No 174 154 568 10416

MSCNCard [23] One-hot MLP 57.9 2.89 35.1 –

LSTMCard [42] LSTM MLP 24.9 2.87 28.1 53.0

PreQRCard PreQR MLP 11.5 2.86 25.8 48.3

NeuroCard [50] Neuro (Data) – 2.33 6.25 21.1 –

NeuroCard+PreQR Neuro+PreQR MLP 2.16 2.83 18.5 –

Cost Estimation

PGCost [36] No No 173 62.7 35.7 105

MSCNCost [23] One-hot MLP 27.4 10.3 8.22 –

LSTMCost [42] LSTM MLP 17 4.45 5.21 9.4

PreQRCost PreQR MLP 5.25 1.09 4.15 8.0

Task Methods Encoder Decoder
BLEU Score/% (larger is better)

WikiSQL StackOverflow

SQL-to-Text Generation

Seq2Seq [4] RNN RNN 20.9 13.3

Seq2Seq+cp [11] RNN RNN+cp 24.1 16.6

Seq2Seq+cp+lv [12] RNN RNN+cp+lv 26.3 18.4

Tree2Seq [10] LSTM RNN 26.7 17.0

Graph2Seq [48] Graph RNN 29.3 19.9

PreQR2Seq PreQR RNN 32.1 21.1

In this experiment, we just replace the query encoding part in

the first Seq2Seq by PreQR encoding.

4.4 Results on Clustering Task

In what follows, we will report our experimental results and give a

detailed analysis of the results. We summarize the overall results

of PreQR and the baseline models in Table 7.

We report the detailed results on the cluster tasks in this sub-

section and the results on estimation and SQL-to-Text will be shown

in Section 4.5 and 4.6.

In the clustering task, we compare the performance of PreQR

with other similarity metrics. The experiment aims to evaluate

whether query encoding generated by our method can capture the

query similarity.

We first implement the similarity metrics and evaluate them us-

ing the BetaCV clustering validation measure. For query clustering,

PreQR achieves the best results for all datasets under the BetaCV

measure. BetaCV considers all queries in a dataset when computing

the measure. So the results can represent the overall capability of

representing query semantics. Then, we evaluate the performance

of the similarity metrics on CH-benchmark for query similarity

ranking.

Figure 7(a) shows the comparison results of query similarity

ranking validation, we can see that PreQR outperforms the other

(a) Similarity ranking validation (b) Query group distance

Figure 7: Query similarity validation on CH workload.

baseline methods in terms of NDCG measure. And we compute the

average distances in different groups of CH queries, then report

them in Figure 7(b). It is interesting to see that PreQR can identify

equivalent queries with different SQL representations, and deliber-

ately increase the distance between irrelevant queries. For queries

with the same templates, PreQR returns a proper distance which is

larger than the equivalent one. This indicates that PreQR does not

only rely on the SQL representation, but also considers the schema

information.

Existing approaches, such as Aouiche, Aligon and Makiyama,

only focus on the template-based retrieval, which is difficult to

distinguish queries with similar templates but different semantics.

(a) Card validation error (b) Cost validation error

Figure 8: Validation error on Synthetic workload.

(a) Cardinality (b) Cost

Figure 9: Estimation errors on JOB-light workload.

One-hot and Seq2Seq ignore the implicit database schema and the

structure information of the queries, while PreQR maintains those

information to discover the hidden semantics of SQL queries. The

results show that our PreQR representation is a better metric to

evaluate the semantic distance between SQL queries. Therefore,

PreQR encoding can be applied to support many learning tasks on

database system, such as query log analysis, recommendation and

outlier detection.

4.5 Results on Estimation Tasks

Table 7 summarizes the results of our models and baselines on

estimation tasks. We report the detailed results on the estimation

tasks in this sub-section.

4.5.1 Effect on Numeric Predicates. We train the models and test

them on the workloads with numeric predicates only (namely, Syn-

thetic, Scale and JOB-light), and report the detail results in Table

8 and 9. For both cardinality estimation and cost estimation tasks,

PreQR achieves a significant improvement.

