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.
Differential Privacy

m D € X™: Adataset containing n tuples from universe X

m A mechanism M is (&, §)-DP if for all neighboring datasets D ~ D’ and subset of

outputs O, we have
PriM (D) € O] < e®-Pr[IM(D')€eO]+6

m Adding noise calibrated to the global sensitivity of a query protects DP
- Given query f: X" — R, the mechanism M (D) = f(D) + Lap (Ag—f) is (&,0)-DP.

- A= D,DIES)ED’lf(D) — f(D")] is the Global Sensitivity of f
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Counting/Linear Queries vs Numerical Queries

m Alinear query is given by £: X — [0,1], and #(D) = Y.¢ep £(t)
m A numerical queryis givenby w: X = R, and w(D) = };ep W(t)

m Example

— The number of people with income between a and b
w(t) = 1[a < t[lincome] < b]

— The total income of people whose income is between a and b
w(t) = 1]a < t[]income] < b] - t[income]

— The variance of income of people whose age is between a and b
w(t) = 1[a < t[age] < b] - t[income]?

— The total weighted income
w(t) = UDF(t|age], t[income]) - t[income]
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.
Private Multiplicative Weights [Hardt et al. ’12]

m Given a dataset D € X" and a set of linear queries L = {fl,fz, ---,3|L|}

m The private multiplicative weights mechanism has the following guarantees
— It runsin T iterations, with each round being (&g, 0)-DP and taking O (|X] - | £]) time
— With probability 1 — B, all queries £ € L can be answered on D = M (D) within error
o (n\/log|X| . 10g(|£|/ﬁ)>
VT €0

&
JT log(1/8)

\/n log(1£]/B) \/log|X|1og(1/6)
Je

m SettingT = ©(en) and g5 = 0 ( ) achieves (&, §)-DP with error

=0 =0V
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DP Numerical Queries: Normalization

m For simplicity, we consider numerical queries w: X — {0,1,2, ..., A}
— We also assume A is a power of 2, e.g. 264

m The targetis to answer a set of numerical queries Q = {Wl, Wy, ..., W|Q|} privately
m Normalization

— Given a numerical query w, define A, := max w(t)
€

— lItisclearthat ¢, (t) := w(t)/A,, € [0,1] is a linear query
— Every normalized query £,, for w € Q can be answered by D with error 0(y/n)
— Rescaling the results, query w can be answered with error O(y/n - A,)

m Problem

- A, is data-independent, and can be arbitrarily large, e.g. 264
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DP Numerical Queries: Truncation [Huang et al., "21]

m When Q = {w} contains a single numerical query, recent work has error G(AW(D))

- A, (D) = max w(t) is an instance-specific bound

m Truncation
— Find a privatized truncation threshold 7 such that
. Only O(1) tuplesin D have w(t) > 1
- T<A,(D)
— Define a truncated query w(t) = min{w(t), 7}
— Answer the truncated query with O(t) = O(AW(D)) noise
— The truncation error |[w(D) — w(D)]| is also G(AW(D))

m Problem
— It is nontrivial to extend it to multiple queries
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Comparison of Error Bounds

m Normalization

— Normalize each query by A,,, and apply PMW to answer the linear queries

m Composition
— Run truncation in [Huang et al., ’21] for each w € Q with tighter privacy budgets

m Global Truncation:
— Spend a constant fraction of budget to find threshold A(D) := maxmaxA(D)

wWEQ teD
Normalization O(n-Ay) v V/
Composition 5( 10| -AW(D)) v
Global truncation 0 (\/ﬁ : A(D)) v
New method 0 (\/r_z : AW(D)) v V/
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Comparison of Error Bounds: Example

m Assume the dataset consists of integers, X = [0,23?]

m Consider a set of range-aggregate queries with all different ranges [a, b]
wit)=1la<t<b]-t

m Asthere are many queries |Q| = O(|X|?) > n, composition has a large error

m Normalization

- A, = Ilpez%w(t) =b

m Global Truncation Composition 5( Q] -AW(D))
- A(D) = maxmaxw(t) = max{t € D} Normalization O(n-Ay,)
WEQ teD

a New method Global truncation 0] (\/E-A(D))

- A, (D) = maxw(t) = max{t € D:t < b} New method 0 (V- 4,(D))
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Query- and Instance-Specific Truncation

m The sketch of our algorithm is as follows

o ok W NP

Given numerical queries Q, generate a set of counting queries C(Q)

Run the PMW mechanism to privately answer all the queries in C(Q)

