What is an outliers?

Build "model" of data. If data point is "way outside" model, it is an outlier.

Gaussian data:
 if data point is x standard deviations from mean.
 $x=1$ --- 1 out of 3 points is outlier
 $x=2$ --- 1 out of 20 points is outlier
 $x=3$ --- 1 out of 300 points is outlier
 $x=4$ --- 1 out of 16000 points is outlier

but if you have enough data, it will happen! So it is real data!

But should not influence building of model.
 -- but if you built model to find outlier, then model is wrong...

SOLUTION: remove outliers, rebuild model, and repeat...

does this converge?
 - what if we always take out 10 furthest points
 - don't take them out, but don't compute centers with them.

 + k-means clustering without t furthest points

density based:
 - regular points have dense neighborhoods
 - outlier points have non-dense neighborhoods

 + use distance to closest point (not ROBUST)
 distance to kth closest point (what k?)
 + count points within fixed radius (what radius?)

Some clusters have different distributional properties.
Model needs to be more complex to accurately detect outliers.

reverse nearest neighbors:
 - for each p, find kth nearest neighbor q.
find kth nearest neighbor r to q.
if \|p-q\| \sim \|q-r\| ok. (otherwise, p outlier)

far points un-reliable. So down-weight them in model
 --> don't care about outliers
k-kernel cluster
 = each cluster center of P_c maximizes
 c = arg max_x \sum_{p \in P_c} K(x,p)

how to find c?
 can view \phi(c) = (1/|P_c|) \sum_{p \in P_c} \phi(p)
 in Reproducing Kernel Hilbert Space (RKHS)
 \phi^{-1}(\phi(c)) not in \mathbb{R}^d, (not necessarily), but ok for Lloyd's approach

Many of the techniques are very expensive (and annoying).
So they are often left undone unless some fishy things happen.

Heavy Tails.

Zipf Law: frequency of data is inversely proportional to its rank
 multiset X with x=i in [u]
 f_i = |\{x \in X | x=i\}|/|X|
 Sort f_i so f_i > f_{i+1}
 f_i \sim \text{constant} \times (1/i)

"the" 7% of all words (Brown Corpus)
"of" 3.5% of all words
"and" 2.8% of all words
...

Very common in "internet-scale" data.
 - Finding largest components may miss 30% of customers
 - Cannot be dismissed as outliers
 - Learn main components (easy part)
 - run specialized analysis on remainder
 + repeat

Uncertain Data.

Often assumed P as input is correct.
But P is sensed somehow - and thus has noise.

model each p in P as being from some distribution μ_p

imprecise: μ_p is fixed region
- p could be anywhere in region
 often used for rounding error
+ much work on worst case error on $f(P)$

indecisive: $\mu_p = \{p_1, p_2, ..., p_k\}$
- one of k positions
 for instance, different probes of a distribution
+ databases geometry. explodes in complexity of not careful

stochastic: μ_p has p fixed, but a probability it exists.
- often points always exist, but edges between them might not.