On the JOB-light workload, PreQRCard outperforms MSCNCard

by 9 times onmax error and 5 times on themean error for cardinality

estimation respectively. PreQRCost outperforms MSCNCost by

5 times on mean error for cost estimation. We observe similar

results on the Synthetic and Scale workload, indicating that PreQR

outperforms the one-hot encoding used in the MSCN approaches

by capturing the query structure and database schema information.

Different from the MSCN approach, the LSTM approaches intro-

duce a query encoding technique using the LSTM model, similar

to the one used in the language translation model. It is supposed

to catch more SQL semantics. However, as shown in Table 8 and 9,

on the JOB-light workload, PreQRCard outperforms LSTMCard by

13.4% on mean error for cardinality estimation, and PreQRCost out-

performs PreQRCost by 11.75% on mean error for cost estimation.

Table 8: Cardinality errors on numeric workloads.

JOB-light median 90th 95th 99th max mean

PGCard 7.93 164 1104 2912 3477 174

MSCNCard 3.82 78.4 362 927 1110 57.9

LSTMCard 3.73 50.8 157 256 289 24.9

PreQRCard 3.51 25.1 52.7 89.8 119 11.5

NeuroCard 1.49 4.04 5.43 10.5 16.5 2.33

NeuroCard+PreQR 1.31 3.17 5.38 9.08 11.32 2.16

Synthetic median 90th 95th 99th max mean

PGCard 1.69 9.57 23.9 465 373901 154

MSCNCard 1.18 3.32 6.8 30.5 1322 2.89

LSTMCard 1.20 3.21 6.1 25.2 357 2.87

PreQRCard 1.17 3.13 5.6 24.8 316 2.86

NeuroCard 1.30 7.75 19.5 63.5 433 6.25

NeuroCard+PreQR 1.15 3.05 5.4 24.5 298 2.83

Scale median 90th 95th 99th max mean

PGCard 2.59 200 540 1816 233863 568

MSCNCard 1.42 37.4 140 793 3666 35.1

LSTMCard 1.43 38.8 139 469 1892 28.1

PreQRCard 1.34 32.2 114 392 1638 25.8

NeuroCard 2.31 16.9 47.2 201 2034 21.1

NeuroCard+PreQR 1.31 16.7 35.8 169 1542 18.5

Table 9: Cost errors on numeric workloads.

JOB-light median 90th 95th 99th max mean

PGCost 26.8 332 696 2740 3020 173

MSCNCost 4.75 11.3 40.1 563 987 27.4

LSTMCost 3.66 32.1 80.3 445 583 17

PreQRCost 1.45 4.1 7.5 106 123 5.25

Synthetic median 90th 95th 99th max mean

PGCost 15.1 65.1 173 1200 8040 62.7

MSCNCost 3.14 7.43 18.1 65.8 739 10.3

LSTMCost 1.56 4.47 10.7 57.7 689 4.45

PreQRCost 1.05 2.1 3.3 12.7 114 1.09

Scale median 90th 95th 99th max mean

PGCost 13.3 38.9 81.1 718 1473 35.7

MSCNCost 1.79 10.6 27.1 88.8 1027 8.22

LSTMCost 1.58 5.51 14.4 70.1 611 5.21

PreQRCost 1.06 2.24 5.2 35.5 134 4.15

On the other two workloads, PreQR-based approaches also achieve

a superior performance than the LSTM-based ones. The strength

of PreQR compared to the LSTM-based methods is two-fold. First,

LSTM-based approaches consider the SQL queries as plain text,

neglecting their structures, while PreQR can encode the structure

information using automaton. Second, the PreQR encoding can help

the representation model to learn query-related database schema

information, which is missing in the LSTM-based approaches.