From these query answers, extract the truncation threshold A,, (D) for every w € Q
Truncate and normalize each query w by A, (D) to obtain a set of linear queries £L(Q)
Run the PMW mechanism to privately answer all the queries in L(Q)

Scale the results back by A, (D) to get a privatized w(D)
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Truncation Thresholds

m We want to find A, (D) for query w with the following guarantees
7. {teD:w(t) > A, (D)} <2a
- a = 5(@ is the error in answering linear queries
. Only O(a) values are truncated, each brings error w(t) < max w(t) =A4,(D)
2 A, (D) <2A,(D)
. After normalizing by A,, (D), we answer the linear queries with error
. When scaling the linear query back, the error is scaled by A, (D) = O(AW(D))
m If we can (privately) find A,,(D) with these guarantees, it follows that any w € Q is

answered with error O(a - A, (D)) = 0 (\/ﬁ : AW(D))
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.
Finding Truncation Thresholds

m We can perform a doubling search to find the truncation thresholds
m Candidates: 7 € {0,1,2,4,8, ..., A}
m For each candidate 7, we ask the query

- Cyw.(t) = 1[w(t) > 7]

— i.e.,, How many t € D have w(t) > 1?

m The query can be answered with error a, so if the count is ¢, ;(D) < a, we can
return A,,(D) = 7 so that it satisfies condition 1
- {teD:w(t) > A, (D)} <2a

m Itis can also be shown that condition 2 is satisfied
- ZW(D) < ZAW(D)
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Combining the Two PMW Instances

m The two PMW instances are run on the same D with different queries C(Q), L(Q)
m We can combine them by feeding the union of all queries

m The counting queries C(Q) = jcy;|W € Q,T € {0»1»2»4;8' 'é}}

- Where ¢y, (t) = 1[{w(t) > 1]

m The linear queries L(Q) = {fw,ﬂw € Q, 7t €{1,2,48, ...,A}}

- Where ¢, () = MWD _ min {@, 1}

T

m There are only 0(|Q|log A) queries to be answered by PMW

\/Tl log((|Q|logA)/B) \/log|X[log(1/6)
0,
NG
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.
Decomposable Queries

m Recall that each iteration of PMW takes O (|X] - |Q]) time

m For numerical queries, | X| is usually large
- e.g., age € [1,128] and income € [1,23%], then | X| = 2%
m Decomposable queries
— We say a set of queries Q is decomposable if
- There exists an equivalence relation R over X
. There exists a function g: X — {0,1,2, ..., A}
. Everyw € Q can be writtenas w(t) = f,,([t]g) - g(t)
for some f,,: X/R — [0,1]
— |t] is the equivalence class induced by R containing t
— g iscommon to the entire Q, while f,, is different for each w
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.
Decomposable Queries: Example

m There is a trivial decomposition for any set of queries Q
- R={(t,t):t e X}
- X/R=X
- gt) =A
- fw(@®) =w(t)/A
m We are interested in decompositions where | X /R| is small
— If Q consists of queries of form
w(t) = 1]a < t|age] < b] - t[income]
— R puts all tuples of the same age into an equivalence class
- X /R = dom(age)
- g(t) = t[income]
- fw(t) = 1]a < tlage] < D]
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Reducing Universe Size for Decomposable Queries

15

Decomposable query: w(t) = f,,([t]r) - g(t)
We consider a new universe
- X =X/Rx{1,248,...,A}
— Decompose g(t) for every t using binary decomposition
- Note that g(t) is common to Q
e.g. Decomposing tuple (age=35, income=2560)
— We generate 2 tuples (35, 2048) and (35, 512) over X
— For any w, we have
- w((35,2560)) = f£,,(35) - 2560 = f,,(35) - 2048 + f,,(35) - 512
— We just need to run the query on the new D over X

A separate privacy analysis is needed
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.
Improving for Queries with Structural Properties

m For special counting queries, e.g. range/half-space counting, the accuracy is better
m This also applies to our mechanism

- {f.»} can have structural properties

— e.g. If Q consists of queries of form
w(t) = 1|a < t|age] < b] - t[lincome]

then f,, are all range queries

— As range counting has error 0(1) under DP, we can achieve error 5(AW(D))
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Conclusion

m We initiate the study of private data release for numerical queries

m Our mechanism achieves instance- and query-specific error O (\/ﬁ - AW(D))

m The error bound also leads to excellent practical performance
m For decomposable queries, the running time and accuracy can be further improved
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