
PolarDB-X: An Elastic Distributed Relational
Database for Cloud-Native Applications

Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao, Dengcheng He, Mengshi Sun, Yingqiang Zhang,
Sheng Wang, Xueqiang Wu, Han Liao, Zilin Chen, Xiaojian Fang, Mo Chen, Chenghui Liang, Yanxin Luo,

Huanming Wang, Songlei Wang, Zhanfeng Ma, Xinjun Yang, Xiang Peng, Yubin Ruan, Yuhui Wang, Jie Zhou,
Jianying Wang, Qingda Hu, Junbin Kang

{mingsong.cw, lifeifei, qushan, jianghang.loujh, jianwei.zhao, dengcheng.hedc, mengshi.sunmengshi, yingqiang.zyq,
sh.wang, xueqiang.wxq, changyuan.lh, zilin.zl, xiaojian.fxj, chenmo.cm, chenghui.lch, luoyanxin.pt,
huanming.whm, jiujiang.wsl, zhanfeng.mzf, xinjun.y, pengxiang.px, yubin.ryb, yuhui.wyh, jarry.zj,

beilou.wjy, qingda.hqd, junbin.kangjb}@alibaba-inc.com
Alibaba Group

Abstract—Cloud computing is on the rise, which promotes
new breeds of database systems to accommodate the cloud
environment. The development of cloud-native databases reveals
three trends. One is the adoption of multi-datacenter (DC)
deployment to survive the downtime of any single site. Another
is the separation of computation and storage resources to achieve
higher elasticity and scalability. The last is the support of
HTAP to eliminate data redundancy and system complexity from
heterogeneous databases.

To cater to these trends, we design a distributed relational
database called PolarDB-X, which is built on top of the cloud-
native database PolarDB. It hence inherits many cloud-native
features, such as multi-datacenter deployment and elasticity. To
achieve cross-DC capability, it leverages Paxos and hybrid logical
clock to achieve durability and snapshot-isolation consistency
with low coordination costs. For resource elasticity, since the
underlying PolarDB supports rapid migration of tenants between
nodes, PolarDB-X can quickly scale the cluster to cope with a
sudden traffic increase. For HTAP support, with the help of
read replicas and a HTAP executor, PolarDB-X can improve the
latency and parallelism of analytical queries without impacting
concurrently-running TP workloads. Using its MPP engine and
an in-memory column index, the efficiency of analytical queries
can be further enhanced. PolarDB-X is now a cloud database
service at Alibaba Cloud. We have learned many useful lessons
from its development and operation, and have incorporated those
into our design and analysis.

I. INTRODUCTION

In order to meet the ever-increasing demand for supporting
larger data volume and higher transaction throughput, enter-
prise applications tend to adopt a shared-nothing architecture
for their databases that can distribute data shards on many
data stores, such as transactional KV-stores [1], [2], [3], [4]
or relational databases like MySQL [5], [6], [7], [8], [9] and
PostgreSQL [10], [11], [12], [13]. In such database architec-
tures, the support of fully distributed ACID transactions across
shards is essential to simplify the building and reasoning of
distributed systems and improve application agility. Mean-
while, with the prevalence of cloud computing, more and more
enterprise applications and underlying databases are migrating

23:30 23:40 23:50 00:00 00:10 00:20 00:30
Time

0

0.25

0.50

0.75

1.00

1.25

R
es

p
on

se
ti

m
e

(m
s)

0

25

50

75

100

125

N
or

m
al

iz
ed

T
P

SResponse time

Normalized TPS

Fig. 1. 122x increase in transactions per second along with stable response
time observed in Alibaba Double 11 Shopping Festival 2018. Throughput is
normalized by the average TPS for the day before midnight on Nov. 11.

to the cloud. Three challenges arise for operating a distributed
relational database service on the cloud.

First, while migrating to the cloud, enterprises will follow
the best practices of ready-made multi-DC (data center) de-
ployment. The typical way is to disperse database replicas in
different datacenters, where a consensus protocol (known as
quorum [14], [15] such as paxos [16], [3], [17], raft [18]) is
used to synchronize modifications between replicas to prevent
data loss and to offer continuity when a single datacenter
fails. However, the leader nodes of different database shards
may be located in different datacenters. When a distributed
transaction involves multiple database shards (such as updating
the primary index and/or global secondary indexes), the cost
of two-phase-commit (2PC) and consensus coordination across
datacenters can be prohibitive and the performance is signifi-
cantly compromised due to potentially high network latency.
Therefore, mitigating the impact of cross-DC network latency
and reducing the cost of cross-DC distributed transactions are
key considerations in designing a distributed database for a
cloud-native environment.

Second, large-scale Internet applications, such as in e-
commerce and social network, often witness tens or even
hundreds of times more traffic during business peaks, e.g.,
during Alibaba’s Double 11 Shopping Festival. Figure 1 shows
the total transaction throughput of Alibaba’s databases at
the midnight of November 11, 2018, which had suddenly



increased by 122 times in just 1 second. In a traditional shared-
nothing architecture, operations such as scaling a cluster and
adding nodes need migrating data between servers, which is
inherently cumbersome and time-consuming. Therefore, com-
panies usually have to scale their database systems weeks or
even months in advance before peaks arrive, leading to a waste
of resources. The demand for rapid resource elasticity from
such applications cannot be effectively addressed by traditional
shared-nothing databases, and this brings new opportunities to
cloud-native distributed databases.

Third, guided by the principle of one size doesn’t fit all [19],
enterprises often use separated database systems to handle
OLTP and OLAP workloads. They rely on ETL tools to import
data from an OLTP system to an OLAP system, but this
increases the redundancy of data storage and the complexity
of system maintenance. Processing transactional and analytical
workloads simultaneously in a single database system would
be ideal, but then resource isolation becomes a main challenge.
When running analytical queries, the transaction throughput
is often adversely affected, due to the contention of system
resources such as CPU, memory and network bandwidth
on top of resolving read-write conflicts. For cloud-native
distributed databases, there is an opportunity to make use of
elastic resources for processing OLTP and OLAP workloads
simultaneously, such that BI reports can be timely generated
without affecting transactions from front-end applications.

To tackle these challenges, this paper describes Alibaba
Cloud’s distributed relational database named PolarDB-X. It
is built on top of the cloud-native shared-storage database
PolarDB [20], [21], [22] to inherit many cloud-native designs
and additionally adopts a novel CN-DN-SN (Computation-
Database-Storage Nodes) three layer architecture. The main
design goal is to fulfill three aforementioned demands, namely,
optimized cross-DC distributed transactions, rapid elasticity
for cloud applications, and efficient hybrid OLTP and OLAP
workload processing.

1) Cross-DC Transactions. PolarDB-X uses HLC-SI, which
relies on the hybrid logic clock [23] to achieve cross-shard
data consistency. Since HLC-SI complies with snapshot
isolation (SI), we compare it to other SI implementations,
such as centralized timestamp ordering TSO [24], [1]. More
specifically, the network delay of accessing TSO across
datacenters will increase transaction latency and affect
throughput substantially. Our experiment shows that HLC-
SI outperforms TSO under a 3-datacenter deployment, and
its peak write throughput is 19% times higher.

2) Elasticity. Cloud-native relational databases from major
cloud vendors all use the separation of computation and
storage architecture [14], [25], [20], [26], which renders a
significant advantage of elasticity, i.e., add RO (Read-Only)
nodes to scale read throughput in minutes. Furthermore,
Alibaba’s PolarDB supports multi-tenancy (PolarDB-MT),
where each tenant represents a collection of schemas/-
databases or tables. PolarDB-MT allows scaling of writes
by binding different tenants to multiple RW (Read-Write)
nodes and distributing write requests among these nodes

accordingly. By leveraging these features, a PolarDB-X
cluster can quickly scale out. Our evaluation shows that,
with 160 million rows and 40 GB data volume, PolarDB-X
can double its size within 4-5 seconds, which is more than a
hundred times faster than the traditional data transfer method
widely used in a traditional shared-nothing architecture.

3) HTAP. PolarDB-X ’s optimizer can identify whether a query
belongs to TP or AP workload based on its estimated cost.
AP queries will be isolated and executed in a separate thread
pool, and queries in execution can be preempted to prevent
others from starvation. When CPU and network resources
used by a query reaches its quota, it will be put into the
waiting queue for rescheduling. Since PolarDB can quickly
add read-only replicas without copying data, we can alterna-
tively run analytical queries on newly extended RO nodes,
completely isolated from TP workloads in RW nodes. In
our experiment of running TPC-C and TPC-H benchmarks
in a mix, after enabling the HTAP mode, the throughput
of TPC-C becomes very stable and almost unaffected by
concurrent TPC-H tests. The average TPC-H query latency
is reduced by 2.7, 5.0 and 5.7 times, corresponding to
adding one to three additional read replicas. With the MPP
execution engine and PolarDB’s in-memory column index,
the performance can be further improved.
We have been operating PolarDB-X as a cloud service for

enterprise customers, and we have learned from our expe-
riences and added a series of DBA- and developer-friendly
features in PolarDB-X to enhance usability, e.g., anti-hotspot,
automated traffic control, and index recommendation.

