Max of a List

- Implement the function `max-item` which returns the biggest number in a list of numbers
Data and Contract

Data: list-of-num, obviously

Contract:

; max-item : list-of-num -> num
Examples

\[(\text{max-item} \ (2\ 7\ 5)) \ "\text{should be}\"\ 7\]

\[(\text{max-item empty}) \ "\text{should be}\"\ ...\]

Problem: \text{max-item} makes no sense on an empty list
Data and Contract, Again

Data: \texttt{nonempty-list-of-num}

\begin{verbatim}
; A nonempty-list-of-num is either
; - (cons num empty)
; - (cons num nonempty-list-of-num)
\end{verbatim}

Contract:

\begin{verbatim}
; max-item : nonempty-list-of-num -> num
\end{verbatim}
Examples, Again

(max-item '(2 7 5)) "should be" 7

(max-item '(2)) "should be" 2
Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either
; - (cons num empty)
; - (cons num nonempty-list-of-num)

(define (max-item nel)
 (cond
 [(empty? (rest nel)) ... (first nel) ...]
 [else
 ... (first nel)
 ... (max-item (rest nel)) ...])))
(define (max-item nel)
 (cond
 [(empty? (rest nel)) (first nel)]
 [else
 (cond
 [(> (first nel) (max-item (rest nel)))
 (first nel)]
 [else
 (max-item (rest nel))]]))
Test

(max-item '(2)) "should be" 2

works fine

(max-item '(1 2 3 4 5 6 7 8 9 10))
"should be" 10

works fine

(max-item '(1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30))
"should be" 30

answer never appears!
The Speed of max-item

Somewhere around 20 items, the `max-item` function starts to take way too long.

Even if you buy a computer that's 10 times faster, the problem shows up with about 23 items...

How can we understand how long a program takes to run?
Counting Steps

How long does

\((+ 1 (* 6 7))\)

take to execute?

Computer speeds differ in "real time", but we can count steps:

\((+ 1 (* 6 7)) \rightarrow (+ 1 42) \rightarrow 43\)

So, evaluation takes 2 steps
Steps for max-item and 1 Element

How long does this expression take?

$$(\text{max-item } '(2))$$

$$(\text{max-item } '(2))$$

$$\rightarrow (\text{cond } [(\text{empty? } (\text{rest } '(2))) (\text{first } '(2))] \ldots)$$

$$\rightarrow (\text{cond } [(\text{empty? } \text{empty}) (\text{first } '(2))] \ldots)$$

$$\rightarrow (\text{cond } [\text{true} (\text{first } '(2))] \ldots)$$

$$\rightarrow (\text{first } '(2))$$

$$\rightarrow 2$$

5 steps – and any list with one item will take five steps
Steps for max-item and 2 Elements

How long does this expression take?

$$(\text{max-item} \ (2 \ 1))$$

$$\begin{align*}
(\text{max-item} \ (2 \ 1)) \\
\rightarrow (\text{cond} \ [(\text{empty?} \ (\text{rest} \ (2 \ 1))) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...]) \\
\rightarrow (\text{cond} \ [(\text{empty?} \ (1)) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...]) \\
\rightarrow (\text{cond} \ [\text{false} \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...]) \\
\rightarrow (\text{cond} \ [\text{else} \ (\text{cond} \ [(> \ (\text{first} \ (2 \ 1)) \ ...]) \ ...] \ [\text{else} \ ...)]) \\
\rightarrow (\text{cond} \ [(> \ (\text{first} \ (2 \ 1)) \ (\text{max-item} \ (\text{rest} \ (2 \ 1))))] \ [\text{else} \ ...]) \\
\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ (\text{rest} \ (2 \ 1))))] \ [\text{else} \ ...]) \\
\rightarrow (\text{cond} \ [(> \ 2 \ (\text{max-item} \ (1)))] \ [\text{else} \ ...]) \\
\rightarrow ... \rightarrow ... \rightarrow ... \\
\rightarrow (\text{cond} \ [(> \ 2 \ 1) \ (\text{first} \ (2 \ 1))] \ [\text{else} \ ...]) \\
\rightarrow (\text{first} \ (2 \ 1)) \\
\rightarrow 2
\end{align*}$$

