Supervised Learning Framework and Decision Tree Representation

Spring 2019

Instructor: Shandian Zhe
Outline

1. The general settings of supervised learning

2. Warm-up: Decision tree representation
What is supervised learning?
Instances and Labels

Running example: Automatically tag news articles
Instances and Labels

Running example: Automatically tag news articles

An instance of a news article that needs to be classified
Instances and Labels

Running example: Automatically tag news articles

An instance of a news article that needs to be classified

A label

Sports
Instances and Labels

Running example: Automatically tag news articles

Instance Space: All possible news articles

Label Space: All possible labels

Mapped by the classifier to:
- Sports
- Business
- Politics
- Entertainment

Automatically tag news articles
Instances and Labels

X: Instance Space

The set of examples that need to be classified

Eg: The set of all possible names, documents, sentences, images, emails, etc.
Instances and Labels

\(X: \text{Instance Space} \)

The set of examples that need to be classified

Eg: The set of all possible names, documents, sentences, images, emails, etc.

\(Y: \text{Label Space} \)

The set of all possible labels

Eg: \{Spam, Not-Spam\}, \{+, -\}, etc.
Instances and Labels

\[X: \text{Instance Space} \]

The set of examples that need to be classified

\[Y: \text{Label Space} \]

The set of all possible labels

\[y = f(x) \]

Target function

Eg: The set of all possible names, documents, sentences, images, emails, etc.

Eg: \{Spam, Not-Spam\}, \{+, -\}, etc.
Instances and Labels

X: Instance Space
The set of examples that need to be classified

Y: Label Space
The set of all possible labels

Target function $y = f(x)$

The goal of learning: Find this target function

Learning is search over functions

Eg: The set of all possible names, documents, sentences, images, emails, etc
Eg: \{\text{Spam, Not-Spam}, \{+, -\}, etc.\}
Supervised learning

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function $y = f(x)$

Learning algorithm only sees examples of the function f in action
Supervised learning: Training

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function
\[y = f(x) \]

Learning algorithm only sees examples of the function \(f \) in action

Labeled training data

\[
(x_1, f(x_1)) \\
(x_2, f(x_2)) \\
(x_3, f(x_3)) \\
: \\
(x_N, f(x_N))
\]
Supervised learning: Training

\[X: \text{Instance Space} \]

The set of examples

\[Y: \text{Label Space} \]

The set of all possible labels

Target function

\[y = f(x) \]

Learning algorithm only sees examples of the function \(f \) in action

Labeled training data

\[(x_1, f(x_1)) \]
\[(x_2, f(x_2)) \]
\[(x_3, f(x_3)) \]
\[\vdots \]
\[(x_N, f(x_N)) \]
Supervised learning: Training

\(X: \text{Instance Space} \)

The set of examples

\(Y: \text{Label Space} \)

The set of all possible labels

Target function
\[y = f(x) \]

Learning algorithm only sees examples of the function \(f \) in action

\((x_1, f(x_1)) \)
\((x_2, f(x_2)) \)
\((x_3, f(x_3)) \)
\[\vdots \]
\((x_N, f(x_N)) \)

Labeled training data

Learning algorithm

A learned function \(g: X \rightarrow Y \)
Supervised learning: Training

\(X: \) Instance Space
The set of examples

\(Y: \) Label Space
The set of all possible labels

Target function
\[y = f(x) \]

Learning algorithm only sees examples of the function \(f \) in action

Labeled training data
\((x_1, f(x_1))\), \((x_2, f(x_2))\), \((x_3, f(x_3))\), \ldots, \((x_N, f(x_N))\)

Learning algorithm

A learned function \(g: X \rightarrow Y \)

Can you think of other protocols?
Unsupervised learning

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function
\[y = f(x) \]

Learning algorithm only sees examples of the function f in action

Un-Labeled training data

A learned function \(g: X \rightarrow Y \)
Semi-Supervised learning

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function $y = f(x)$

Learning algorithm only sees examples of the function f in action

Partially Labeled training data

A learned function $g: X \rightarrow Y$
Supervised learning: Training

\[y = f(x) \]

The set of examples \(X \): Instance Space

The set of all possible labels \(Y \): Label Space

Learning algorithm only sees examples of the function \(f \) in action

Labeled training data

A learned function \(g: X \rightarrow Y \)
Supervised learning: Evaluation

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function
$y = f(x)$

Learned function
$y = g(x)$
Supervised learning: Evaluation

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function
\[y = f(x) \]

Learned function
\[y = g(x) \]

Draw test example \(x \in X \)
\[f(x) \quad \text{Are they different?} \quad g(x) \]
Supervised learning: Evaluation

- **X: Instance Space**
 - The set of examples

- **Y: Label Space**
 - The set of all possible labels

Target function

\[y = f(x) \]

Learned function

\[y = g(x) \]

- Draw test example \(x \in X \)
- Apply the model to many test examples and compare to the target’s prediction

- Are they different?