Next, Section II introduces the architectures of both
PolarDB-X and the underlying PolarDB1. Section III talks
about PolarDB-X’s Paxos and Multi-DC deployment. Sec-
tion IV presents our cross-DC distributed transaction pro-
cessing. Section V explains how to leverage PolarDB-MT to
quickly scale a PolarDB-X cluster. Section VI discusses the
HTAP executor, MPP execution engine and in-memory column
index. Section VII gives the experimental results. Section IX
reviews the related work and Section X concludes the paper.

II. SYSTEM OVERVIEW

A. Architecture

PolarDB-X is a distributed database compatible with
MySQL. As shown in Figure 2, PolarDB-X has the following
components: Global Meta Service (GMS), Load Balancer,
Computation Node (CN), Database Node (DN), and Storage
Node (SN). By disassembling the relational database kernel
into three layers (CN-DN-SN), this architecture has achieved
excellent elasticity and scalability: CN handles distributed
transactions and queries; DN solves single-shard transactions
and cross-DC replication; SN persists data inside a single DC;
and each layer can be scaled independently.

GMS. The GMS is the control plane of PolarDB-X. It
manages the system’s metadata, such as cluster membership,

1Since PolarDB-X is built on top of PolarDB, when we describe PolarDB-
X, related designs in PolarDB are also discussed as part of it.



GMS

GMS GMS

Paxos

Load Balancer

RW RO

DN(PolarDB)

chunk chunk
SN(PolarFS)

A B
CN

Apps

Load Balancer

RW RO

DN(PolarDB)

chunk chunk

SN(PolarFS)

C D
CN

Load Balancer

RW RO

DN(PolarDB)

chunk chunk
SN(PolarFS)

E F
CN

Paxos

Apps Apps

DC1 DC2 DC3

Fig. 2. System architecture of PolarDB-X

catalog tables, table/index partition rules, locations of shards,
and statistics. It also maintains system tables, such as se-
quences, stored SQL plan baselines, accounts and permissions.
In addition, some background tasks are running on GMS. For
example, it schedules data redistribution according to the load,
and also manages node registration and failover. In production,
we deploy a 3AZ PolarDB as the GMS.

Load Balancer. The load balancer is a cloud network
infrastructure [27]. It exposes a single entry point (i.e., virtual
IP) to SQL clients for each PolarDB-X instance. It is location
aware, which tends to disperse client connections to nearby
backends (e.g., CN servers co-located in the same datacenter).
For example, in Figure 2, the load balancer of DC1 will first
redirect connections to CN servers A and B. Only when they
are unavailable, will the request be routed to CN servers in
DC2 and DC3.

Computation Node. A CN is always deployed in the same
datacenter with underlying DN (PolarDB) and SN (PolarFS).
Tables are divided into shards and stored in DN. Each shard
is replicated to at least three DNs through the Paxos protocol
with leader lease. The leader DN of each shard may be
located in different datacenters. CN will forward a shard’s
write requests to datacenters where the leader is located, and
forward read requests to the local data center (when it has a
fresh enough snapshot) to eliminate cross-DC network latency.
CN contains components including a distributed transaction
coordinator, a cost-based optimizer and a query executor
(with features like isolation of TP and AP traffic, MPP
executor for AP queries). Clients establish connections with
CN servers and send SQL queries to them. A CN server
parses SQL statements, analyzes data locations, and acts as
a transaction coordinator. For a distributed transaction, it first
starts the transaction and forwards statements to corresponding
DN servers. After that, it merges the results, commits the
transaction, and returns the final result to the client. Since
CN servers are stateless, they can be rapidly scaled to handle
more transactions and queries concurrently.

Database Node and Storage Node. DN and SN in
PolarDB-X are implemented by the same counterparts in Po-
larDB, a cloud-native database with shared storage architecture
[22], [21]. DN is equivalent to the database nodes (RW and RO
nodes) in PolarDB [22], [21], and SN corresponds to the chunk
server in PolarFS [20]. For the basic PolarDB (as detailed in
Section II-C), an instance includes one primary (i.e., RW node)
and multiple read replicas (i.e., RO nodes). RO replicas can
be scaled horizontally to improve the capacity of processing
analytical queries, while having little impact on transactional
workloads. Later in Section V, we will introduce PolarDB-MT,
a variation of PolarDB where an instance can have multiple
RW nodes to improve the aggregated write throughput. Like
a traditional database kernel, a RW/RO node contains a SQL
processor, transaction engines (like InnoDB [28]), and a buffer
pool to serve local transactions and queries.

PolarFS. All data is persisted in PolarFS [20]. PolarFS is
a durable, atomic and horizontally scalable distributed storage
service. It provides virtual volumes that are partitioned into
chunks of 10GB size, which are distributed in multiple storage
nodes. Each DN has one volume, where a PolarDB-X can have
multiple volumes. Each volume contains up to 10K chunks
and can provide a maximum capacity of 100TB. Chunks are
provisioned on demand so that volume space grows dynam-
ically. Each chunk has three replicas in each datacenter and
linear serializable is guaranteed through Parallel Raft, which
is a consensus protocol derived from Raft.

The throughput of the entire system can be scaled by adding
more CN and DN servers. Since CN does not have persistent
state, no data movement is involved. For DN, PolarDB in-
creases the read throughput near linearly by adding RO nodes,
and PolarDB-MT allows the use of multiple RW nodes to
scale write throughput. Neither action above moves the data.
Therefore, compared with traditional shared-nothing databases
that always require copying data, scaling a PolarDB-X cluster
is much faster. The task of extending storage capacity and I/O
throughput is decoupled to SN, which is transparent to the
upper layers and can be achieved by adding more SN nodes.

B. Data Partition

PolarDB-X uses hash partitioning on the primary key to
slice tables/indexes into shards. If the table of interest does not
specify a primary key, an implicit primary key will be added,
which is an auto-increment BIGINT type and is invisible to
users. An advantage of the hash partitioning is that it can
distribute data evenly across shards and reduce the chance of
having hotspots. For example, when the primary key is an
auto-increment integer (or an ever-increasing timestamp) and
the range partitioning is used, bulk data insertions cause most
writes to fall on the last shard, making it a hotspot.

Similar to F1 [29], PolarDB-X supports both local and
global indexes. The local index is also partitioned by the
partition key, so that updating the index does not lead to a
distributed transaction. The global index is partitioned by the
indexed columns and stored as a hidden table, where both
clustered indexes and non-clustered index are supported. When



RW node

PolarFS

RO nodes

storage node

Buffer pool Buffer pool

libpfs

ParallelRaft

libpfs

i

1

2

3

4

5

6

7

8

Redolog Redolog

𝐿𝑆𝑁!"!

min	{𝐿𝑆𝑁!"! }

8

𝐿𝑆𝑁!#

9

9 𝐿𝑆𝑁!"!

CN/Proxy

9

Fig. 3. PolarDB Architecture
updating records, the primary key index and related secondary
indexes are updated in a single distributed transaction to
ensure ACID. The clustered index can reduce cross-shard
data retrievals. For example, after a query retrieves a set of
primary keys from the global secondary index, it needs to read
the corresponding rows from the primary index on different
shards. With a clustered index, we can efficiently read all
required columns from the index to avoid scattered reads.

A set of tables could have identical partition key. Queries
to these tables usually specify a value on partition key, either
explicitly (through “where equal” condition) or implicitly
(equi-join on the partition key). In PolarDB-X, these tables
can be declared as a table group, and follow exactly the same
partition rule and shard placement policy. In a table group,
the set of table shards from the same partition are defined as
a partition group. The shards in a partition group are always
located on the same DN. During data redistribution, all tablets
in a partition group will be re-sharded (split or merged) or
migrated as a whole. Table group helps reduce the latency
introduced from having remote data. For example, in a table
group, equi-join on the partition key can be optimized by
performing partition-wise join, without reading remote data
or redistributing data between shards. Spanner [3] and F1 [29]
introduce a new data model named hierarchical schema, which
is different from the relational model, to solve similar prob-
lems. In contrast, PolarDB-X chooses to stick to the MySQL-
compatible schema and adds table group as a syntax extension.

C. PolarDB

For simplicity and clarity, we only depict the setting of a
basic PolarDB deployed in a single datacenter. We demonstrate
how writes to the RW node are synchronized to RO nodes,
providing snapshot reads and session consistency.