14 steps – where 5 came from the recursive call

Are all 2-element lists the same?
Steps for max-item and 2 Elements

\[(\text{max-item '}(1~2))\]

\[(\text{max-item '}(1~2))\]
\[\rightarrow (\text{cond } [(\text{empty? (rest '}(1~2))) (\text{first '}(1~2))] [\text{else ...}])\]
\[\rightarrow (\text{cond } [(\text{empty? '}(2)) (\text{first '}(1~2))] [\text{else ...}])\]
\[\rightarrow (\text{cond } [(\text{false (first '}(1~2))] [\text{else ...}])\]
\[\rightarrow (\text{cond } [(\text{else (cond } [(> (\text{first '}(1~2)) ...) ...) [\text{else ...})]))\]
\[\rightarrow (\text{cond } [(> (\text{first '}(1~2)) (\text{max-item (rest '}(1~2)))) ...) [\text{else ...}])\]
\[\rightarrow (\text{cond } [(> 1 (\text{max-item (rest '}(1~2)))) ...) [\text{else ...}])\]
\[\rightarrow (\text{cond } [(> 1 (\text{max-item '}(2))) ...) [\text{else ...}])\]
\[\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots\]
\[\rightarrow (\text{cond } [(> 1~2) ...) [\text{else ...})]
\[\rightarrow (\text{cond } [\text{else (max-item (rest '}(1~2))))]
\[\rightarrow (\text{max-item (rest '}(1~2)))\]
\[\rightarrow (\text{max-item '}(2))\]
\[\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots\]
\[\rightarrow 2\]

20 steps – where 10 came from two recursive calls
Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to max-item is

$$T(n) = 10 + 2T(n-1)$$

$T(1) = 5$

$T(2) = 10 + 2T(1) = 20$

$T(3) = 10 + 2T(2) = 50$

$T(4) = 10 + 2T(3) = 110$

$T(5) = 10 + 2T(4) = 230$

\ldots

- In general, $T(n) > 2^n$

- Note that 2^{30} is 1,073,741,824 — which is why our last test never produced a result
Repairing max-item

In the case of `max-item`, the problem is easily fixed with `local`

```
(define (max-item nel)
  (cond
    [(empty? (rest nel)) (first nel)]
    [else
      (local [(define r (max-item (rest nel)))]
        (cond
          [(> (first nel) r) (first nel)]
          [else r]))]))
```

With this definition, there's always one recursive call

```
(max-item '(1 2))
```
takes 17 steps
Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to max-item is

$$T(n) = 12 + T(n-1)$$

- $T(1) = 5$
- $T(2) = 12 + T(1) = 17$
- $T(3) = 12 + T(2) = 29$
- $T(4) = 12 + T(3) = 41$
- $T(5) = 12 + T(4) = 53$

...

- In general, $T(n) = 5 + 12(n-1)$
- So our last test takes only 343 steps
Using Local to Reduce Complexity

• Before, we used `local` to either make the code nicer or to support abstraction

• Now we're using `local` to avoid redundant calculations, which avoids evaluation complexity

Fortunately, these reasons reinforce each other

Where a value is definitely computed and possibly computed multiple times, always give it a name and compute it once
Sorting

We once wrote a `sort-list` function:

```scheme
; sort-list : list-of-num -> list-of-num
(define (sort-list l)
  (cond
    [(empty? l) empty]
    [(cons? l) (insert (first l) (sort-list (rest l)))]))
```

How long does it take to sort a list of n numbers?

We have only one recursive call to `sort-list`, so it doesn't have the same problem as before...
Insertion Sort

... but what about \texttt{insert}?

\begin{verbatim}
; sort-list : list-of-num -> list-of-num
(define (sort-list l)
 (cond
 [(empty? l) empty]
 [(cons? l) (insert (first l) (sort-list (rest l)))]))

; insert : num list-of-num -> list-of-num
(define (insert n l)
 (cond
 [(empty? l) (list n)]
 [(cons? l)
 (cond
 [(< n (first l)) (cons n l)]
 [else (cons (first l) (insert n (rest l)))]))])
\end{verbatim}

On each iteration of \texttt{sort-list}, there's a call to \texttt{sort-list} and a call to \texttt{insert}.
Insert Time

`insert` itself is like the repaired `max-item`:

```
; insert : num list-of-num -> list-of-num
(define (insert n l)
  (cond
   [(empty? l) (list n)]
   [(cons? l)
     (cond
      [(< n (first l)) (cons n l)]
      [else (cons (first l) (insert n (rest l)))]))])
```