As mentioned, both MSCN and LSTM adopt an optimization

technique based on bitmap sampling. We show that PreQR can also

benefit from such tricks. In Figure 8, approaches with prefix “NS”

indicates that no bitmap sampling is applied. All approaches can

get an improvement by adopting the sampling trick. However, even

without the optimization, the PreQR still outperforms others.

Table 10: Cardinality errors on the JOB workload (with

strings).

Methods median 90th 95th 99th max mean

PGCard 184 8303 34204 1.06e5 6.70e5 10416

LSTMCard 10.1 130 223 680 901 53.0

PreQRCard 8.2 97 185 625 765 45.3

Table 11: Cost errors on the JOB workload (with strings).

Methods median 90th 95th 99th max mean

PGCost 4.90 80.8 104 3577 4920 105

LSTMCost 4.01 14.9 24.5 105 148 9.4

PreQRCost 3.07 15.4 20.8 46.7 58.6 6.5

Figure 9 shows the q-error variance of PreQR compared to

our competitors on the JOB-light workload. The errors of PreQR

methods are kept within a small range, while the MSCN-based ap-

proaches show amore unstable result. PreQR is capable of providing

a consistent encoding performance.

PreQR can also be used in conjunction with data-driven estima-

tors. We use the estimations of NeuroCard as preliminary results,

and then train the error-correction model by using PreQR to further

correct the results. That is, our prediction model is used to learn

the gap between the Necrocard’s results and their ground trues. As

in Table 8, we can see that PreQR model can further improve the

results of NeuroCard.

4.5.2 Effect on Mixed Predicates. We train the PG, LSTM, PreQR

models and test them on the JOB workload with both string and

numeric predicates. Because current MSCN model does not support

string predicates, and NeuroCard does not support MIN operator,

they are not included in this comparison.

We train the query representation on 100,000 queries with multi-

ple joins. We take 90% of multi-table join queries as training data for

estimation tasks and 10% of them as validation queries. The models

are trained until the validation q-error will not decrease anymore,

and then the trained models are evaluateed on JOB queries. The

results for cardinality estimation are shown in Table 10 and the

results for cost estimation are shown in Table 11.

It is interesting to observe that PreQR-based approaches outper-

form other approaches by a larger gap on the JOB workload than

on the other numeric predicates only workloads. This is because

LSTM encoding encodes the SQL key words and normal predicates

together, fails to identify the structure information. Our PreQR ap-

proach adopts the BERT encoding as the basis encoding for string

words, and also applies the automaton to catches the query tem-

plate. Therefore, it maintains both the structure information and

semantic information.

4.6 Results on SQL-to-Text Task

Table 7 summarizes the results of our models and baselines on SQL-

to-Text Generation. We can see that on both datasets, the PreQR

encoding performs significantly better than the Seq2Seq, Tree2Seq

and Graph2Seq baselines.

PreQR model outperforms the Seq2Seq by 11.2% and 7.8% in

terms of the BLEU score on theWikiSQL and StackOverflow datasets,

respectively. Note that there are multiple improvements on the

Seq2Seq model, such as copy mechanism (CP) and latent variable

Table 12: Ablation test on cardinality and cost estimation.

Methods JOB-light Synthetic Scale JOB

BERTCard 36.5 3.53 39.2 58.4

PreQRNTCard 28.2 3.25 35.4 53.1

PreQRNACard 20.3 2.95 29.8 50.8

PreQRCard 11.5 2.85 25.8 48.3

Methods JOB-light Synthetic Scale JOB

BERTCost 7.50 1.51 9.42 13.1

PreQRNTCost 6.35 1.20 7.38 11.8

PreQRNACost 5.84 1.15 5.23 10.5

PreQRCost 5.25 1.09 4.15 8.0

Table 13: Ablation over model size on cost estimation.

Hyperparams Test Set Q-Error

#L #H #A JOB-light Synthetic Scale JOB

2 256 4 5.63 1.16 4.52 8.5

4 256 4 5.25 1.09 4.15 8.0

6 256 8 5.03 1.05 4.10 7.8

12 256 8 4.94 1.04 4.07 7.7

(LV). The PreQR does not adopt those optimization techniques.