The RW node and RO nodes synchronize memory status
through redo logs. They coordinate consistency through log

sequence number (LSN), which indicates an offset of redo log
files in InnoDB. As shown in Figure 3, in a transaction 1©,
after RW finishes flushing all redo log records to PolarFS 2©,
the transaction can be committed 3©. RW broadcasts messages
that the redo log have been updated as well as the latest LSN
lsnRW to all RO nodes asynchronously 4©. After the node
ROi received the message from RW, it pulls updates of redo
log from PolarFS 5©, and applies them to the buffered page in
buffer pool 6©, so that ROi keeps synchronization with RW.
Then ROi piggybacks the consumed redo log offset lsnROi

in
the reply and send it back to RW 7©. RW can purge the redo
log before the min{lsnROi} location, and flush the dirty pages
elder than min{lsnROi} to PolarFS in the background 8©.
ROi can serve read transactions using the snapshot at version
lsnROi

9©. Some RO nodes may fall behind because of high
CPU utilization or network congestion. Suppose there is a
certain node ROk, whose LSN lsnROk

is much lower than
that of RW lsnRW (say the lag is larger than one million).
Such node ROk will be detected and kicked out of the cluster
to avoid slowing down RW to flush dirty pages.

The latest snapshot version of a RO node usually lags behind
that of RW for a few milliseconds. For clients that require
session consistency [30] across RW and RO nodes, CN tracks
the latest timestamp LSNRW of RW and piggybacks the
timestamp when forwarding read requests to RO nodes. The
RO will wait until its snapshot version number is no less than
LSNRW before processing and responding to the query. In
this way, without increasing storage cost and bearing data copy
overhead, RO replicas can be scaled horizontally to improve
the system’s read throughput, while having little impact on the
performance of the RW node.

III. REPLICATION

To support multi-DC deployment for PolarDB-X, we en-
hance PolarDB (used as the DN) using Paxos with a leader
lease, which uses optimizations like asynchronous commit,
batching and pipelining to efficiently synchronize changes
between multiple datacenters. It contains the following roles:

• Leader — all write operations are completed here.
• Follower — it receives redo log records from the leader

and replays the log. A follower could be elected as the
new leader if the original one fails.

• Logger — it is a special follower node that only docu-
ments redo log records and has no data, i.e., it cannot
provide database services. It can participate in leader
election but cannot be selected as the leader.

Unlike in Aurora, to achieve extremely low storage I/O latency
(via RDMA), our cross-datacenter data replication is not
achieved at the SN layer, but at the DN layer. PolarDB in-
stances inside PolarDB-X transfer redo logs across datacenters.
RO nodes can be created on both leader and follower instances.

Next, we show how Paxos collaborates with redo logs in
this setup. The leader is responsible for executing transactions.
Before a transaction commits, the redo log entries are flushed
to PolarFS, which will also be sent to followers using Paxos.
Once a follower receives the log entries, it copies them to the



log buffer and writes them to the log file. After the logs are
persisted in PolarFS, the follower acknowledges the leader.
When majority nodes have retained changes, the leader will
advance the DLSN (Durable LSN). The log entries before
DLSN will not be lost, even when a datacenter disaster occurs.
Hence, the leader can safely flush dirty pages modified before
DLSN from the buffer pool to PolarFS, and inform followers
that DLSN has been advanced in the next transmission. After
receiving the latest DLSN from the leader, the follower applies
all redo log entries before that. Changes after DLSN cannot
be applied by RO, because if a single datacenter fails and the
leader is re-elected, the redo log entries after DLSN may be
truncated by the new leader. When a follower recovers from
a crash, it must ensure that it does not apply any redo log
behind (larger than) DLSN.

Asynchronous Commit. Transaction commit is also driven
by the advancement of DLSN. A transaction is divided into
multiple mini-transactions (MTR), which are a group of con-
tiguous redo log entries. When the DLSN exceeds the largest
LSN of a transaction’s last MTR, the transaction is considered
to be committed. The leader then returns the success of the
COMMIT statement to its SQL client. Note that the persis-
tence of redo logs in multiple datacenters requires round-trip
communication. If a foreground thread is blocked to wait for
ACKs from followers, the leader could have a large number of
threads blocked in the waiting state, which will severely affect
transaction throughput. To resolve this issue, asynchronous
transaction commit is adopted. More specifically, after the
foreground thread invokes Paxos to send redo log entries to
the followers, it stores the transaction’s context in a map data
structure and then proceeds to process other transactions. A
new async_log_committer thread is added to monitor
DLSN’s changes. When the followers return acknowledges
and DLSN is advanced, async_log_committer iterates
the map to find a list of transactions whose last MTR’s LSN
exceeds DLSN. It restores their contexts, commits them and
returns the results to the client.

Pipelining and Batching. Asynchronous commit relies on
Paxos to support pipelined transmissions of redo logs. The
leader continuously sends redo log entries to the follower,
and it can send a new batch of logs without waiting for the
acknowledgement of previous batches. When the transmission
delay is far lower than the propagation delay (e.g., in a high-
latency and high-throughput network environment), pipelining
can effectively improve the throughput. Synchronizing data
through Paxos requires extra control information. In order
to integrate Paxos in the redo log stream, we have added a
special redo log entry type called MLOG_PAXOS that manages
Paxos metadata in a batched manner. This entry is 64 bytes
and contains metadata like epoch, index, LSN range of redo
log entries, and checksum. Since each MTR only contains a
small amount of changes (up to a few hundreds of bytes),
it is expensive to add a MLOG_PAXOS log entry for each
MTR. Therefore, multiple MTRs are batched in a single
MLOG_PAXOS (maximum 16KB) to enlarge the payload,
which greatly improves the log replication throughput.

Leader Election. Paxos is responsible for liveness detection
and new leader election. When a leader failure is detected and
more than half of the nodes are active, Paxos will start a leader
election. Paxos guarantees that the newly chosen leader has
complete log entries before DLSN. However, there may be
some redo log entries with LSN larger than DLSN on the old
leader. They may have not been persisted to other datacenters,
but have already been applied by the leader. This will cause
the dirty pages in the old leader’s buffer pool to conflict with
new leader’s. Hence, after the leader election and the old
leader rejoins the Paxos group, some additional memory state
cleaning is required on the old leader. It needs to synchronize
with the new leader, determine the range of redo log entries
that are not submitted, evict dirty pages related to them, and
reload clean pages from PolarFS. In contrast, the situation on
an old follower node is much simpler, it only needs to discard
all redo log entries behind (larger than) DLSN and connect to
the new leader to resync log entries.

IV. TRANSACTIONS

The key to distributed transactions is to determine the
order between transactions and enforce correct visibility. Using
centralized clock in a distributed database is conventional to
achieve snapshot isolation. TSO-SI is such a solution used by
Percolator [24] and TiDB [1], which offers ascending clock
as snapshot timestamp and commit timestamp. The former
determines appropriate record version to read, while the latter
orders transactions globally across all nodes. Atomic updates
on multiple data nodes are achieved through two-phase commit
(2PC). However, the centralized clock server may become a
single point of failure and a potential performance bottleneck.
Frequent access to TSO increases the latency of transaction
processing, especially in the case of cross-datacenter deploy-
ment. To alleviate above problems, Clock-SI [31] instead relies
on loosely synchronized physical clock on each node, but it
may suffer from the delay caused by clock skew. In PolarDB-
X, we propose HLC-SI, which utilizes hybrid logical clock
(HLC) to track event causality in a distributed database.

HLC Primitives. HLC contains both physical clock and
logical clock in a single timestamp. It can not only track the
causal relationship of across-node events, but also keep the
logical clock value close to the actual physical clock value.
We implement the HLC timestamp (denoted as hlc) as a 64-bit
integer {reserved : 2, pt : 46, lc : 16}. The lower 16 bits (lc)
represent the logical clock, while the upper 46 bits (pt) store
the physical time. The finest granularity of the physical clock
is one millisecond, i.e., it counts 65,535 times per millisecond
and supports more than tens of million transactions per second,
which is sufficient for extremely large-scale databases. More
bits can be allocated to hlc.lc if needed.

Each node in the cluster has a local physical clock node.pt
in millisecond, and also maintains its own HLC timestamp
node.hlc. The HLC clock has three primitives:

• ClockUpdate(e.hlc). After an event e transmitting the
HLC timestamp has occured (e.g., in 2PC), a participant



receives the snapshot ts and commit ts from the coor-
dinator. If the incoming HLC timestamp e.hlc is higher
than the node’s own node.hlc, it will advance node.hlc.

• ClockAdvance(). It increments the logic clock part of the
HLC by one to obtain the next HLC timestamp. If the
local physical clock node.pt is higher than node.hlc, it
overwrites the HLC timestamp. This function ensures that
the HLC value is close to the node’s physical clock, and
the difference between the two is bounded.

• ClockNow(). It obtains the latest HLC timestamp similar
to ClockAdvance, except not incrementing the logic clock.

