Cluster Analysis
Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
 - Model-Based Clustering Methods
- Outlier Analysis
- Summary
CURE (Clustering Using REpresentatives)

- CURE: proposed by Guha, Rastogi & Shim, 1998
 - Stops the creation of a cluster hierarchy if a level consists of k clusters
 - Uses multiple representative points to evaluate the distance between clusters, adjusts well to arbitrary shaped clusters and avoids single-link effect
Drawbacks of Distance-Based Method

- Drawbacks of single representative methods (b)
 - Consider only one point as representative of a cluster
 - Good only for convex shaped, similar size and density, and if k can be reasonably estimated

- Drawbacks of density-based methods (c)
 - Can merge clusters which are connected by a very narrow dense link
Cure: The Algorithm

- Draw random sample s.
- Partition sample to p partitions with size s/p.
- Partially cluster partitions into s/pq clusters.
- Eliminate outliers:
 - By random sampling
 - If a cluster grows too slow, eliminate it.
- Cluster partial clusters.
- Label data in disk.
Data Partitioning and Clustering

- \(s = 50 \)
- \(p = 2 \)
- \(s/p = 25 \)

\[\frac{s}{pq} = 5 \]

choosing representatives
(red points)
Cure: Shrinking Representative Points

- Shrink the multiple representative points towards the gravity center by a fraction of α.

- Multiple representatives capture the shape of the cluster.
Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
 - Model-Based Clustering Methods
- Outlier Analysis
- Summary
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points

- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition

- Several interesting studies:
 - **DBSCAN**: Ester, et al. (KDD’96)
 - **DENCLUE**: Hinneburg & D. Keim (KDD’98)
 - **CLIQUE**: Agrawal, et al. (SIGMOD’98)
Density-Based Clustering: Background

- Neighborhood of point \(p \) = all points within distance \(\text{Eps} \) from \(p \):
 \[N_{\text{Eps}}(p) = \{ q \mid \text{dist}(p, q) \leq \text{Eps} \} \]

- Two parameters:
 - \(\text{Eps} \): Maximum radius of the neighbourhood
 - \(\text{MinPts} \): Minimum number of points in an \(\text{Eps} \)-neighbourhood of that point

- If the number of points in the \(\text{Eps} \)-neighborhood of \(p \) is at least \(\text{MinPts} \), then \(p \) is called a core object.

- Directly density-reachable: A point \(p \) is directly density-reachable from a point \(q \) wrt. \(\text{Eps}, \text{MinPts} \) if
 1) \(p \) belongs to \(N_{\text{Eps}}(q) \)
 2) core point condition:
 \[|N_{\text{Eps}}(q)| \geq \text{MinPts} \]
Density-Based Clustering: Background (II)

- **Density-reachable:**
 - A point \(p \) is density-reachable from a point \(q \) wrt. \(Eps, \text{MinPts} \) if there is a chain of points \(p_1, \ldots, p_n, p_1 = q, \ p_n = p \) such that \(p_{i+1} \) is directly density-reachable from \(p_i \).

- **Density-connected**
 - A point \(p \) is density-connected to a point \(q \) wrt. \(Eps, \text{MinPts} \) if there is a point \(o \) such that both, \(p \) and \(q \) are density-reachable from \(o \) wrt. \(Eps \) and \(\text{MinPts} \).
DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

![Diagram of DBSCAN](image)

- **Core** points are dense enough to be considered part of a cluster.
- **Border** points are part of a cluster but are not dense enough to define it.
- **Outlier** points are not part of any cluster.

- **Eps** = 1cm
- **MinPts** = 5
DBSCAN: The Algorithm

- Arbitrary select a point \(p \)
- Retrieve all points density-reachable from \(p \) wrt \(Eps \) and \(MinPts \).
- If \(p \) is a core point, a cluster is formed.
- If \(p \) is a border point, no points are density-reachable from \(p \) and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.
Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
 - Model-Based Clustering Methods
- Outlier Analysis
- Summary
Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - **STING** (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - **WaveCluster** by Sheikholeslami, Chatterjee, and Zhang (VLDB’98)
 - A multi-resolution clustering approach using wavelet method
 - **CLIQUE**: Agrawal, et al. (SIGMOD’98)
CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space.
- CLIQUE can be considered as both density-based and grid-based.
 - It partitions each dimension into the same number of equal length interval.
 - It partitions an m-dimensional data space into non-overlapping rectangular units.
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter.
 - A cluster is a maximal set of connected dense units within a subspace.
CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster
- CLIQUE can find *projected clusters* in subspaces of the dimensional space
\[\tau = 3 \]

Projected cluster in (salary, age) subspace

Projected cluster in (vacation, age) subspace
Strength and Weakness of CLIQUE

- **Strength**
 - It *automatically* finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
 - It is *insensitive* to the order of records in input and does not presume some canonical data distribution
 - It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

- **Weakness**
 - The accuracy of the clustering result may be degraded at the expense of simplicity of the method
Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
 - Model-Based Clustering Methods
- Outlier Analysis
- Summary
Model based clustering

- Assume data generated from K probability distributions
- Typically Gaussian distribution. Soft or probabilistic version of K-means clustering.
- Need to find distribution parameters.
- EM Algorithm
EM Algorithm

- Initialize K cluster centers
- Iterate between two steps
 - **Expectation step:** assign points to clusters
 \[
 P(d_i \in c_k) = w_k \Pr(d_i | c_k) \div \sum_j w_j \Pr(d_i | c_j)
 \]
 \[
 w_k = \frac{\sum \Pr(d_i \in c_k)}{N}
 \]
 - **Maximation step:** estimate model parameters
 \[
 \mu_k = \frac{1}{m} \sum_{i=1}^{m} \frac{d_i \Pr(d_i \in c_k)}{\sum_k \Pr(d_i \in c_j)}
 \]
Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
 - Partitioning Methods
 - Hierarchical Methods
 - Density-Based Methods
 - Grid-Based Methods
 - Model-Based Clustering Methods
- Outlier Analysis
- Summary
What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data (exceptions or noise)

- Problem
 - Find top n outlier points

- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis
Outlier Discovery: Statistical Approaches

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute (not applicable for multidimensional data)
 - In many cases, data distribution may not be known
Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A \(\text{DB}(p, D)\)-outlier is an object \(O\) in a dataset \(T\) such that at least a fraction \(p\) of the objects in \(T\) lies at a distance greater than \(D\) from \(O\).
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm