
HybrIDX: New Hybrid Index for Volume-hiding
Range Queries in Data Outsourcing Services

Kui Ren, Yu Guo, Jiaqi Li, Xiaohua Jia, Cong Wang,
Yajin Zhou, Sheng Wang, Ning Cao, and Feifei Li

The 40th IEEE International Conference on Distributed Computing Systems (ICDCS 2020)

 Digital data to reach 175 zettabytes by 2025

 Data outsourcing demand remains strong
• Increasing adoption rate
• Big data analytics in cloud

Trend of data outsourcing services

2

*IDC Report, Executive Summary: Data Growth, Business Opportunities, and IT Imperatives, 2019.

Source: Cisco Global Cloud Index: Forecast and Methodology, 2016-2021.

Why encrypted search?
 Sensitive data demands

encrypted storage
• General Data Protection Regulation (EU)
• California Consumer Privacy Act

 Search is ubiquitous

3

-- Guide to privacy and security of electronic health information, 2015

“if your practice has a breach of encrypted data [...]
it would not be considered a breach of unsecured
data, and you would not have to report it”

Our effort
 Volume*-hiding range queries over encrypted data

 Significantly reduced leakage profile
• Hiding the number of range query results (volume)
• Obfuscating the results co-occurrence across different range queries

 More resilience against recent attacks
• [F. B. Durak et al. CCS’16], [P. Grubbs et al. S&P’17]
• [M.-S. Lacharit and B. Minaud S&P’18], [Z. Gui et al. SIGSAC’19] …

4

SQL: SELECT * FROM table_user WHERE age > 30

An example of range query SQL statement

An example of encrypted range query

5

Client

Token(k, age<30)

{Enc(k, F001)}

Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted files

Enc.file

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

 An encrypted index allows the server to conduct various
query functionalities in the ciphertext domain

PPE: Some property-preserving encryption that allows range query

Existing solutions

6

[Boldyreva et al. EUROCRYPT’09]
[Popa et al. SP’13]
[Kerschbaum et al. CCS’15] …

.

Order-preserving encryption
(OPE)

Order-revealing encryption
(ORE)

Property-preserving
encryption (PPE)

[Chenette et al. FSE’16]
[Lewi and Wu CCS’16] …

- Pros: sub-linear query complexity
- Cons: deterministic enc. that leaks
frequency and order

- Pros: protect frequency, and some degree
of order-leakage
- Cons: linear query complexity

 But their leakage profiles can still be abused
• Mainly from the result co-occurrence pattern and the volume

Simple counting attacks on volume
 Observation: when a query returns a unique number of files

(volume), it can immediately be guessed! [Cash et al., CCS’15]

k1

k2

k3

71 4 2

3 6 4 2

5 1

score

food

71 4 2

3 6 4 2

5 14

chair

4

Index (Known by adversary)

k3

token

3 files are matched, so the query
keyword must be “food”!

Similar intuition can also be applied to range query

 Observation: infer order of values by observing the result co-
occurrence in different range queries [Lacharit et al., S&P’18]

Attacks on result co-occurrence

8

Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted data records

Enc.File

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

Q1 (age<?): {F001, F002} Q2 (age<?): {F001, F002, F003}

F001

F002
F003

Query 1

Query 2

Attacks on result co-occurrence

9

Enc.Age

PPE(k, 25)

PPE(k, 35)

PPE(k, 40)

…

Encrypted indexes Encrypted data records

Enc.File

Enc(k, F001)

Enc(k, F002)

Enc(k, F003)

…

Q1 (age<?): {F001, F002} Q2 (age<?): {F001, F002, F003}

F003

F001

F002

<

Query 1

Query 2

 Observation: infer order of values by observing the result co-
occurrence in different range queries [Lacharit et al., S&P’18]

Goals and challenges
 Need to significantly suppress the leakages

• More resilience against inference-attacks on encrypted range query

 Our plan:
• Borrow volume-hiding structure from encrypted keyword search
• Obfuscate the results co-occurrence among different queries
• Still maintain range query search efficiency

10

 Naïve padding over predefined search results:

 Bucketization-based padding:
• Reduced padding overhead

Volume-hiding keyword search

11

w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

Inverted indexes Naïve padding

w1

w2

w3

w3’

Desired volume-hiding structure

f1

f2 f3

f4 f5

f6 f7

w1

w2

w3

f1

f2 f3

f4 f5 f6 f7

Inverted indexes

Towards volume-hiding range query

 But range query cannot be pre-defined
• Unable to forecast all range-matched results
• The maximum volume can be the entire dataset

 Treat each value in the query range as “keyword”
• Convert range query into multiple “keyword” search (aka sub-queries)

 A hybrid design: volume-hiding structure + TEE (SGX)
12

20

30

50

50’

f1

f2 f3

f4 f5

f6 f7

Query (<40) Confidential
query process

Query1 (v=20)

Query2 (v=30)

Why not put everything inside TEE?