Instead, it only replaces the encoding part of the vanilla Seq2Seq

model. PerQR can better model the query structure and database

schema information. It can outperforms all Seq2Seq approaches, no

matter with or without CP and LV optimizations.

We can see that Tree2Seq and Graph2Seq perform much better

than the Seq2Seq models on the two datasets, since they both en-

code some structure information. Graph2Seq outperforms Tree2Seq,

because by modeling the SQL query as a graph, Graph2Seq can

precisely describe the correlations between keywords in a query.

On the contrary, in the Tree2Seq model, the keyword node embed-

ding aggregates the information of its descendants while losing the

knowledge of siblings. However, they ignore the database schema

information implicit in SQL query. PreQR maintains the SQL query

structure while modeling the database schema information related

to query. As shown in the results, our PreQR approach outper-

forms Graph2Seq by 2.8%, and outperforms Tree2Seq by 5.4% on

theWikiSQL dataset. And a similar result is also obtained on the

StackOverflow dataset. It demonstrates that PreQR encoding ap-

proach is a better representation for the query semantics.

If we delve into the query level, we find the PreQRmodel is better

than others at interpreting two classes of queries: (i) complicated

queries that have more than two predicates; and (ii) queries whose

tables and columns have implicit relationships. It depicts that the

PreQR model can better learn the correlation between the tables

and columns by utilizing database schema information.

4.7 Ablation Studies

In this section, we perform ablation experiments over some facets

of PreQR in order to better understand their relative importance.

4.7.1 Effect of Model Composition. We first perform ablation stud-

ies over the effect of model composition, and report the results

in Table 12. We use “PreQRNA”, “PreQRNT” and “BERT” to repre-

sent the PreQR model without automaton,𝑇𝑟𝑚_𝑔 module and both

automaton and 𝑇𝑟𝑚_𝑔 module, respectively.

Automaton vsNo-Automaton.As shown in the results, PreQR

is superior to the direct BERT and PreQRNA, indicating the ef-

fectiveness of applying automaton to represent query structure.

Because the automaton encoding is more capable of representing

query structure, it can learn a better structure representation with

stronger generalization ability.

Trm_g vsNo-Trm_g.We further discuss the necessity of schema

graph module by comparing PreQR with PreQRNT. PreQR outper-

forms PreQRNT by a large margin, which proves the necessity of

database schema information for SQL pre-training. One interesting

observation is that PreQRNA outperforms PreQRNT, indicating

that implicit schema information is more important than the query

structure information.

In summary, both automaton module and graph schema module

are very important in generating a proper representation for a

query. They both contribute to the performance improvement of

estimation tasks on database.

4.7.2 Effect of Model Size. Finally, we explore the effect of model

size on fine-tuning task accuracy. We trained a number of PreQR

models with a varied number of layers (#L), hidden units (#H), and

attention heads (#A). The training process always adopts the same

hyperparameters and configurations as described previously.

We show the effect of model size on cost estimation task in Table

13. In this table, we report the average accuracy from 5 random

restarts of fine-tuning. We can see that larger models lead to a better

accuracy improvement across all datasets. This result is consistent

with other deep learning tasks, such as the language modeling

task, where applying a deeper neural model always returns a better

result. However, a deeper model incurs more training overhead, so

we choose the configuration (L=4, H=256, A=4). When the model

is fine-tuned directly on the downstream tasks and uses only a

very small number of randomly initialized parameters, the task-

specific models can benefit from a larger, more expressive pre-

trained representations even when downstream task data are not

enough.

5 RELATEDWORK

SQLRepresentation.Neural networks are better function approx-

imators that map featurized queries to predicted database perfor-

mance. Most existing models focus on representing query content.

