Expanding the Zoo

We have snakes and armadillos. Let's add ants.

An ant has

• a weight

• a location in the zoo

; An ant is
; (make-ant num posn)
(define-struct ant (weight loc))

(make-ant 0.001 (make-posn 4 5))

(make-ant 0.007 (make-posn 3 17))
• Define `ant-at-home?`, which takes an ant and reports whether it is at the origin
Programming with Ants

Contract, Purpose, and Header

; ant-at-home? : ant -> bool
Programming with Ants

Contract, Purpose, and Header

; ant-at-home? : ant -> bool
; Check whether ant a is home
; ant-at-home? : ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
 ...
)
Programming with Ants

Examples

; ant-at-home? : ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
 ...
)

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) '= true
(ant-at-home? (make-ant 0.001 (make-posn 1 1))) '= false
Programming with Ants

Template

; ant-at-home? : ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
 ... (ant-weight a)
 ... (ant-loc a) ...)

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) '=? true
(ant-at-home? (make-ant 0.001 (make-posn 1 1))) '=? false
; ant-at-home? : ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
 ... (ant-weight a)
 ... (posn-at-home? (ant-loc a)) ...)

New template rule: data-defn reference ⇒ template reference

Add templates for referenced data, if needed, and implement body for referenced data

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) '=? true
(ant-at-home? (make-ant 0.001 (make-posn 1 1))) '=? false
; ant-at-home? : ant -> bool
; Check whether ant a is home
(define (ant-at-home? a)
 ...
 (ant-weight a)
 ...
 (posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
 ...
 (posn-x p) ...
 (posn-y p) ...

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) '= true
(ant-at-home? (make-ant 0.001 (make-posn 1 1))) '= false
; ant-at-home? : ant -> bool
; Check whether ant a is home
; (define (ant-at-home? a)
; ... (ant-weight a)
; ... (posn-at-home? (ant-loc a)) ...)
; (define (posn-at-home? p)
; ... (posn-x p) ... (posn-y p) ...)
(define (ant-at-home? a)
 (posn-at-home? (ant-loc a)))
(define (posn-at-home? p)
 (and (= (posn-x p) 0) (= (posn-y p) 0)))

(ant-at-home? (make-ant 0.001 (make-posn 0 0))) '=?= true
(ant-at-home? (make-ant 0.001 (make-posn 1 1))) '=?= false
The shape of the template matches the shape of the data

; An ant is
; (make-ant num posn)

; A posn is
; (make-posn num num)

(define (ant-at-home? a)
 ... (ant-weight a)
 ... (posn-at-home? (ant-loc a)) ...)

(define (posn-at-home? p)
 ... (posn-x p) ... (posn-y p) ...)
Programming with Ants

• Define `feed-ant`, which feeds an ant 0.001 lbs of food

• Define `move-ant`, which takes an ant, an amount to move X, and an amount to move Y, and returns a moved ant
All animals need to eat...

- Define **feed-animal**, which takes an animal (snake, dillo, or ant) and feeds it (5 lbs, 2 lbs, or 0.001 lbs, respectively)

What is an **animal**?
Animal Data Definition

; An animal is either
; - snake
; - dillo
; - ant

The "either" above makes this a new kind of data definition:

data with varieties

Examples:

(make-snake 'slinky 10 'rats)

(make-dillo 2 true)

(make-ant 0.002 (make-posn 3 4))
Feeding Animals

; feed-animal : animal -> animal
; To feed the animal a
(define (feed-animal a)
 ...)

(feed-animal (make-snake 'slinky 10 'rats))
"should be" (make-snake 'slinky 15 'rats)

(feed-animal (make-dillo 2 true))
"should be" (make-dillo 4 true)

(feed-animal (make-ant 0.002 (make-posn 3 4)))
"should be" (make-ant 0.003 (make-posn 3 4))
Template for Animals

For the template step...

\begin{verbatim}
(define (feed-animal a)
 ...)
\end{verbatim}

• Is a compound data?

• Technically yes, but the definition \texttt{animal} doesn't have \texttt{make-something}, so we don't use the compound-data template rule
Choice in the data definition

; An animal is either
; - snake
; - dillo
; - ant

means cond in the template:

(define (feed-animal a)
 (cond
 [... ...]
 [... ...]
 [... ...]
 [... ...]))

