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 Digital data to reach 175 zettabytes by 2025

 Data outsourcing demand remains strong
• Increasing adoption rate
• Big data analytics in cloud

Trend of data outsourcing services
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*IDC Report, Executive Summary: Data Growth, Business Opportunities, and IT Imperatives, 2019.

Source: Cisco Global Cloud Index: Forecast and Methodology, 2016-2021.



Why encrypted search?
 Sensitive data demands 

encrypted storage
• General Data Protection Regulation (EU)
• California Consumer Privacy Act

 Search is ubiquitous
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-- Guide to privacy and security of electronic health information, 2015

“if your practice has a breach of encrypted data [...] 
it would not be considered a breach of unsecured 
data, and you would not have to report it” 



Our effort
 Volume*-hiding range queries over encrypted data

 Significantly reduced leakage profile
• Hiding the number of range query results (volume)
• Obfuscating the results co-occurrence across different range queries 

 More resilience against recent attacks
• [F. B. Durak et al. CCS’16], [P. Grubbs et al. S&P’17]
• [M.-S. Lacharit and B. Minaud S&P’18], [Z. Gui et al. SIGSAC’19] …
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SQL: SELECT * FROM table_user WHERE age > 30

An example of range query SQL statement



An example of encrypted range query
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Client

Token(k, age<30)

{Enc(k, F001)}

Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted files

Enc.file

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

 An encrypted index allows the server to conduct various 
query functionalities in the ciphertext domain

PPE: Some property-preserving encryption that allows range query



Existing solutions
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[Boldyreva et al. EUROCRYPT’09]
[Popa et al. SP’13]
[Kerschbaum et al. CCS’15] …

.

Order-preserving encryption 
(OPE)

Order-revealing encryption 
(ORE)

Property-preserving 
encryption (PPE)

[Chenette et al. FSE’16]
[Lewi and Wu CCS’16] …

- Pros: sub-linear query complexity
- Cons: deterministic enc. that leaks  
frequency and order

- Pros: protect frequency, and some degree  
of order-leakage
- Cons: linear query complexity

 But their leakage profiles can still be abused 
• Mainly from the result co-occurrence pattern and the volume 



Simple counting attacks on volume 
 Observation: when a query returns a unique number of files 

(volume), it can immediately be guessed! [Cash et al., CCS’15]

k1

k2

k3

71 4 2

3 6 4 2

5 1

score

food

71 4 2

3 6 4 2

5 14

chair
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Index (Known by adversary)

k3

token

3 files are matched, so the query 
keyword must be “food”!

Similar intuition can also be applied to range query



 Observation: infer order of values by observing the result co-
occurrence in different range queries [Lacharit et al., S&P’18]

Attacks on result co-occurrence
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Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted data records

Enc.File

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

Q1 (age<?): {F001, F002} Q2 (age<?): {F001, F002, F003}

F001

F002
F003

Query 1

Query 2



Attacks on result co-occurrence

9

Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted data records

Enc.File

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

Q1 (age<?): {F001, F002} Q2 (age<?): {F001, F002, F003}

F003

F001

F002

<

Query 1

Query 2

 Observation: infer order of values by observing the result co-
occurrence in different range queries [Lacharit et al., S&P’18]



Goals and challenges
 Need to significantly suppress the leakages 

• More resilience against inference-attacks on encrypted range query

 Our plan:
• Borrow volume-hiding structure from encrypted keyword search
• Obfuscate the results co-occurrence among different queries
• Still maintain range query search efficiency
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 Naïve padding over predefined search results:

 Bucketization-based padding:
• Reduced padding overhead

Volume-hiding keyword search
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w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

Inverted indexes Naïve padding

w1

w2

w3

w3’

Desired volume-hiding structure

f1

f2 f3

f4 f5

f6 f7

w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

Inverted indexes



Towards volume-hiding range query

 But range query cannot be pre-defined
• Unable to forecast all range-matched results 
• The maximum volume can be the entire dataset

 Treat each value in the query range as “keyword” 
• Convert range query into multiple “keyword” search (aka sub-queries)

 A hybrid design: volume-hiding structure + TEE (SGX)
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20

30

50

50’

f1

f2 f3

f4 f5

f6 f7

Query (<40) Confidential 
query process

Query1 (v=20)

Query2 (v=30)



Why not put everything inside TEE? 