The original HLC algorithm proposed by Sandeep et al.
[23] increments the logical part of the HLC timestamp by
one each time a message is exchanged between nodes. In
HLC-SI, we introduce optimizations for the maintenance of the
HLC timestamp. First, the logic clock part is not incremented
in ClockUpdate and ClockNow, which can prevent the 16-
bits logic clock space from running out too fast. Second, we
minimize the calls to ClockUpdate. For example, in 2PC,
the coordinator will not call ClockUpdate to update the local
HLC timestamp when it receives responses from participants.
Instead, after receiving all prepare ts timestamps, ClockUp-
date is called only once with the maximum timestamp seen
from all participants. Since modifications of the global variable
node.hlc could become a bottleneck in multi-core systems,
less updates reduces lock contentions significantly. At last, we
prove below that, after applying aforementioned optimizations,
HLC-SI still preserves the properties of snapshot isolation.

COMMIT

BEGIN

CN
(coordinator)

DN1
(participant)

2PC prepare

commit_ts = 
Max{prepare_ts}

2PC commit

prepare_ts = 
ClockAdvance()

DN2
(participant)

SQL

SQL

BEGIN(snapshot_ts)
ClockUpdate
(snapshot_ts)

COMMITTED

snapshot_ts = 
ClockNow()

ClockUpdate
(commit_ts)

1

PREPARED

SQL

BEGIN(snapshot_ts)
ClockUpdate
(snapshot_ts)

prepare_ts = 
ClockAdvance()

COMMITTED

PREPARED

3

45

ClockUpdate
(commit_ts) ClockUpdate

(commit_ts)

6

2

7

Fig. 4. HLC-SI and two-phase commit
HLC-SI. Figure 4 shows how HLC-SI obtains timestamps

for a distributed transaction, synchronizes and advances the
HLC timestamp among nodes. When a transaction starts,
the CN (coordinator) nodei calls ClockNow to acquire the
transaction’s snapshot timestamp snapshot ts 1©. CN then
sends the transaction together with snapshot ts to all partic-
ipating DN nodes 2©. Suppose one of them is nodej , and
it calls ClockUpdate(snapshot ts) to update nodej .hlc. This
ensures that afterwards nodej .hlc is larger than or equal to
snapshot ts 3©. When the participant encounters a transaction
in PREPARED state that modifies the data in its read set, it
needs to wait for the transaction to complete. Because the

commit timestamp of a transaction in PREPARED state is
uncertain, it could be either greater than snapshot ts (i.e.,
invisible) or not (i.e., visible).

In the first phase of 2PC, after the DN completes the conflict
validation of the transaction’s write set, the DN changes
the status of transaction to PREPARED, calls ClockAdvance
to obtain a prepare timestamp nodej .prepare ts, and then
returns it to the CN 4©. In the second phase of 2PC, after
the CN receives prepare ts from all participants, it chooses
the maximum one as commit ts like in Clock-SI 5©. Then it
calls ClockUpdate(commit ts) to synchronize its local HLC
timestamp, and sends commit ts to all DNs 6©. After DNs
receive commit ts, they also call ClockUpdate(commit ts) to
update their local HLC timestamps 7©.

Proof of Correctness. Here we prove how HLC-SI obeys
properties of SI. That is, for any pair of transactions, say T1,
T2, if T1.commit ts is less than or equal to T2.snapshot ts,
T1 must be visible to T2, and otherwise T1 is invisible to
T2. When T2 accesses the records that have been modified by
T1, there can be three cases: (1) T1 is already committed. the
visibility is determined by the committed ts of T1. (2) T1 is
in PREPARED state. T2 will wait until T1 completes and then
determine the visibility of records modified by T1 as in Case
1. (3) If T1 has not entered the PREPARED state yet (i.e., in
ACTIVE state), T1 must be invisible to T2.

Proof. Suppose on nodek, T2 observes that T1 is in ACTIVE
state. When the coordinator sends T2 to nodek, nodek.hlc is
updated to be equal to or greater than T2.snapshot ts:

T2.snapshot ts <= nodek.hlc

Since T1 is in ACTIVE state, we must have:

nodek.hlc < nodek.prepare tsT1

By definition of commit ts, we must have:

nodek.prepare tsT1 <= T1.commit ts

Finally, according to transitivity’s law, we have:

T2.snapshot ts < T1.commit ts

In fact, T1 is impossible to be visible to T2 unless T1

has already entered the PREPARED state on every node in
participants(T1)∩participants(T2). Because if there is any
node on which T1 is still in the ACTIVE state, according
to above inferences, T1.commit ts must be greater than
T2.snapshot ts, i.e., T1 is invisible to T2.

V. ELASTICITY

Multi-Tenancy. Some customers operate software-as-a-
service (SaaS) businesses and advocate the need for a multi-
tenant database. A typical SaaS application has a large number
of subscribers. To ease the support for many subscribers, the
SaaS application provides distinct schemas/databases (logi-
cally) for each subscriber. The data of each subscriber can
be regarded as a tenant in the database. Since each tenant
is logically isolated and independent, there is no cross-tenant



transaction. Meanwhile, in order to reduce costs, multiple
tenants are usually consolidated and stored in one database
instance. However, when some tenant’s access becomes a
hotspot where more resources are needed, the tenant shall be
migrated to other database instances. This process is expensive
and takes time proportional to the data volume involved.

In PolarDB-X, cross-shard transactions are implemented in
CN through distributed transactions. There is no cross-shard
transaction in DN, so that a shard or a partition group can be
regarded as the unit of tenant. Multiple tenants are stored in
one DN, and when database is expanded horizontally, tenants
can be migrated to new available DNs for load balance. A
tenant is defined as a collection of schemas/databases or tables.
In both scenarios, the PolarDB instance inside PolarDB-X
encounters a bottleneck, that is, only one RW node can handle
write requests for all tenants. Therefore, we extend PolarDB
inside PolarDB-X to support multi-tenant, which allows the
use of multiple RW nodes for scalable writes, but at the cost of
not supporting cross-tenant transactions. These RW nodes still
share the storage, but different RW nodes operate on disjoint
portions of the data (divided by tenants). The strict constraint
is that DML between RW nodes will not conflict with each
other. To enforce this, each tenant must be bound to only one
specific RW node at any given time. For elasticity, the number
of RW nodes and tenant-RW bindings can be adjusted at run-
time, and tenants can quickly migrate between RW nodes.

PolarFS

WAL WAL WAL WAL

Proxy / CN

PolarDB
RW

DB
A

DB
B

DB
C

Shared Meta

PolarDB
RW

DB
D

DB
E

DB
F

PolarDB
RW

DB
G

DB
H

DB
I

PolarDB
RW

DB
J

DB
K

DB
L

DB
A

DB
B

DB
C

DB
D

DB
E

DB
F

DB
G

DB
H

DB
I

DB
J

DB
K

DB
L

Meta Cache Meta Cache Meta Cache

Fig. 5. PolarDB Multi-Tenant Architecture

Design of PolarDB-MT. For each data table, only one
RW node can write to it, and hence there is no conflict
during the modification of B+Tree pages and rows. As shown
in Figure 5, each RW node has its own private redo log,
i.e., no write contention in redo log. Besides, there is no
global ordering sequence or dependency between these logs,
since they record modifications to different tenants, which
are logically uncorrelated. Therefore, redo logs belonging
to different tenants can be concurrently replayed to recover
database states in parallel. In fact, if one RW node fails, one
or more other RW nodes can take over its redo log. They divide
log entries according to the tenant, replay them, complete
the recovery process and restore services. Similar to PolarDB
(Section II-C), in PolarDB-MT, each RW node can also have a

configurable number of RO nodes, who serve read transactions
at the Repeatable Read or Read Committed isolation level.

All RW nodes share a global data dictionary instead of
maintaining a distinct private one for each node. Only one
RW node can grab a lease. The leaseholder (i.e., the master
RW node) manages the data dictionary and is delegated to
make all modifications to the dictionary. Other RW nodes
maintain a read cache of the dictionary, and only cache the
metadata of tables they open. Since a table is bound to and
written by a single RW node, the metadata of a table will be
cached by at most one RW node. At the beginning and end
of executing a DDL statement, the owner RW node needs
to acquire an exclusive MDL (metadata lock), which will
block all subsequent DML/DDL statements for the table. It
then modify the data dictionary and forward the metadata
modification request to the master RW. The master RW checks
whether the modification request is valid, that is, only the
owner of a tenant has the right to modify the metadata of
its internal table/database. Once the check is passed and the
write succeeds, the in-memory table metadata cached in the
RW node who initiates the write request will also be updated.
After that, the MDL is released, and all blocked DML/DDL
statements continue to execute. The above process ensures
the consistency of the table metadata among the RW nodes.
The table metadata is also cached in RO nodes, and it is
synchronized with the RW node through redo log replication.