Three data choices means three cond cases
Questions for Varieties

(define (feed-animal a)
 (cond
 [[... ...]]
 [[... ...]]
 [[... ...]]
 [[... ...]]))

How do we write a question for each case?

It turns out that

(define-struct snake (name weight food))

provides snake?

(snake? (make-snake 'slinky 5 'rats)) → true
(snake? (make-dillo 2 true)) → false
(snake? 17) → false
Template

(define (feed-animal a)
 (cond
 [(snake? a) ...]
 [(dillo? a) ...]
 [(ant? a) ...]))

New template rule: varieties ⇒ cond

Now continue template case-by-case...
(define (feed-animal a)
 (cond
 [(snake? a) ... (feed-snake a) ...]
 [(dillo? a) ... (feed-dillo a) ...]
 [(ant? a) ... (feed-ant a) ...]]))

Remember: references in the data definition ⇒ template references

; An animal is either
; - snake
; - dillo
; - ant
; An animal is either
; - snake
; - dillo
; - ant
;
; A snake is
; (make-snake sym num sym)
;
; A dillo is
; (make-dillo num bool)
;
; An ant is
; (make-ant num posn)
;
; A posn is
; (make-posn num num)

(define (feed-animal a)
 (cond
 [(snake? a) ... (feed-snake a) ...]
 [(dillo? a) ... (feed-dillo a) ...]
 [(ant? a) ... (feed-ant a) ...]))

(define (feed-snake s)
 ... (snake-name s) ... (snake-weight s)
 ... (snake-food s) ...)

(define (feed-dillo d)
 ... (dillo-weight d)
 ... (dillo-alive? d) ...)

(define (feed-ant a)
 ... (ant-weight d)
 ... (feed-posn (ant-loc d)) ...)

(define (feed-posn p)
 ... (posn-x p) ... (posn-y p) ...)

Shapes of Data and Templates
Design Recipe III

Data

• Understand the input data

Contract, Purpose, and Header

• Describe (but don't write) the function

Examples

• Show what will happen when the function is done

Template

• Set up the body based on the input data (and only the input)

Body

• The most creative step: implement the function body

Test

• Run the examples
Data

When the problem statement mentions N different varieties of a thing, write a data definition of the form

; A thing is
; - variety1
; ...
; - varietyN
Examples

When the input data has varieties, be sure to pick each variety at least once.

; An animal is either
; - snake
; - dillo
; - ant

(feed-animal (make-snake 'slinky 10 'rats))
"should be" (make-snake 'slinky 15 'rats)

(feed-animal (make-dillo 2 true))
"should be" (make-dillo 4 true)

(feed-animal (make-ant 0.002 (make-posn 3 4)))
"should be" (make-ant 0.003 (make-posn 3 4))
Template

When the input data has varieties, start with `cond`

- \(N\) varieties \(\Rightarrow\) \(N\) `cond` lines
- Formulate a question to match each corresponding variety
- Continue template steps case-by-case

```scheme
(define (feed-animal a)
  (cond
    [(snake? a) ...]
    [(dillo? a) ...]
    [(ant? a) ...]))
```
Template

When the input data has varieties, start with \texttt{cond}

- \textbf{N} varieties \Rightarrow \textbf{N} \texttt{cond} lines

- Formulate a question to match each corresponding variety

- Continue template steps case-by-case

When the data definition refers to a data definition, make the template refer to a template

\begin{verbatim}
(define (ant-at-home? a)
 ...
 (ant-weight a)
 ...
 (posn-at-home? (ant-loc a)) ...
)

(define (posn-at-home? p)
 ...
 (posn-x p) ...
 (posn-y p) ...
)
\end{verbatim}
Template

When the input data has varieties, start with `cond`

- N varieties \Rightarrow N `cond` lines
- Formulate a question to match each corresponding variety
- Continue template steps case-by-case

When the data definition refers to a data definition, make the template refer to a template

```
(define (feed-animal a)
  (cond
    [(snake? a) ... (feed-snake a) ...]
    [(dillo? a) ... (feed-dillo a) ...]
    [(ant? a) ... (feed-ant a) ...]))
```