 We focus on Intel SGX 
• Hardware-enabled trusted execution environment (Enclave)
• Provide confidentiality and integrity
• Limited by the current maximum of 256MB

 We only use TEE for two aspects: 
• Confidential range query processing (sub-query conversion)
• Secure result caching for co-occurrence pattern obfuscation
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HybrIDX architecture
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 In enclave: A tree-based range index and a trusted cache (fixed size)
 External: An encrypted volume-hiding structure, with file blocks and padding

ℒ1=G(𝒗𝒗1||1
)

f1 padding

ℒ2=G(𝒗𝒗2||1
)

f2 f3 f4

ℒ3=G(𝒗𝒗2||2
)

f5 padding

ℒ4=G(𝒗𝒗3||1
)

f6 f7

Query:≥𝒗𝒗1||2

SGX-enabled DB Server

𝒗𝒗1

𝒗𝒗3𝒗𝒗2

…… …

Client

Enclave

HybrIDX Indexes

… …

f1

f6 f7 ℒ1 ℒ4 …



HybrIDX: query in action
 Prior query results are cached inside enclave

• Subsequent query is processed with cache 
• Trigger cache swapping and shuffling when needed
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SGX Index f1

f4 f5

f6 f7

Query (>30||2)
f2 f3

35 [#1]

40 [#1]20 [#2]

20

20’

35

40SGX cache

SGX-enabled DB Server



 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling
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SGX Index f1
Query1 (<40||1)

f2 f3

20

20’

SGX cache

SGX-enabled DB Server

f4, f5



 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling
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SGX Index f1
Query2 (<50||2)

f2 f3

20

20’

SGX cache

SGX-enabled DB Server

f4, f5 f6, f7



 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling
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SGX Index
Query3 (<30||2)

SGX cache

SGX-enabled DB Server

f1 f2, f3



Security strength
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 Adversarial server only views the following leakage profiles:
• Partial access set Aq = set of (L, v) ∈ SGXout returned for q
• Eviction set Eq = set of (L, v) ∈ SGXin evicted from enclave for q
• Eviction history set EHPq= {{q’: (L, v) ∈ Aq and (L, v) ∈ Eq’ in Q} : q ∈ Q}

 Remark：L--> prf label, v--> encrypted value, Q --> query list.

 The larger ratio of cache-size over query result size (volume), the 
better uncertainty of item tracking across queries. 

Lquery(q)=(Aq, Eq, EHPq)



Towards larger cache/response ratio

 Applications do not need to display all results at once

 Display a subset of results per round
• Show more when needed
• Easily supported with enclave in deployment

 Inspired by similar practice from Oblix [SP’18] (for a different purpose)
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Experiments

 Data sets: 160K data records and randomly assign 
them to 1K index values

 SGX-enabled server with an Intel(R) Core(TM) i7-
7700 processor (3.6 GHz) and 16GB RAM

 Intel SGX SSL and OpenSSL (v1.1.0g) 
 Symmetric encryption via AES-128 and the pseudo-

random function via HMAC-256
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Setup cost

 For 160K records, the client takes less than 5s
 Padding overhead for over 80% load-factor 

indexes are less than 0.4 KB
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Query performance

 For 10K values, the query latency is around 0.14s
• 18× faster compared to the ORE-based scheme
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Conclusion and future work

 Encrypted range query with much reduced leakage
• hiding the volume of query results
• obfuscating the results co-occurrence across queries

 Hybrid design: volume-hiding structure + TEE (SGX)

 To-do: build real-world applications on top

 Thank you
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