Tenant Transfer. The binding information of RW nodes and
tenants is stored in an internal system table, which is shared
with upper-level components such as proxy or CN. Hence,
they know to which RW node a DML statement should be
routed. Each RW node subscribes to the updates of the binding
info and obtains a lease from the master RW node, in order to
ensure the correctness and freshness of the binding info. When
a RW node receives a transaction, it first checks whether all
related tables are bound to the node and retains the lease,
otherwise it immediately returns an error. When the RW node
finds that the lease is lost, it will suspend the submission of all
outstanding transactions and try to re-acquire the lease. When
time out or after obtaining the lease, if it refreshes the binding
info and finds that some tenants have migrated to other RW
nodes, it will immediately abort all affected transactions.

During migrating or transferring a tenant from the source
RW to the destination RW, the proxy or CN is responsible for
keeping client connections alive. They pause new transactions
to the tenant and stop forwarding them to the source RW. Then,
they wait for the source RW node to complete all ongoing
DML/DDL statements gracefully. After that, the source RW
will flush all dirty pages associated with the tenant to PolarFS,
clean tables’ cached metadata and close resources such as
files belonging to the tenant. Finally, it asks the system
table to update the binding info. Meanwhile, The destination
RW opens tenant’s files, fetches necessary metadata from
the master RW node, initializes itself and starts serving new
transactions to this tenant. After all above steps are completed,
the proxy or CN servers connect to the destination RW node,
restore session states, and then forward paused transactions for



execution. The whole process is transparent to the application,
just as the upcoming transactions are blocked by the migration
DDL statement for a while.

Scale PolarDB-X cluster. Using PolarDB-MT, we can
quickly add a DN node to increase both read and write
throughput of PolarDB-X: (1) An empty RW node is created.
The elapsed time depends on the time to find available
resources (e.g., virtual machines); (2) The node is registered
to GMS. GMS then counts the load distribution and generates
a migration plan containing those tenants to be moved to the
new node; (3) The plan is executed. Tenant migrations with
different pairs of source and destination RWs can be scheduled
in parallel. As described previously, during the migration, new
transactions would be suspended for seconds, but read requests
can be forwarded to the RO node to mitigate the impact.

VI. HTAP

With the decoupled storage architecture, PolarDB-X can
tackle both OLTP and OLAP workloads within a single sys-
tem. In this section, we introduce PolarDB-X’s major designs
for Hybrid Transactional and Analytical Processing (HTAP).

v
Coordinator

TP/AP Workload

CPU
Memory

TP Resource

CPU

CPU CPU

CPU
Memory

AP Resource

CPU

CPU CPU

ExecutorExecutorExecutor

Coordinator Coordinator

CN CN

DN (Row) DN (Column)

Optimizer Optimizer Optimizer

APWorkload

TPWorkload

CN

Fig. 6. PolarDB-X HTAP framework

A. Overview

Figure 6 shows the overall framework of PolarDB-X’s
HTAP design. PolarDB-X provides a single access endpoint
to the application, and all OLTP and OLAP traffics are
handled through this endpoint. The HTAP-oriented optimizer
at the endpoint automatically differentiates OLTP and OLAP
requests and dispatches them to different compute nodes. More
specifically, the concept of RW and RO nodes in PolarDB-X
leads to a natural approach of separating different workloads,
i.e., OLTP and OLAP requests are processed by RW and RO
nodes, respectively. Such a physical separation of resources
retains high stability to OLTP workloads. At the same time,
distributed transaction and replica consistency inherently take
care of data visibility for OLAP workloads. There are two
major advantages from the above HTAP framework. First,
different workloads are separated and consistent, where OLTP
workloads will not be delayed from log replication. Second,

distributed parallel computing techniques can be utilized,
where OLAP workloads can obtain good scalability.

B. HTAP Optimizer

Request classification and routing. Existing HTAP solu-
tions are mainly built on top of separated OLAP and OLTP
database systems, where read-write separation or ETL pipeline
is applied. They suffer from many challenges, such as poor
analytical query freshness and high multi-system maintenance
overhead. In contrast, PolarDB-X’s optimizer is equipped with
query classification which is able to route workloads appropri-
ately to help process HTAP workloads within a single system.
When a request arrives, the optimizer will first estimate the
cost of core resource (e.g., CPU, memory, I/O, network)
consumption required by the request. Based on this cost and
an empirical threshold, each request is classified as either an
OLTP or an OLAP request. Afterwards, all OLTP requests
are routed to the primary RW node, while OLAP requests
are further fed into a MPP optimization stage that generates
distributed execution plans to run in multiple RO nodes. As
a result, applications can rely on PolarDB-X to handle HTAP
workloads transparently.

Operator push-down. The separation of computing and
storage brings in excellent scale out capability, but also in-
troduces noticeable network traffic between computing and
storage nodes. To mitigate this overhead, pushing compute
operation closer to data storage is a promising optimization.
Hence, PolarDB-X supports operator push-down. We fully
consider characteristics of both storage (e.g., row store or
column store) and data (e.g., whether the column has an index)
to estimate the execution cost. This guides us to push specific
portions of the query (such as Join, Agg, Sort operators) to
corresponding storage nodes for near-data computing.

C. HTAP Executor

MPP model. PolarDB-X processes OLAP queries using a
MPP model, which involves many CN nodes accessing data
from many DN nodes. The overall procedure is as follows: (1)
The user connects to a CN node, which subsequently acts as
Query Coordinator. (2) A query is sent to Query Coordinator,
who generates a execution plan from its optimizer. The plan
is split into multiple fragments (i.e. sub-plans), each of which
further contains multiple operators (e.g. Scan, Agg, Join).
(3) Task Scheduler in Query Coordinator encapsulates each
fragment as a Task, and then schedules all tasks to appropriate
CN nodes for execution. (4) Each involved CN node applies
for required resources. It constructs the context, starts the
execution task, and periodically reports its status to Query
Coordinator. (5) Each executed task exchanges necessary data
with others. When all tasks complete, partial results are sent
back to Query Coordinator, who assembles the final result and
returns it to the user. (6) Query Coordinator and all involved
CN nodes are cleaned up and all resources are released.

Since PolarDB-X shards data to multiple DN nodes, the
execution plan considers the underlying data locality. Sub-
plans will be pushed down to corresponding DN nodes when



possible, and the rest of the plan is translated to fragments
executed by CN nodes.

Timesharing Scheduler. The generated execution plan has
to be carefully scheduled on CN nodes to make better use
of resources. A CN node in PolarDB-X has two schedulers,
namely Task Scheduler and Local Scheduler. The Task Sched-
uler is responsible for task scheduling among different CN
nodes. The Local Scheduler is responsible for task schedul-
ing within a CN node. The task scheduling and execution
resources are not strongly tied. A scheduled job will not
exclusively occupy all resources of corresponding execution
thread. To make better use of thread resources, PolarDB-
X adopts time-slicing execution model. Each CN nodes has
a thread pool for executing scheduled jobs, where each job
queues up to enter the thread pool for execution. When a job
is blocked, it will be dropped to a blocking queue and wait
to be awakened. There are mainly three reasons that cause
a job to be blocked: derived from the operator dependency
graph; lacking execution resources (e.g. memory); or waiting
for the response from DN node. In addition, we borrow from
the time-slicing policy of Linux kernel, where we will suspend
a job after it runs long enough (e.g. 500ms) in a single round.

D. Resource isolation

Apart from above queuing and time-slicing mechanisms to
facilitate the parallel execution of many in-progress queries,
the resource management is also important for concurrently
running queries. Especially, when a running query can ag-
gressively consume huge amount of resources (such as CPU
and memory), it will seriously affect the progression of other
concurrent queries. PolarDB-X isolates resources for different
workloads in a preemptive manner.

For the CPU resource, We classify its usage into two groups,
i.e., AP Group and TP Group, and use cgroups for resource
isolation. The CPU resource of TP Group is unrestricted, while
the resource of AP Group is strictly controlled by cgroups
(using cpu.min.cfs quota and cpu.max.cfs quota). Moreover,
the query tasks are assigned to different thread pools: TP Core
Pool, AP Core Pool, and Slow Query AP Core Pool. The latter
two pools belong to AP Group with strict CPU restrictions.
It is possible that a AP query might have been mistakenly
recognized as a TP query, and we should ensure that TP
queries are unaffected. Once a query in TP Core Pool has
been running for an unexpectedly long time, it will terminate
its current time slice and be re-assigned to AP Core Pool for
subsequent execution. Similarly, when a query in AP Core
Pool runs unexpectedly long, it will be re-assigned to Slow
Query Pool, which has a lower share of time slices.

For the memory resource, the heap memory in a CN node is
divided into four major regions: TP Memory to store temporary
data for TP queries; AP Memory to store temporary data
for AP queries; Other to store data structures, temporary
objects, metadata, etc.; and System Reserved for privileged
usage. Meanwhile, both TP Memory and AP Memory have
corresponding maximum and minimum usage limits, and they
can preempt each other’s resources when needed. More specif-

ically, TP Memory will only release the preempted memory
(from AP Memory) until the query completion, while AP
Memory must immediately release the preempted memory
when TP Memory is requesting for it.