Apply the model to many test examples and compare to the target's prediction.
Supervised learning: Evaluation

- **Instance Space** (X): The set of examples
- **Label Space** (Y): The set of all possible labels

Target function $y = f(x)$

Learned function $y = g(x)$

Draw test example $x \in X$

- $f(x)$
- $g(x)$

Are they different?

Apply the model to many test examples and compare to the target’s prediction

Can you use test examples during training?
Supervised learning: General setting

- Given: Training examples of the form \(<x, f(x)>\)
 - The function \(f\) is an unknown function
- Typically the input \(x\) is represented in a *feature space*
 - Example: \(x \in \{0,1\}^n\) or \(x \in \mathbb{R}^n\)
 - A deterministic mapping from instances in your problem (e.g., news articles) to feature vectors

- Goal: Find a good approximation for \(f\)
- The label determines the kind of problem we have
 - Binary classification: \(f(x) \in \{-1,1\}\)
 - Multiclass classification: \(f(x) \in \{1, 2, 3, \ldots, K\}\)
 - Regression: \(f(x) \in \mathbb{R}\)
On using supervised learning

We need to decide:

1. What is our **instance space**?
 What are the inputs to the problem? What are the features? How to extract features?

2. What is our **label space**?
 What is the prediction task?

3. What is our **hypothesis space**?
 What functions should the learning algorithm search over?

4. What is our **learning algorithm**?
 How do we learn from the labeled data?

5. What is our **loss function** or **evaluation metric**?
 What is success?
Taxonomy

• Supervised Learning
 – Decision trees
 – Boosting and ensemble learning
 – Linear models
 • Linear regression
 • Logistic regression
 • Naïve Bayes
 • Perceptron
 • Support vector machines
 • ...
 – Nonlinear models
 • Nearest neighbor
 • Polynomial regression
 • Kernel methods: kernel SVM, kernel perceptron, kernel regression
 • Artificial neural networks: CNN, MLP, auto-encoder,
 •

• Unsupervised Learning
 – Clustering: kmeans, k-medoid, GMM, ...
 – Dimension reduction: PCA, SVD, Embedding learning, Isomap,
 – ...

• Semi-Supervised Learning
 – Mostly combine loss functions from supervised and unsupervised learning
Taxonomy

• Supervised Learning
 – **Decision trees**
 – Boosting and ensemble learning
 – Linear models
 • Linear regression
 • Logistic regression
 • Naïve Bayes
 • Perceptron
 • Support vector machines
 • ...
 – Nonlinear models
 • Nearest neighbor
 • Polynomial regression
 • Kernel methods: kernel SVM, kernel perceptron, kernel regression
 • Artificial neural networks: CNN, MLP, auto-encoder,
 •

• Unsupervised Learning
 – Clustering: kmeans, k-medoid, GMM, ...
 – Dimension reduction: PCA, SVD, Embedding learning, Isomap,
 – ...

• Semi-Supervised Learning
 – Mostly combine loss functions from supervised and unsupervised learning
We Will Start with Decision Trees

1. Representation: What are decision trees?

2. Algorithm: Learning/create decision trees
 – The ID3 algorithm: A greedy heuristic

3. Variants/Extensions: post pruning, other node splitting principles, ...
Why Decision Trees?

1. Simple and intuitive: a set of rules

2. Interpretability: again, rules!

3. Can be promoted to be very strong: boosting, random forest, gradient boosting trees, ...

Decision trees are very widely used!
Warm-up

1. **Representation**: What are decision trees?