MSCN adopts one-hot encoding to represent different words in

queries [23]. The operators in query plan can be encoded by LSTM

unit to represent the tree structure in queries [42]. The PreQR fine-

tuning models have demonstrated superior estimation accuracy to

representatives in this family. This is because while PreQR models

the query structured content, it also pays attention to the implicit

schema relationships in the queries. Moreover, complex predicates,

especially string predicates, can also be easily handled through the

powerful representation capabilities of the PreQR vocabulary.

PretrainingModel. Learningword representations from a large

number of unlabeled text is a well-studied topic. While previous

models focused on learning context-free word representations, such

as Word2Vec [32], GloVe [34], later works focused more on learn-

ing context-sensitive word representations, such as ELMo [35],

CoVe [31].

Learning natural language representations has been proven to

be useful for various NLP tasks and has been widely used [9, 26,

35, 37, 49]. These pre-trained language models are learned on a

large unsupervised text corpus, and then fine-tuned for specific

NLP tasks, such as classification or natural language inference

[46]. However, these methods cannot be directly applied to SQL

embedding. Therefore, we designed a SQL pre-training model to

make full use of structure-related information.

Learning table representations has also shown success in data

management tasks on tables, such as TURL [8], TaBERT [51], TAPAS

[14], ARM-Net [5]. These pre-trained models focused on learning

the semantic parsing of database tables, and then fine-tuned for

specific tasks, such as table knowledge matching and table expan-

sion through tuning. Although we have different pre-training goals

from them, our query representation and table representation can

be used in cooperation to improve the accuracy of various down-

stream tasks.

Graph Neural Networks. Graph neural networks (GNNs) are

widely used to represent graph data [24, 38, 39]. Original GNNs [38]

only support static graphs with fixed nodes and must be re-trained

when graph changes. Graph convolution networks (GCNs) [17, 18,

24] extract local features and construct the node representations.

The database schema can be modeled by using a relational graph

model intuitively [40]. However, in our approach, it is shown that

the new way to adopt schema information in SQL pre-training.

We propose the query-aware sub-graph to obtain the part of SQL-

related schema information.

Learned Database Components. A great deal of work has

recently applied either classical ML or modern deep learning to

various database components, e.g., cardinality estimators [23, 41,

42], and query optimization [30]. Our approach targets at training

query embedding, and hence these learning works are orthogonal

to our proposal, which can apply our query embedding as well.

6 CONCLUSION

In this paper, we proposed a pre-training representation (PreQR) for

SQL understanding. Our embedding approach integrates both the

structure of input SQL queries and database schema. Moreover, we

present an SQL encoder to support query-aware schema linking by

projecting the schema embedding using query context. The effective

method we proposed can encode query semantics into the model

to improve the model generalization. For a database, PreQR model

only needs to be trained once and can be applied in various database

learning tasks, such as cardinality estimation, cost estimation and

join order selection. We conduct extensive experiments on several

real-world datasets and database tasks. The experimental results

showed that by replacing the encoders of existing models with our

PreQR encoding, performances on various database tasks obtain a

significant improvement.

ACKNOWLEDGMENT

This work is supported by the Zhejiang Provincial Natural Sci-

ence Foundation (Grant No. LZ21F020007), National Natural Sci-

ence Foundation of China (Grant No. 61872315, 62050099) and the

Fundamental Research Funds for Alibaba Group through Alibaba

Innovative Research (AIR) Program.

REFERENCES
[1] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa Turric-

chia. 2014. Similarity measures for OLAP sessions. Knowledge and information
systems 39, 2 (2014), 463–489.

[2] Kamel Aouiche, Pierre-Emmanuel Jouve, and Jérôme Darmont. 2006. Clustering-
based materialized view selection in data warehouses. In East European conference
on advances in databases and information systems. Springer, 81–95.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR 2015.

[5] Shaofeng Cai, Kaiping Zheng, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and
Meihui Zhang. 2021. ARM-Net: Adaptive Relation Modeling Network for Struc-
tured Data. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021. ACM, 207–220. https://doi.org/10.1145/
3448016.3457321

[6] Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy, Shetal
Shah, and S Sudarshan. 2015. Data generation for testing and grading SQL queries.
The VLDB Journal 24, 6 (2015), 731–755.

