CIS 5930 Advanced Topics in Data Management

Feifei Li

Fall 2008

(Many slides were made available by Ke Yi)
External Memory Data Structures

- Names:
 - I/O-efficient data structures
 - Disk-based data structures (index structures) used in DB
 - Disk-resilient data structures (index structures) used in DB
 - Secondary indexes used in DB

- Other Data structures
 - Queue, stack
 * O(N/B) space, O(1/B) push, O(1/B) pop
 - Priority queue
 * O(N/B) space, O(1/B \cdot \log_{M/B} N/B) insert, delete-max

Mainly used in algorithms
External Memory Data Structures

• General-purpose data structures
 – Space: linear or near-linear (very important)
 – Query: logarithmic in B or 2 for any query (very important)
 – Update: logarithmic in B or 2 (important)
• In some sense, more useful than I/O-algorithms
 – Structure stored in disk most of the time
 – DB typically maintains many data structures for many different data sets: can’t load all of them to memory
 – Nearly all index structures in large DB are disk based
External Search Trees

- **Binary search tree:**
 - Standard method for search among \(N \) elements
 - We assume elements in leaves

\[
O(\log_2 N) \Rightarrow \text{Search in } O(\log_2 N) \text{ I/Os}
\]
\[
\Rightarrow \text{Rangesearch in } O(\log_2 N + T) \text{ I/Os}
\]
External Search Trees

- **Bottom-up BFS blocking:**
 - Block height $O(\log_2 N) / O(\log_2 B) = O(\log_B N)$
 - Output elements blocked

\[\downarrow\]

- **Optimal:** $O(N/B)$ space and $O(\log_B N + T/B)$ query
External Search Trees

- Maintaining BFS blocking during updates?
 - Balance normally maintained in search trees using rotations

- Seems very difficult to maintain BFS blocking during rotation
 - Also need to make sure output (leaves) is blocked!
B-trees

• BFS-blocking naturally corresponds to tree with fan-out $\Theta(B)$

• B-trees balanced by allowing node degree to vary
 – Rebalancing performed by splitting and merging nodes
(a,b)-tree

- T is an (a,b)-tree ($a \geq 2$ and $b \geq 2a - 1$)
 - All leaves on the same level (contain between a and b elements)
 - Except for the root, all nodes have degree between a and b
 - Root has degree between 2 and b

- (a,b)-tree uses linear space and has height $O(\log_a N)$

Choosing $a, b = \Theta(B)$ each node/leaf stored in one disk block

$O(N/B)$ space and $O(\log_B N + T/B)$ query
(a,b)-Tree Insert

- **Insert:**

 Search and insert element in leaf v

 DO v has $b+1$ elements/children

 Split v:

 - make nodes v' and v'' with

 $\left\lfloor \frac{b+1}{2} \right\rfloor \leq b$ and $\left\lceil \frac{b+1}{2} \right\rceil \geq a$ elements

 - insert element (ref) in $parent(v)$

 (make new root if necessary)

 $v = parent(v)$

- Insert touch $O(\log_a N)$ nodes
(a,b)-Tree Insert
(a,b)-Tree Delete

- **Delete:**

 Search and delete element from leaf v

 DO v has a-1 elements/children

 Fuse v with sibling v':
 - move children of v' to v
 - delete element (ref) from $parent(v)$
 - (delete root if necessary)

 If v has b (and $\leq a+b-1 < 2b$) children split v

 $v = parent(v)$

- Delete touch $O(\log_a N)$ nodes
(a,b)-Tree Delete
External Searching: B-Tree

- Each node (except root) has fan-out between $B/2$ and B
- Size: $O(N/B)$ blocks on disk
- Search: $O(\log_B N)$ I/Os following a root-to-leaf path
- Insertion and deletion: $O(\log_B N)$ I/Os
Summary/Conclusion: B-tree

- **B-trees**: (a,b)-trees with $a,b = \Theta(B)$
 - $O(N/B)$ space
 - $O(\log_B N+T/B)$ query
 - $O(\log_B N)$ update

- **B-trees with elements in the leaves** sometimes called **B⁺-tree**
 - Now B-tree and B⁺-tree are synonyms

- **Construction in** $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os
 - Sort elements and construct leaves
 - Build tree level-by-level bottom-up
2D Range Searching
Quadtree

Adaptive quadtree where no square contains more than 1 particle

- No worst-case bound!
- Hard to block!
• **kd-tree:**
 – Recursive subdivision of point-set into two half using vertical/horizontal line
 – Horizontal line on even levels, vertical on uneven levels
 – One point in each leaf

Linear space and logarithmic height
kd-Tree: Query

- **Query**
 - Recursively visit nodes corresponding to regions intersecting query
 - Report point in trees/nodes completely contained in query

- **Query analysis**
 - Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
 - Query covers T regions
 $\Rightarrow O(\sqrt{N} + T)$ I/Os worst-case
The `kdB-tree` has the following properties:

- **kdB-tree:**
 - Bottom-up BFS blocking
 - Same as B-tree

- **Query** as before
 - Analysis as before but each region now contains $\Theta(B)$ points

The I/O query complexity is $O(\sqrt{\frac{N}{B}} + \frac{T}{B})$.
Construction of kdB-tree

- Simple $O \left(\frac{N}{B} \log \left(\frac{N}{B} \right) \right)$ algorithm
 - Find median of y-coordinates (construct root)
 - Distribute point based on median
 - Recursively build subtrees
 - Construct BFS-blocking top-down (can compute the height in advance)

- Idea in improved $O \left(\frac{N}{B} \log \left(\frac{M}{B} \frac{N}{B} \right) \right)$ algorithm
 - Construct $\log \sqrt{\frac{M}{B}}$ levels at a time using $O(N/B)$ I/Os
Construction of kdB-tree

- Sort N points by x- and by y-coordinates using $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os.
- Building $\log \sqrt{\frac{M}{B}}$ levels ($\sqrt{\frac{M}{B}}$ nodes) in $O(N/B)$ I/Os:
 1. Construct $\sqrt{\frac{M}{B}}$ by $\sqrt{\frac{M}{B}}$ grid with $\sqrt{\frac{N}{M/B}}$ points in each slab.
 2. Count number of points in each grid cell and store in memory.
 3. Find slab s with median x-coordinate.
 4. Scan slab s to find median x-coordinate and construct node.
 5. Split slab containing median x-coordinate and update counts.
 6. Recurse on each side of median x-coordinate using grid (step 3).

\Rightarrow Grid grows to $\frac{M}{B} + \sqrt{\frac{M}{B}} \cdot \sqrt{\frac{M}{B}} = \Theta\left(\frac{M}{B}\right)$ during algorithm.

\Rightarrow Each node constructed in $O(\frac{N}{\sqrt{\frac{M}{B} \cdot B}})$ I/Os.
• kdB-tree:
 – Linear space
 – Query in $O(\sqrt{\frac{N}{B}} + \frac{T}{B})$ I/Os
 – Construction in $O(\text{sort}(N))$ I/Os
 – Height $O(\log_B N)$
• Dynamic?
 – Difficult to do splits/merges or rotations …