AB-tree: Index for Concurrent Random Sampling and Update

Zhuoyue Zhao Dong Xie Feifei Li
University at Buffalo Pennsylvania State University Alibaba
zzhao35@buffalo.edu dongx@psu.edu lifeifei@alibaba-inc.com

Motivation

m Approximate Query Processing (AQP) uses random samples
— to provide fast and approximate answers with error guarantees
— existing solutions often make trade-off between
. efficient online updates and

- low response time

SELECT SUM(y)
FROM A
WHERE x >= 5 AND x
<= 10
Unbiased estimator

SE— 5 _ ie[n Yi/Pi

R ‘ Y =

Database T V1, s Vn > n
Table Confidence interval €, §

Random Pr(lv —V|<e)=1-6
samples

m How do existing AQP systems perform random sampling?

Offline sampling Online Scan-based Sampling

Online Index-based Sampling

v’ Fast query: linear to sample size| x Slow query: linear to data size | v/ Fast query: linear to sample size
x Stale data and needs rebuild v'Query over latest updates v’ Query over latest updates

x Slow and delayed batch update ¥ Fast concurrent update x Slow serial update

Offline cgvr::“?rint Online
u "
Database update Database 392'/226 .,
Rando Table Table p

sampling Scan-based

Online : rebuild on random sampling '
m update Index-based Random sampling

& Query execution

*aka Ranked B-Tree, see [Frank Olken’s PhD
thesis, 1993]

Our goal: design an index structure that can support AQP with
all the three desired properties.

v'Fast AQP query: sampling scales (almost) linear to sample size
v'Query over latest updates
v'Fast concurrent update

Query execution Query execution

Why concurrency is hard for aggregate B-trees?

m Aggregate B-tree (example: uniform weights)
- Maintains sub-tree weights w, along with page pointer ¢
- W, is the sum of weights in the sub-tree
— Starting from root, randomly descend into sub-trees with probability o< w,.
- It can be shown the leaf tuple sampled has a probability proportional to its weight

- Weight updates must be applied atomically along a tree path from root to leaf where
insertion happens

Insert 12
5€ Pr 16 [l 16
t1 t2 3 / 7->8 6
P2 1 P3 9 || 12 Pa || 22 || 26
2 3 3 2->3 2 2 2 2
Ps P1o P11 P12

DOE BBO BOO DN OEE DEE DDE DD
m Baseline: X-latch tree path for each update
x Every update blocks every other thread
x Sampling and update throughput drops under heavy update workload

x DBMS with multi-version CC can further make decrease sampling
throughput for old snapshots due to “live version bloat”

m Our solution: AB-tree

m based on B-link tree in PostgreSQL 13
(available on Github: https://github.com/zzy7896321/abtree public)

Challenge 1: non-blocking weight updates

Roof Aggregate B-tree

Higher Contention

D3 || 9 || 12

3 2 2

Lower Contention

P7 Dsg Pg
leaf * [HNIENE] EIETE EIRI

* Internal pages have higher contention for weight updates
* Root page is always contended in any update

Can we update weights without X-latching the entire tree path?

* Yes, use CAS with S-latch one page at a time!
« S-latch guarantees no concurrent SMO while CAS is applied
» Weight updater does not block others
» Correctness of sampling? (see challenge 2)

Challenge 2: weight consistency for sampling

m Consistent weights needed for sampling purpose

- perform rejection sampling as in [Olken’93]

Definition 1: An aggregate B-tree T is said to be consistent for sampling
purpose if and only if for any index tuple t € T: W, = X1, Wy

P1

6 16
5
(LN S :
P2 || 1 P3 9 || 12 Pa || 22 || 26
2 3 3) 2 2 2 2
P1o P11 P12

/s . P D T s N Do)
OEE BEE B RN BNl EEE BEE BRI

m Natural idea is to update weights along the path before leaf insertion
m However, it is incorrect!

— Concurrent Structural Modification Operation (SMO) may undo the change

Ti:insertk, = 4
T,:insertk,, =5 ty 13 t; i3

Steps: 1 P2 1|l 3| P2

1) T; increments Wy, 3 > 2 2<3

- (undercounting!)
236 23| gl 4l5]6
Pe Pe

Nnew page p13

m Solution: two-pass insertion
— Pass 1: regular key insertion
- assign zero weight to new key
— Pass 2: descend in the tree again and modify weights
- redo weight modification on certain pages in case of concurrent SMO

- use page and tuple update counters to detect concurrent SMO
(see paper for details)

Challenge 3: sampling efficiency under MVCC

m Sampling under an old snapshot with MVCC could suffer from
“live version bloat”

— Many live versions of tuples are
- not visible to that sampling thread
- but are physically present in the index

. = high rejections rates = decreased sampling throughput

m Solution: build an in-memory multi-version weight store to allow

— Querying upper bound of weights under an old snapshot

- Tight enough for minimizing rejection due to live version bloat
- No logging/persistency required

- Only queries by active transactions

- Old snapshots do not live across crashes

— Details in the paper

Evaluation: insertion scalability

1 5 10 131517 20 2325 30 33 36
Number of threads

1 5 10 131517 20 2325 30 33 36
Number of threads

1 5 10 131517 20 2325 30 33 36
Number of threads

(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory

(32 GB, simulated with same seed)

B-tree is the original B-link tree without aggregates in PostgreSQL.
Its insertion throughput is an upper bound.

Conclusion: AB-tree scales similarly to the original B-link tree while baseline cannot.

Evaluation: read-write workload

)

1

)

—&@— AB-tree Baseline

120000 1000001 1/5 of read-only throughput

0000
600001 I 5~6x better
400001

20000 1
()1

80000 1

~6X better

40000 1

0

2 4 6 R 10

2 2 4 6 8 10
Number of concurrent sampling threads

Number of concurrent sampling threads

Avg insertion throughput (s~
Sampling throughput (s

Read-write workload with 10 insertion threads and varying # of sampling threads

Conclusion: AB-tree can sustain a reasonably high insertion and sampling throughput
when there are heavy updates while baseline can't.

Future direction: we hope to use AB-tree to enable HTAP within AQP systems.

https://github.com/zzy7896321/abtree_public