E. In-Memory Column Index

PolarDB-X supports an in-memory column index on its DN
to benefit from column stores, which can significantly improve
the performance over row store when dealing with complex
queries. This index is implemented as an in-memory columnar
representation of the selected or indexed columns in row store.
The logical operations (e.g., insert, update, delete) on the
indexed column are captured from the log and converted to
the corresponding operations on the index. Since the log will
be transmitted to RO nodes, we can build column indexes
on selected RO nodes responsible for AP queries. To avoid
memory expense from maintaining column indexes on the RW
node, it only captures the log but will not materialize column
indexes. A record in column index has its trx_id being
consistent with that in InnoDB. This facilitates the reuse of
InnoDB read view to implement a hybrid execution plan on a
consistent snapshot of both row and column stores. To further
mitigate the maintenance overhead of the column index, its
updates can be delayed and batched. In this case, its version
lags behind the row store’s, and AP queries run on the version
of snapshot subject to the column index.

Recall that the optimizer needs to enumerate various fea-
sible execution plans in the CBO phase. Inside PolarDB-X’s
optimizer, the execution plan is represented as an expression
tree in relational algebra. In this case, the storage layer is
decoupled and different storage types (i.e., row store and col-
umn store) can be leveraged. More specifically, the optimizer
converts the logical expression plan into a physical execution
plan, by adopting the cost model according to the storage
characteristics. For example, in a row store, when the index
is hit, the qualified row can be quickly fetched; but when the
index is missing or a large amount of data is scanned, the
IO cost tends to be quite high. Similarly, in a column store,
the storage is more compact where the I/O and computation
are more efficient when processing large amounts of data; the
execution of certain operations such as filter, join, aggregation
becomes much faster.

After a comprehensive comparison of physical execution
plans on both row store and column store (i.e., in-memory
column index in PolarDB-X), the optimizer will finally select
the one with the lowest cost. In practice, large data scans and
push-down plans with join or aggregation prefer in-memory
column index, while point queries choose InnoDB row store.

VII. EVALUATION

All experiments were conducted on Alibaba Cloud. The CN
is deployed on ECS virtual machines, configured with 16-core
Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz and
64GB memory. The DN used is PolarDB with 8-core 64GB
memory instance specification (both RW and RO). The Linux
kernel version is 4.19.91-19.1.al7.x86 64.



A. Cross-DC Transaction

In order to compare the impact of deploying HLC-SI
and TSO-SI in multiple datacenters on transaction (read and
write) performance, we used the Sysbench oltp-write-only and
oltp-read-only benchmarks. A transaction in oltp-write-only
includes deletes, inserts and index updates to different rows.
While the transaction in oltp-read-only consists of ten point
reads and another four range queries. Data access follows a
random distribution, and leads to distributed transactions.

The PolarDB-X cluster in this experiment is deployed in
three datacenters, and the network round-trip time between
datacenters is about one millisecond. It consists of six CN
servers and three PolarDB instances. Each datacenter has two
CN servers and one PolarDB instance. For TSO-SI deploy-
ment, the TSO server is placed at one of the datacenters.

0

50

100

150

200

0
1000

2000
3000

4000
5000

6000
7000

1 4 16 32 64 128 256 512 1024

La
te
nc
y/
m
s

TP
S

Client Threads

write-only(HLC-SI)/TPS write-only(TSO-SI)/TPS

write-only(HLC-SI)/Latency write-only(TSO-SIJ/Latency

(a) Sysbench Write-Only Transactions

0
50
100
150
200
250
300
350

0

1000

2000

3000

4000

5000

6000

1 4 16 32 64 128 256 512 1024

La
te
nc
y/
m
s

TP
S

Client Threads

read-only(HLC-SI)/TPS read-only(TSO-SI)/TPS

read-only(HLC-SI)/Latency read-only(TSO-SI)/Latency

(b) Sysbench Read-Only Transactions
Fig. 7. Comparison of TSO-SI and HLC-SI with Sysbench when deployed
across DC

Figure 7(a) and 7(b) compare the total transaction through-
put and latency of HLC-SI and TSO-SI under various work-
loads. In Figure 7(a), we observe that the average transaction
latency of TSO-SI is higher than that of HLC-SI, due to
the additional delay in obtaining timestamps from the TSO
server perhaps in another datacenter. As the number of client
threads increases, the gap between them also increases. This is
because under higher concurrency, more threads are waiting
for responses from TSO, which results in excessive context
switches or even thread-thrashing. The peak write throughput
of TSO-SI is also 19% higher than that of TSO-SI. A similar
situation is also observed in Figure 7(b).

B. Elasticity

This experiment expands the size of a PolarDB-X cluster
from eight CN nodes and four PolarDB instances gradually
to 8x of the original size. We compare the scaling speed
of two methods, i.e., one using the rapid tenant migration
of PolarDB-MT and the other with traditional data transfer
method. The total data volume is 160 million rows and 40
GB in size (about 250 bytes per row), evenly distributed on

all shards. During the scaling process, a Sysbench oltp-read-
write test (with 3000 clients threads) runs continuously to
simulate the background load. Figure 8(a) shows that, when
using PolarDB-MT, the three scaling operations (including the
warm up time) are completed in 4.2, 4.5 and 4.6 seconds, and
the sysbench throughput has increased by 113%, 94% and
68% times, respectively. In contrast, Figure 8(b) shows that
it takes 489, 527 and 660 seconds to scale the cluster using
data transfer, which is 116-143 times longer than the above
approach. Clearly, the rapid scaling based on tenant migration
is very helpful to deal with traffic surges.

The 1st Scaling
The 2nd Scaling

The 3rd Scaling

(a) Scale Using Fast Tenant Migration Mechanism Of PolarDB-MT

The 1st Scaling
The 2nd Scaling

The 3rd Scaling

(b) Scale By Copying Data Between Source And Target
Fig. 8. Comparison of Scaling PolarDB-X using different approaches

C. HTAP

Resource Isolation and Scalable RO. This experiment
aims to evaluate resource isolation in CN server under mixed
loads, and the benefits of using dedicated and scalable RO
nodes to serve analytical queries. We simulate mixed TP and
AP workloads by simultaneously running TPC-C and TPC-
H tests on one PolarDB-X cluster. The cluster has two CN
servers and four PolarDB DN instances. Each PolarDB DN
instance has four RO nodes. TPC-C uses 1000 warehouses
and 800 terminals, and the scale factor is 100. The TPC-
C test runs continuously in the background, and the load of
TPC-C is bound to RW nodes. When TPC-H is not running,
tpmC is stable at 130K-140K. We run TPC-H six times with
a different configuration each time. In the first configuration,
the resource isolation switch of CN is turned off, and it is
turned on in all the following configurations. In the first two
configurations, the load of TPC-H is sent to the RW node,
and TPC-C and TPC-H share CN and DN resources. While in
the last four configurations, we use one to four dedicated RO
nodes respectively, and reroute the reads in TPC-H to them.

Figure 9(a) shows that in the first configuration, TP work-
loads are severely disturbed. There are ten obvious perfor-
mance degradation jitters (over 40%). When resources are
nearly exhausted due to contention, the lowest tpmC drops to
57. In the second configuration, the resource isolation switch
of CN is turned on, where the interference to TP workload
is reduced. TpmC is higher than 120K for most of the time,
with only two jitters down to 110K. It can also be seen from
Figure 9(b) that the second run of TPC-H is slightly longer



0

20

40

60

80

100

120

140

160

5
16

5
32

5
48

5
64

5
80

5
96

5
11

25
12

85
14

45
16

05
17

65
19

25
20

85
22

45
24

05
25

65
27

25
28

85
30

45
32

05
33

65
35

25
36

85
38

45
40

05
41

65
43

25
44

85
46

45
48

05
49

65
51

25
52

85
54

45

tp
m

C 
()T

ho
us

an
ds

(a) Performance variation of TPC-C while TPC-H runs six times

1,344
1,470

397
242 218 220

0
200
400
600
800
1000
1200
1400
1600

Different Isolation Configurations

Se
co

nd
s

No-isolation Isolated-CN Isolated-CN-DN(1RO)
Isolated-CN-DN(2RO) Isolated-CN-DN(3RO) Isolated-CN-DN(4RO)

(b) Latency of each run of TPC-H
Fig. 9. TPC-C and TPC-H Performance when running mixed workloads with
different resource isolation and available resources configurations

(9%) than the first run. This is because the resource isolation
is used and AP workload takes up less resources.

In the last four configurations, after using dedicated RO
nodes to serve read requests, TPC-C is almost unaffected. The
last four groups show the effect of dedicated and scalable RO
nodes on analytical workloads. It can be seen from Figure 9(b)
that increasing the RO node from one to two has a significant
effect, reducing the latency by 39%, and further expanding
from two to three nodes reduces by another 10%. However, the
continued increase of RO nodes has almost no effect, which
indicates that the bottleneck of the system at this moment lies
in the CN and backend row store (based on InnoDB).

