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Motivation

m Approximate Query Processing (AQP) uses random samples
— to provide fast and approximate answers with error guarantees
— existing solutions often make trade-off between
. efficient online updates and

- low response time
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m How do existing AQP systems perform random sampling?
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*aka Ranked B-Tree, see [Frank Olken’s PhD
thesis, 1993]

Our goal: design an index structure that can support AQP with
all the three desired properties.

v'Fast AQP query: sampling scales (almost) linear to sample size
v'Query over latest updates
v'Fast concurrent update

Query execution Query execution

Why concurrency is hard for aggregate B-trees?

m Aggregate B-tree (example: uniform weights)
- Maintains sub-tree weights w, along with page pointer ¢
- W, is the sum of weights in the sub-tree
— Starting from root, randomly descend into sub-trees with probability o< w,.
- It can be shown the leaf tuple sampled has a probability proportional to its weight

- Weight updates must be applied atomically along a tree path from root to leaf where
insertion happens
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m Baseline: X-latch tree path for each update
x Every update blocks every other thread
x Sampling and update throughput drops under heavy update workload

x DBMS with multi-version CC can further make decrease sampling
throughput for old snapshots due to “live version bloat”

m Our solution: AB-tree

m based on B-link tree in PostgreSQL 13
(available on Github: https://github.com/zzy7896321/abtree public)

Challenge 1: non-blocking weight updates
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* Internal pages have higher contention for weight updates
* Root page is always contended in any update

Can we update weights without X-latching the entire tree path?

* Yes, use CAS with S-latch one page at a time!
« S-latch guarantees no concurrent SMO while CAS is applied
» Weight updater does not block others
» Correctness of sampling? (see challenge 2)

Challenge 2: weight consistency for sampling

m Consistent weights needed for sampling purpose

- perform rejection sampling as in [Olken’93]

Definition 1: An aggregate B-tree T is said to be consistent for sampling
purpose if and only if for any index tuple t € T: W, = X1, Wy
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m Natural idea is to update weights along the path before leaf insertion
m However, it is incorrect!

— Concurrent Structural Modification Operation (SMO) may undo the change

Ti:insertk, = 4
T,:insertk,, =5 ty 13 t; i3

Steps: 1 P2 1|l 3| P2

1) T; increments Wy, 3 > 2 2<3

- (undercounting!)
236 23| gl 4l5]6
Pe Pe

Nnew page p13

m Solution: two-pass insertion
— Pass 1: regular key insertion
- assign zero weight to new key
— Pass 2: descend in the tree again and modify weights
- redo weight modification on certain pages in case of concurrent SMO

- use page and tuple update counters to detect concurrent SMO
(see paper for details)

Challenge 3: sampling efficiency under MVCC

m Sampling under an old snapshot with MVCC could suffer from
“live version bloat”

— Many live versions of tuples are
- not visible to that sampling thread
- but are physically present in the index

. = high rejections rates = decreased sampling throughput

m Solution: build an in-memory multi-version weight store to allow

— Querying upper bound of weights under an old snapshot

- Tight enough for minimizing rejection due to live version bloat
- No logging/persistency required

- Only queries by active transactions

- Old snapshots do not live across crashes

— Details in the paper

Evaluation: insertion scalability
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B-tree is the original B-link tree without aggregates in PostgreSQL.
Its insertion throughput is an upper bound.

Conclusion: AB-tree scales similarly to the original B-link tree while baseline cannot.

Evaluation: read-write workload
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Conclusion: AB-tree can sustain a reasonably high insertion and sampling throughput
when there are heavy updates while baseline can't.

Future direction: we hope to use AB-tree to enable HTAP within AQP systems.


https://github.com/zzy7896321/abtree_public