[7] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. 2011. The mixed workload CH-benCHmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems. 1–6.

[8] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT 2019. ACL, 4171–4186.

[10] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-
Sequence Attentional Neural Machine Translation. In ACL.

[11] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In ACL.

[12] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng
Chen, and Ming Zhou. 2018. Question Generation from SQL Queries Improves
Neural Semantic Parsing. In EMNLP. 1597–1607.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[14] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing
via Pre-training. In ACL. 4320–4333.

[15] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to
automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),
60–65.

[16] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In ACL. 328–339.

[17] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong.
2020. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional
Networks. In IJCAI 2020. 2355–2361.

[18] Zhichao Huang, Xutao Li, Yunming Ye, and Michael K. Ng. 2020. MR-GCN:
Multi-Relational Graph Convolutional Networks based on Generalized Tensor
Product. In IJCAI 2020. 1258–1264.

[19] Huawei. 2019. GaussDBDistributed Database. https://e.huawei.com/en/solutions/
cloud-computing/big-data/gaussdb-distributed-database.

[20] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In ACL. 2073–2083.

[21] Kalervo Järvelin and Jaana Kekäläinen. 2017. IR evaluation methods for retrieving
highly relevant documents. In ACM SIGIR Forum, Vol. 51. 243–250.

[22] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. 2015. Pocket
data: The need for TPC-MOBILE. In Technology Conference on Performance Eval-
uation and Benchmarking. Springer, 8–25.

[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[24] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[25] Gokhan Kul, Duc Thanh Anh Luong, Ting Xie, Varun Chandola, Oliver Kennedy,
and Shambhu Upadhyaya. 2018. Similarity metrics for SQL query clustering.
IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018), 2408–2420.

[26] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36, 4 (2020),
1234–1240.

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proc. VLDB Endow. 12
(2019), 2118–2130.

[29] Vitor Hirota Makiyama, Jordan Raddick, and Rafael DC Santos. 2015. Text Mining
Applied to SQL Queries: A Case Study for the SDSS SkyServer.. In SIMBig. 66–72.

[30] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[31] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017.
Learned in Translation: Contextualized Word Vectors. In NIPS. 6294–6305.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurIPS. 3111–3119.

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In ACL. 311–318.

[34] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In EMNLP 2014. 1532–1543.

[35] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of NAACL-HLT. 2227–2237.

[36] Postgresql. 1996. Postgresql. https://www.postgresql.org/.
[37] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-

proving language understanding by generative pre-training.
[38] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

[39] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[40] Richard Shin. 2019. Encoding database schemaswith relation-aware self-attention
for text-to-sql parsers. arXiv preprint arXiv:1906.11790 (2019).

[41] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO-
DB2’s learning optimizer. In VLDB, Vol. 1. 19–28.

[42] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proceedings of the VLDB Endowment 13, 3 (2019), 307–319.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[44] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2019. Glue: A multi-task benchmark and analysis platform for natural
language understanding. In ICLR.

[45] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[46] Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. InNAACL-HLT.
1112–1122.

[47] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Macherey, et al. 2016. Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint arXiv:1609.08144
(2016).

[48] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018.
SQL-to-Text Generation with Graph-to-Sequence Model. In EMNLP. 931–936.

[49] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS 2019. 5754–5764.

[50] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Peter Chen,
and Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2021), 61–73.

[51] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
ACL. 8413–8426.

[52] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
learning with tree-lstm for join order selection. In 36th IEEE International Confer-
ence on Data Engineering, ICDE 2020. IEEE, 1297–1308.

[53] Mohammed J Zaki, Wagner Meira Jr, and Wagner Meira. 2014. Data mining and
analysis: fundamental concepts and algorithms. Cambridge University Press.

[54] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement
Learning. In SIGMOD. ACM, 415–432.

[55] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