MPP and Column-Index. This test aims to show the impact
of the MPP execution engine and the in-memory column index
on the TPC-H load. MPP uses four CN servers. Figure 10
shows that after using MPP, almost all queries are greatly
improved, and 21 of them are improved by more than 100%.
Among them, Q9 has the highest improvement ratio, reaching
263%, which is close to linear because this query involves
operations of 6 tables and few filter conditions. A large number
of Hash Join and Hash Aggregation are computed in CN,
which has become a bottleneck. The ratios of Q11 and Q15 are
relatively low, 49% and 79% respectively, because the amount
of data involved in these two queries is relatively small where
the join algorithm chooses to use index nested loop join. In
this case, the CPU of CN is not a bottleneck.

Using column index, the latency of seven queries have been
significantly reduced: Q1 (748%), Q6 (1828%), Q8 (243%),
Q12 (556%), Q14 (547%), Q15 (463%), Q21 (348%). In Q14,
using column index reduces a lot of scan time. For Q1 and
Q6, table-scan and filter operators of the lineitem table and
the first phase of aggregation are offloaded. For Q12, the
partition-wise join of the lineitem and orders is pushed down
to the column index, which uses in-memory hash join to speed

up. Q21 also uses the built-in hash join of column index to
improve performance. Q15 is an example of the combined use
of row storage and column index, in which the table-scan and
filter of the lineitem are pushed down to the column index, and
the primary key of the supplier (row storage) table is looked
up in the index nested loop join. Q8 pushes the bloom filter
down to the column index, effectively reducing the amount of
data transmission between CN and DN.

VIII. LESSONS LEARNED

We have also learned from experiences in providing
PolarDB-X as a service on Alibaba Cloud and added a series
of DBA- and developer-friendly features.

Anti-Hotspots. In mission critical applications, hotspots in
the database must be carefully dealt with. The most common
case is that the load between DN nodes is unbalanced where
some are overloaded. We can migrate shards to achieve a
balanced state between DNs. If the data volume or traffic
of a single shard is too large, it will become a hot shard.
When a shard grows larger due to data skew, we will split
the shard according to another hash function. Some secondary
index keys will become hot keys, such as using states as keys.
Some states will have a lot of data and become hot keys. The
hot key can be placed on one shard alone. If hotspot still exists,
more fields can be added to the key of the secondary index
to split a hotspot key into multiple keys with the same prefix.
Rows that are frequently updated and accessed are called hot
rows. All operations on a single hot row is actually executed
serially, and can be optimized using hotspot-aware in-memory
data structures, such as the work in [32], [33].

Automated Traffic Control. When concurrency of certain
unusual SQLs increase, these queries will occupy significant
system resources and compete for resources with high-priority
queries of the core business. For example, the occurrence
of cache penetration/breakdown would dramatically increase
the concurrency of certain types of SQL. And when a large
number of slow SQLs without proper indexes are issued, they
will exhaust system resources and disturb normal business.
PolarDB-X is assisted with machine learning techniques to
perform offline training on historical performance data, and
uses obtained model to perform anomaly detection on real-
time telemetry data. When an anomaly is detected, PolarDB-X
performs an analysis of running transactions and locks waiting,
finds the problematic queries that consume the most resources,
and then limits the maximum allowable concurrency of them.

Index Recommendation. Indexes are critical to the per-
formance of SQL queries. However, indexes will also intro-
duce significant update costs, which is true especially in a
distributed database, where adding indexes will increase the
number of participants in two-phase commit. If the database
can suggest indexes for SQL and give quantitative analysis of
performance improvement after using the new index, a lot of
efforts will be saved. Hence, we introduce a SQL Advisor in
PolarDB-X. This advisor can analyze the SQL to find which
columns can use the index (Indexable Column), enumerate the
possible index combinations to get the Candidate Index, prune



0

1

1

2

4

8

16

32

64

128

256

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

RowStore-SMP(16c) RowStore-MPP(16c x4) ColumnStore-Mpp(16c x4)

Fig. 10. The effect of vectorized engine, MPP engine and in-memory column index on TPC-H workload

some candidates with low selectivity through heuristic search,
use the optimizer to estimate costs with these hypothetical
(what-if [34]) indexes, select the index combination with the
highest saving and recommend it to the user.

IX. RELATED WORKS

Cloud-native databases like Aurora [14], Socrates [25]
and Taurus [35] build database services on top of a shared
storage pool. Notably, Aurora offloads page materialization
downwards to the shared storage. Socrates transforms the
on-premise SQL Server into a DBaaS and further separates
logging and storage from database kernel to dedicated services.
Decoupled storage systems has a significant advantage of
elastic scaling-up/down. However, none of these systems have
been reported to treat shards as tenants and support seamlessly
horizontal scaling-out. PolarDB-X makes up for this aspect.

The industry has developed many distributed database sys-
tems from scratch based on transactional key-value stores [3],
[1], [2]. Spanner [3] uses strict two-phase locking (2PL) and
two-phase commit to ensure serializability. The adoption of
Truetime API allows Spanner to support linearizability in a
geo-distributed cluster. However, Truetime API requires a few
milliseconds commit-wait time to avoid uncertainty caused by
clock drifting. This increases the latency of read-write trans-
actions in Spanner. PolarDB-X supports lower isolation levels
and performs better for short-transaction OLTP workloads.
CockroachDB [2] provides serializable isolation using Multi-
version timestamp ordering. Its timestamp is generated using
HLC. Our approach is different since PolarDB-X chooses
snapshot isolation. TiDB [1] uses a centralized TSO to provide
MVCC based snapshot isolation. In contrast, our system
adopts a decentralized timestamp service.

The academia has also addressed performance bottlenecks
in distributed database systems, such as distributed transaction,
concurrency control protocol, and global clock service [36],
[37], [31], [38], [39], [40], [41], [42], [43]. Several work [44],
[37], [31] adopt local clock to remove the overhead of consult-
ing a centralized clock service. Their approaches depend on
optimistic transaction execution or wait delay before starting a
transaction due to local clock’s time skew. DST [45] designs
a distributed time service that is orthogonal to concurrency
control protocols. This approach needs to record read and
write sets to support serializable isolation for both read-write
transactions and read-only transactions.

Live migration of both shared-storage and shared-nothing
databases have been well studied. In Albatross [46], similar
to PolarDB-MT, the persistent data of a tenant’s database is
stored in the shared storage and hence does not need migration.
In addition, it migrates the database cache and the state of
active transactions to minimize service disruption. For shared-
nothing architecture, Zephyr [47] introduces a dual mode that
allows both source and destination to execute transactions
simultaneously to mitigate service interruption, but it still
needs to transfer database pages to the target node. To the
best of our knowledge, no previous studies have combined
the live migration techniques from both shared-storage and
shared-nothing architectures. In future work, PolarDB-X will
explore similar methods in [46], [47], [48], [49], [50] to further
shorten the transaction pause time during migration.

Azure SQL has thorougly investiaged resource isolation in
a multi-tenant database system and introduces the SQLVM
abstraction [51], [52], [53], which adopts lightweight metering
to audit whether the dynamic allocation of resources for
tenants achieves the same performance goal as the resource
reservation. PolarDB-X adopts a similar abstraction in the
HTAP scenario to avoid the mutual interference between TP
and AP workloads, focusing on dynamic allocation of CPU,
memory and network traffic resources. In addition, it also
leverages dynamically provisioned cloud resources to allow
AP workload to run on physically independent resources.

X. CONCLUSION

In this paper, we describe the design of PolarDB-X, a
distributed database co-designed with cloud-native databases.
It follows a three-tier CN-DN-SN architecture. At the CN
layer, PolarDB-X uses HLC-SI to avoid coordinating with
the central timestamp service to determine the order and
visibility between transactions. It also supports HTAP loads
through resource isolation and MPP execution engine. At the
DN layer, it uses Paxos to replicate redo logs for cross-
datacenter deployment. It can quickly increase read throughput
through extending RO nodes on top of decoupled storage,
rapidly scale a cluster by fast migrating shards through the
multi-tenant live migration, and supply the in-memory column
index to accelerate AP queries. At the SN layer, we achieve
data persistence in a single datacenter. The novel layered
architecture of PolarDB-X makes it meet the goals of efficient
cross-datacenter transaction, rapid scaling-out, and powerful
HTAP support in the cloud-native era.



REFERENCES

[1] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang et al., “Tidb: a raft-based htap database,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 12, pp. 3072–3084, 2020.

[2] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss et al., “Cockroachdb: The
resilient geo-distributed sql database,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp.
1493–1509.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, D. Woodford, Y. Saito, C. Taylor, M. Szymaniak, and
R. Wang, “Spanner: Google’s globally-distributed database,” in OSDI,
2012.