 We focus on Intel SGX
• Hardware-enabled trusted execution environment (Enclave)
• Provide confidentiality and integrity
• Limited by the current maximum of 256MB

 We only use TEE for two aspects:
• Confidential range query processing (sub-query conversion)
• Secure result caching for co-occurrence pattern obfuscation

13

HybrIDX architecture

14

 In enclave: A tree-based range index and a trusted cache (fixed size)
 External: An encrypted volume-hiding structure, with file blocks and padding

ℒ1=G(𝒗𝒗1||1
)

f1 padding

ℒ2=G(𝒗𝒗2||1
)

f2 f3 f4

ℒ3=G(𝒗𝒗2||2
)

f5 padding

ℒ4=G(𝒗𝒗3||1
)

f6 f7

Query:≥𝒗𝒗1||2

SGX-enabled DB Server

𝒗𝒗1

𝒗𝒗3𝒗𝒗2

…… …

Client

Enclave

HybrIDX Indexes

… …

f1

f6 f7 ℒ1 ℒ4 …

HybrIDX: query in action
 Prior query results are cached inside enclave

• Subsequent query is processed with cache
• Trigger cache swapping and shuffling when needed

15

SGX Index f1

f4 f5

f6 f7

Query (>30||2)
f2 f3

35 [#1]

40 [#1]20 [#2]

20

20’

35

40SGX cache

SGX-enabled DB Server

 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling

16

SGX Index f1
Query1 (<40||1)

f2 f3

20

20’

SGX cache

SGX-enabled DB Server

f4, f5

 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling

17

SGX Index f1
Query2 (<50||2)

f2 f3

20

20’

SGX cache

SGX-enabled DB Server

f4, f5 f6, f7

 Query process from cache and external structure
• Identify the external items to be returned
• Randomly choose enclave cached items for eviction
• Upon shuffling and re-encryption, swap them with external items

HybrIDX: caching and shuffling

18

SGX Index
Query3 (<30||2)

SGX cache

SGX-enabled DB Server

f1 f2, f3

Security strength

19

 Adversarial server only views the following leakage profiles:
• Partial access set Aq = set of (L, v) ∈ SGXout returned for q
• Eviction set Eq = set of (L, v) ∈ SGXin evicted from enclave for q
• Eviction history set EHPq= {{q’: (L, v) ∈ Aq and (L, v) ∈ Eq’ in Q} : q ∈ Q}

 Remark：L--> prf label, v--> encrypted value, Q --> query list.

 The larger ratio of cache-size over query result size (volume), the
better uncertainty of item tracking across queries.

Lquery(q)=(Aq, Eq, EHPq)

Towards larger cache/response ratio

 Applications do not need to display all results at once

 Display a subset of results per round
• Show more when needed
• Easily supported with enclave in deployment

 Inspired by similar practice from Oblix [SP’18] (for a different purpose)

20

Experiments

 Data sets: 160K data records and randomly assign
them to 1K index values

 SGX-enabled server with an Intel(R) Core(TM) i7-
7700 processor (3.6 GHz) and 16GB RAM

 Intel SGX SSL and OpenSSL (v1.1.0g)
 Symmetric encryption via AES-128 and the pseudo-

random function via HMAC-256

21

Setup cost

 For 160K records, the client takes less than 5s
 Padding overhead for over 80% load-factor

indexes are less than 0.4 KB

22

Query performance

 For 10K values, the query latency is around 0.14s
• 18× faster compared to the ORE-based scheme

23

Conclusion and future work

 Encrypted range query with much reduced leakage
• hiding the volume of query results
• obfuscating the results co-occurrence across queries

 Hybrid design: volume-hiding structure + TEE (SGX)

 To-do: build real-world applications on top

 Thank you

24

	The 40th IEEE International Conference on Distributed Computing Systems (ICDCS 2020)
	Trend of data outsourcing services
	Why encrypted search?
	Our effort
	An example of encrypted range query
	Existing solutions
	Simple counting attacks on volume
	Attacks on result co-occurrence
	Attacks on result co-occurrence
	Goals and challenges
	Volume-hiding keyword search
	Towards volume-hiding range query
	Why not put everything inside TEE?
	HybrIDX architecture
	HybrIDX: query in action
	HybrIDX: caching and shuffling
	HybrIDX: caching and shuffling
	HybrIDX: caching and shuffling
	Security strength
	Towards larger cache/response ratio
	Experiments
	Setup cost
	Query performance
	Conclusion and future work