2. **Algorithm**: Learning decision trees
 - The ID3 algorithm: A greedy heuristic

3. Some extensions
What are decision trees?

- A **hierarchical structure** that represents data with a divide-and-conquer strategy
- **Each node** represents a data subset, and meanwhile is associated with a test feature
- From the node, one **branch** is created for every value that the feature can take (hence further partition the data accordingly)
- **Leaves** of the tree specify the class labels (the point to stop partition)
Decision Tree Learning

- **General idea**: Given a collection of labeled examples, construct a decision tree that represents it.
Let’s build a decision tree for classifying shapes
Let’s build a decision tree for classifying shapes

Before building a decision tree:

What is the label for a red triangle? And why?
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape
Let's build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape

Color?
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape

Color?

Blue

Red

Green
Let’s build a decision tree for classifying shapes.

What are some attributes of the examples?

Color, Shape

- Blue
- Red
- Green
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape

- Blue
- Red
- Green
- Circle
- Square
- Triangle

Label=A
Label=B
Label=C
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape

Color?

Blue

Shape?

Triangle

square

circle

Red

Shape?

square

circle

Green

Shape?

B

A

C

Label=C

Label=B

Label=A
Let’s build a decision tree for classifying shapes

What are some attributes of the examples?

Color, Shape

1. How to use a decision tree for prediction?
 • What is the label for a red triangle?
 • Just follow a path from the root to a leaf
 • What about a green triangle?
Expressivity of Decision trees

What Boolean functions can decision trees represent?

Every path from the tree to a root is a rule.

The full tree is equivalent to the conjunction of all the rules.
Expressivity of Decision trees

What Boolean functions can decision trees represent?

Every path from the tree to a root is a rule

The full tree is equivalent to the conjunction of all the rules

(Color=blue AND Shape=triangle) Label=B) AND
(Color=blue AND Shape=square) Label=A) AND
(Color=blue AND Shape=circle) Label=C) AND....
Decision Trees

- Outputs are discrete categories
- But real valued outputs are also possible (regression trees)

How to?

- Methods for handling noisy data (noise in the label or in the features) and for handling missing attributes
 - Pruning trees helps with noise
 - More on this later...
Decision Trees

• Outputs are discrete categories

• But real valued outputs are also possible (regression trees)
 How to? Take average!

• Methods for handling noisy data (noise in the label or in the features) and for handling missing attributes
 – Pruning trees helps with noise
 – More on this later...
Numeric attributes and decision boundaries

• We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)
 – Values have been categorical

• How do we deal with numeric feature values? (eg length = ?)
Numeric attributes and decision boundaries

- We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)
 - Values have been categorical
- How do we deal with numeric feature values? (eg length = ?)
 - Discretize them or use thresholds on the numeric values
Numeric attributes and decision boundaries

• We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)
 – Values have been categorical

• How do we deal with **numeric feature values**? (eg length = ?)
 – Discretize them or use thresholds on the numeric values
 – This example divides the feature space into axis parallel rectangles
Numeric attributes and decision boundaries

- We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)
 - Values have been categorical
- How do we deal with numeric feature values? (e.g., length = ?)
 - Discretize them or use thresholds on the numeric values
 - This example divides the feature space into axis parallel rectangles
We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)

Values have been categorical

How do we deal with numeric feature values? (eg length = ?)

- Discretize them or use thresholds on the numeric values
- This example divides the feature space into axis parallel rectangles
Numeric attributes and decision boundaries

- We have seen instances represented as attribute-value pairs (color=blue, second letter=e, etc.)
 - Values have been categorical

- How do we deal with numeric feature values? (eg length = ?)
 - Discretize them or use thresholds on the numeric values
 - This example divides the feature space into axis parallel rectangles

Decision boundaries can be non-linear

```
| 1 | 3 | X |
+---+---+---
|   |   |   |
| + | + | + |
| + | + |   |
| + |   | - |
|   | - |   |
|   |   | - |
```

```
X < 3
  no
  yes
```

```
Y > 7
  no
  yes
```

```
Y < 5
  no
  yes
```

```
X < 1
  no
  yes
```
Summary: Decision trees

• Compact data representation
• A natural representation (think 20 questions)
• **Predicting** with a decision tree is easy, how?

• Clearly, given a dataset, there are many decision trees that can represent it. Why?
Exercise

Write down the decision tree for the shapes data if the root node was *Shape* instead of *Color*

Will the two trees make the same predictions for unseen shapes/color combinations?