[4] D. G. Ferro, F. Junqueira, I. Kelly, B. Reed, and M. Yabandeh, “Omid:
Lock-free transactional support for distributed data stores,” in IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014,
IL, USA, March 31 - April 4, 2014, 2014, pp. 676–687.

[5] Apache, “Shardingsphere,” https://shardingsphere.apache.org/.
[6] Vitess, “Vitess,” https://vitess.io//.
[7] F. Li, “Cloud-native database systems at alibaba: Opportunities and

challenges,” Proceedings of the VLDB Endowment, vol. 12, no. 12, pp.
2263–2272, 2019.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li et al., “{TAO}: Facebook’s
distributed data store for the social graph,” in 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), 2013, pp. 49–60.

[9] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan, “Salt: Combining ACID and BASE in a distributed
database,” in 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). Broomfield, CO: USENIX
Association, Oct. 2014, pp. 495–509. [Online]. Available: https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/xie

[10] citusdata, “Citusdb,” https://www.citusdata.com/.
[11] Postgres-XC, “Postgres-xc,” https://postgresxc.fandom.com/wiki/

Postgres-XC Wiki.
[12] Postgres-XL, “Postgres-xl,” https://www.postgres-xl.org/.
[13] P. Chairunnanda, K. Daudjee, and M. T. Özsu, “Confluxdb: Multi-master

replication for partitioned snapshot isolation databases,” Proceedings of
the VLDB Endowment, vol. 7, no. 11, pp. 947–958, 2014.

[14] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
aurora: Design considerations for high throughput cloud-native relational
databases,” in Proceedings of the 2017 ACM International Conference
on Management of Data, 2017, pp. 1041–1052.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[16] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, 2007, pp. 398–407.

[17] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” 2011.

[18] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[19] M. Stonebraker and U. Çetintemel, “” one size fits all” an idea whose
time has come and gone,” in Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker, 2018, pp. 441–462.

[20] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang, and
G. Ma, “Polarfs: an ultra-low latency and failure resilient distributed
file system for shared storage cloud database,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 1849–1862, 2018.

[21] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang,
P. Wang, Y. Wang, R. Kuan et al., “{POLARDB} meets computational
storage: Efficiently support analytical workloads in cloud-native rela-
tional database,” in 18th {USENIX} Conference on File and Storage
Technologies ({FAST} 20), 2020, pp. 29–41.

[22] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang, Z. Cheng, S. Chen,
J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai, Y. Zhang, and J. Tong, “Polardb
serverless: A cloud native database for disaggregated data centers,” in
ACM SIGMOD, 2021, pp. 2477–2489.

[23] M. Demirbas, M. Leone, B. Avva, D. Madeppa, and S. Kulkarni,
“Logical physical clocks and consistent snapshots in globally distributed
databases,” The State University of New York at Buffalo, Department
of Computer Science and Engineering, Tech. Rep., 2014.

[24] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation,
2010.

[25] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu,
H. Kodavalla, D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash et al.,
“Socrates: the new sql server in the cloud,” in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1743–1756.

[26] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui,
Q. Liu, W. Huang, Y. Xiao et al., “Taurus database: How to be fast,
available, and frugal in the cloud,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp.
1463–1478.

[27] AlibabaCloud, “Loadbalancer,” https://www.alibabacloud.com/product/server-
load-balancer.

[28] Oracle, “Innodb,” https://dev.mysql.com/doc/refman/8.0/en/innodb-
storage-engine.html.

[29] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner et al., “F1: A
distributed sql database that scales,” 2013.

[30] K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson, “Strongly consis-
tent replication for a bargain,” in Proceedings of the 26th International
Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long
Beach, California, USA, 2010, pp. 52–63.

[31] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si: Snapshot isolation
for partitioned data stores using loosely synchronized clocks,” in IEEE
32nd Symposium on Reliable Distributed Systems, SRDS 2013, Braga,
Portugal, 1-3 October 2013. IEEE Computer Society, 2013, pp.
173–184. [Online]. Available: https://doi.org/10.1109/SRDS.2013.26

[32] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li, “Hotring:
A hotspot-aware in-memory key-value store,” in 18th {USENIX} Con-
ference on File and Storage Technologies ({FAST} 20), 2020, pp. 239–
252.

[33] H. Jin, Z. Li, H. Liu, X. Liao, and Y. Zhang, “Hotspot-aware hybrid
memory management for in-memory key-value stores,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 779–792,
2019.

[34] S. Chaudhuri and V. Narasayya, “Autoadmin “what-if” index analysis
utility,” ACM SIGMOD Record, vol. 27, no. 2, pp. 367–378, 1998.

[35] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui,
Q. Liu, W. Huang, Y. Xiao et al., “Taurus database: How to be fast,
available, and frugal in the cloud,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp.
1463–1478.

[36] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi,
“Calvin: Fast distributed transactions for partitioned database systems,”
in SIGMOD, 2012.

[37] X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and S. Devadas,
“Sundial: Harmonizing Concurrency Control and Caching in a Dis-
tributed OLTP Database Management System,” in Proceedings of the
VLDB Endowment (PVLDB), June 2018.

[38] J. Cowling and B. H. Liskov, “Granola: Low-overhead distributed
transaction coordination,” in Proc. of USENIX ATC. 2012, 2010, pp.
223–236.

[39] E. Zamanian, C. Binnig, T. Kraska, and T. Harris, “The end of a myth:
Distributed transaction can scale,” PVLDB, vol. 10, no. 6, pp. 685–696,
2017.

[40] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports, “Building consistent transactions with inconsistent replication,”
in Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015, E. L. Miller
and S. Hand, Eds. ACM, 2015, pp. 263–278. [Online]. Available:
https://doi.org/10.1145/2815400.2815404

[41] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A. E. Abbadi,
“Maat: Effective and scalable coordination of distributed transactions



in the cloud,” Proc. VLDB Endow., vol. 7, no. 5, pp. 329–340, 2014.
[Online]. Available: http://www.vldb.org/pvldb/vol7/p329-mahmoud.pdf

[42] X. Yu, H. Liu, E. Zou, and S. Devadas, “Tardis 2.0: Optimized time
traveling coherence for relaxed consistency models,” in Proceedings
of the 2016 International Conference on Parallel Architectures
and Compilation, PACT 2016, Haifa, Israel, September 11-15,
2016, A. Zaks, B. Mendelson, L. Rauchwerger, and W. W.
Hwu, Eds. ACM, 2016, pp. 261–274. [Online]. Available: https:
//doi.org/10.1145/2967938.2967942

[43] T. Zhu, Z. Zhao, F. Li, W. Qian, A. Zhou, D. Xie, R. Stutsman, H. Li, and
H. Hu, “Solardb: Toward a shared-everything database on distributed
log-structured storage,” ACM Trans. Storage, vol. 15, no. 2, pp.
11:1–11:26, 2019. [Online]. Available: https://doi.org/10.1145/3318158

[44] X. Yu, A. Pavlo, D. Sánchez, and S. Devadas, “Tictoc: Time
traveling optimistic concurrency control,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, F. Özcan,
G. Koutrika, and S. Madden, Eds. ACM, 2016, pp. 1629–1642.
[Online]. Available: https://doi.org/10.1145/2882903.2882935

[45] “Unifying timestamp with transaction ordering for MVCC with
decentralized scalar timestamp,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). Boston,
MA: USENIX Association, Apr. 2021. [Online]. Available: https:
//www.usenix.org/conference/nsdi21/presentation/wei

[46] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
Lightweight elasticity in shared storage databases for the cloud using
live data migration,” Proceedings of the VLDB Endowment, vol. 4, no. 8,
pp. 494–505, 2011.

[47] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: live
migration in shared nothing databases for elastic cloud platforms,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, 2011, pp. 301–312.

[48] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and P. Shenoy, “” cut me
some slack” latency-aware live migration for databases,” in Proceedings
of the 15th international conference on extending database technology,
2012, pp. 432–443.

[49] T. Mishima and Y. Fujiwara, “Madeus: database live migration middle-
ware under heavy workloads for cloud environment,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, 2015, pp. 315–329.

[50] J. Hai, C. Wang, X. Chen, T. O. Li, H. Cui, and S. Wang, “Fulva:
Efficient live migration for in-memory key-value stores with zero
downtime,” in 2019 38th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2019, pp. 83–8309.

[51] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and S. Chaudhuri,
“Sqlvm: Performance isolation in multi-tenant relational database-as-a-
service,” 2013.

[52] S. Das, V. R. Narasayya, F. Li, and M. Syamala, “Cpu sharing tech-
niques for performance isolation in multi-tenant relational database-as-a-
service,” Proceedings of the VLDB Endowment, vol. 7, no. 1, pp. 37–48,
2013.

[53] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and S. Chaud-
huri, “Sharing buffer pool memory in multi-tenant relational database-
as-a-service,” Proceedings of the VLDB Endowment, vol. 8, no. 7, pp.
726–737, 2015.