In the worst case, `insert` into a list of size n takes $k_1 + k_2n$

The variables k_1 and k_2 stand for some constant
Insertion Sort Time

Given that the time for \texttt{insert} is \(k_1 + k_2 n \)...

\[
\begin{align*}
; \text{sort-list : list-of-num} & \rightarrow \text{list-of-num} \\
(\text{define} \ (\text{sort-list} \ l)) \\
(\text{cond} \\
\quad [(\text{empty?} \ l) \ \text{empty}] \\
\quad [(\text{cons?} \ l) \ (\text{insert} \ (\text{first} \ l) \ \text{(sort-list (rest l))})])])
\end{align*}
\]

The time for \texttt{sort-list} is defined by

\[
\begin{align*}
T(0) &= k_3 \\
T(n) &= k_4 + T(n-1) + k_1 + k_2 n
\end{align*}
\]
Insertion Sort Time

\[T(0) = k_3 \]
\[T(n) = k_4 + T(n-1) + k_1 + k_2n \]

Even if each \(k \) were only 1:

\[T(0) = 1 \]
\[T(1) = 4 \]
\[T(2) = 8 \]
\[T(2) = 13 \]
\[T(3) = 19 \]

...

- In the long run, \(T(n) \) is a lot like \(n^2 \)
- This is a lot better than \(2^n \) — but sorting a list of 10,000 items takes more than 100,000,000 steps
Sorting Algorithms

- The list-of-num template leads to the *insertion sort* algorithm
 - It's not practical for large lists
- Algorithms such as *quick sort* and *merge sort* are faster
Merge Sort

```
(define (merge-sort l)
  (cond
    [(or (empty? l) (empty? (rest l))) l]
    [else
      (local [(define a-half (even-items l))
                (define b-half (odd-items l))]
        (merge-lists
          (merge-sort a-half)
          (merge-sort b-half))))
)
```

- `even-items` and `odd-items` each take \(k_5 + k_6n\) steps
- `merge-lists` takes \(k_7 + k_8n\) steps
- So, for `merge-sort`:

\[
\begin{align*}
T(0) &= k_9 \\
T(1) &= k_{10} \\
T(n) &= k_{11} + 2T(n/2) + 2k_5 + 2k_6n + k_7 + k_8n
\end{align*}
\]
Merge Sort Time

Simplify by collapsing constants:

\[T(n) = k_{12} + 2T(n/2) + k_{13}n \]

Setting constants to 1:

\[\ldots \]
\[T(5) = 21 \]
\[T(6) = 27 \]
\[T(7) = 33 \]
\[T(8) = 39 \]
\[T(9) = 46 \]
\[\ldots \]

In the long run, \(T(n) \) is a lot like \(n \log_2 n \)

- Sorting a list of 10,000 items takes something like 100,000 steps
 (which is 1,000 times faster than insertion sort)
The study of execution time is called *complexity theory*.

Practical points:

1. Use **local** to avoid redundant computations
 - Something you can always do to tame evaluation

2. Algorithms like **merge-sort** are in textbooks
 - You learn them, not invent them

Other courses teach you more about the second category.

Is there anything else in the first category (things you can do now)?

soon...
Vectors

The Advanced language provides vectors, which is similar to lists:

```scheme
> (list 1 2 3)
(list 1 2 3)
> (vector 1 2 3)
(vector 1 2 3)
```

Differences:

- There's nothing like `cons` for vectors
- The `vector-ref` function extracts an element from anywhere in the vector in constant time
List-Ref versus Vector-Ref

; list-ref : list-of-X nat -> X
(define (list-ref l n)
 (cond
 [(zero? n) (first l)]
 [else (list-ref (rest l) (sub1 n))]))

(list-ref '(a b c d) 1) "should be" 'b

In general, (list-ref l n) takes about n steps
List-Ref versus Vector-Ref

; vector-ref : vector-of-X nat -> X
(define (vector-ref l n)
 ...)

(vector-ref (vector 'a 'b 'c 'd) 1)
"should be" 'b

In general, (vector-ref v n) takes 1 step

You can't actually define vector-ref yourself

Eventually, we'll use vectors when we need "random access" among arbitrarily many components

More generally, each kind of data comes with operations that have a certain cost — a programmer has to pick the right data