Neural Networks: Introduction

Machine Learning
Spring 2019
Where are we?

Learning algorithms
- Decision Trees
- AdaBoost
- Bagging
- Least Mean Square
- Perceptron
- Support Vector Machines
- Kernel SVM
- Kernel Perceptron
Where are we?

Learning algorithms
- Decision Trees
- AdaBoost
- Bagging
- Least Mean Square
- Perceptron
- Support Vector Machines
- Kernel SVM
- Kernel Perceptron

General learning principles
- Overfitting
- Mistake-bound learning
- PAC learning, sample complexity
- Hypothesis choice & VC dimensions
- Training and generalization errors
- Regularized Empirical Risk Minimization
Where are we?

Learning algorithms
- Decision Trees
- AdaBoost
- Bagging
- Least Mean Square
- Perceptron
- Support Vector Machines
- Kernel SVM
- Kernel Perceptron

General learning principles
- Overfitting
- Mistake-bound learning
- PAC learning, sample complexity
- Hypothesis choice & VC dimensions
- Training and generalization errors
- Regularized Empirical Risk Minimization

Produce *linear classifiers*
Where are we?

Learning algorithms
- Decision Trees
- AdaBoost
- Bagging
- Least Mean Square
- Perceptron
- Support Vector Machines
- Kernel SVM
- Kernel Perceptron

General learning principles
- Overfitting
- Mistake-bound learning
- PAC learning, sample complexity
- Hypothesis choice & VC dimensions
- Training and generalization errors
- Regularized Empirical Risk Minimization

So far, we’ve seen how to use kernel tricks to extend linear classifiers to nonlinear ones

What if we want to directly train a non-linear classifier?

Where do the features come from?
Neural Networks

• What is a neural network?
• Predicting with a neural network
• Training neural networks
• Practical concerns
This lecture

• **What is a neural network?**
 – The hypothesis class
 – Structure, expressiveness

• Predicting with a neural network

• Training neural networks

• Practical concerns
We have seen linear threshold units

\[x_1, x_2, x_3, x_4 \]
\[w_1, w_2, w_3, w_4 \]
\[\sum \]
\[\text{dot product} \]
\[\text{threshold} \]

features
We have seen linear threshold units

Prediction

\[sgn \left(w^T x + b \right) = sgn \left(\sum w_i x_i + b \right) \]
We have seen linear threshold units

Prediction

\[\text{sgn}(\mathbf{w}^T \mathbf{x} + b) = \text{sgn}(\sum w_i x_i + b) \]

Learning

various algorithms
perceptron, SVM, ...
in general, minimize loss
We have seen linear threshold units

Prediction
\[\text{sgn} (w^T x + b) = \text{sgn}(\sum w_i x_i + b) \]

Learning
various algorithms
perceptron, SVM,...

in general, minimize loss

But where do these input features come from?

What if the features were outputs of another classifier?
Features from classifiers
Features from classifiers

x_1

x_2

x_3

x_4

w_1

w_2

w_3

w_4

b

1
Features from classifiers

Each of these connections have their own weights as well
Features from classifiers
Features from classifiers

This is a **two layer** feed forward neural network
Features from classifiers

This is a **two layer** feed forward neural network

Think of the hidden layer as learning a good **representation** of the inputs
Features from classifiers

This is a two layer feed forward neural network

The dot product followed by the threshold constitutes a neuron
Features from classifiers

This is a **two layer** feed forward neural network

The dot product followed by the threshold constitutes a **neuron**

Five neurons in this picture (four in hidden layer and one output)
But where do the inputs come from?

What if the inputs were the outputs of a classifier?

We can make a three layer network.... And so on.
Let us try to formalize this
Neural networks

• A robust approach for approximating real-valued, discrete-valued or vector valued functions

• Among the most effective general purpose supervised learning methods currently known
 – Especially for complex and hard to interpret data such as real-world sensory data

• The Backpropagation algorithm for neural networks has been shown successful in many practical problems
 – handwritten character recognition, speech recognition, object recognition, some NLP problems
Biological neurons

Neurons: core components of brain and the nervous system consisting of

1. Dendrites that collect information from other neurons
2. An axon that generates outgoing spikes

The first drawing of a brain cells by Santiago Ramón y Cajal in 1899
Biological neurons

Neurons: core components of brain and the nervous system consisting of

1. Dendrites that collect information from other neurons
2. An axon that generates outgoing spikes

Modern *artificial* neurons are “inspired” by biological neurons

But there are many, many fundamental differences

Don’t take the similarity seriously (as also claims in the news about the “emergence” of intelligent behavior)
Artificial neurons

Functions that very loosely mimic a biological neuron

A neuron accepts a collection of inputs (a vector \mathbf{x}) and produces an output by:

1. Applying a dot product with weights \mathbf{w} and adding a bias b
2. Applying a (possibly non-linear) transformation called an activation

\[
\text{output} = \text{activation}(\mathbf{w}^T \mathbf{x} + b)
\]
Artificial neurons

Functions that very loosely mimic a biological neuron

A neuron accepts a collection of inputs (a vector x) and produces an output by:

1. Applying a dot product with weights w and adding a bias b
2. Applying a (possibly non-linear) transformation called an *activation*

$$output = activation(w^T x + b)$$
Artificial neurons

Functions that very loosely mimic a biological neuron

A neuron accepts a collection of inputs (a vector \(\mathbf{x} \)) and produces an output by:

1. Applying a dot product with weights \(\mathbf{w} \) and adding a bias \(b \)
2. Applying a (possibly non-linear) transformation called an *activation*

\[
\text{output} = \text{activation}(\mathbf{w}^T \mathbf{x} + b)
\]

Other activations are possible.
Activation functions Also called transfer functions

\[output = activation(w^T x + b) \]

<table>
<thead>
<tr>
<th>Name of the neuron</th>
<th>Activation function: (activation(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear unit</td>
<td>(z)</td>
</tr>
<tr>
<td>Threshold/sign unit</td>
<td>(sgn(z))</td>
</tr>
<tr>
<td>Sigmoid unit</td>
<td>(\frac{1}{1 + \exp(-z)})</td>
</tr>
<tr>
<td>Rectified linear unit (ReLU)</td>
<td>(\max(0, z))</td>
</tr>
<tr>
<td>Tanh unit</td>
<td>(\tanh(z))</td>
</tr>
</tbody>
</table>

Many more activation functions exist (sinusoid, sinc, gaussian, polynomial...)
A neural network

A function that converts inputs to outputs defined by a directed acyclic graph

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights
A neural network

A function that converts inputs to outputs defined by a **directed acyclic graph**

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights
A neural network

A function that converts inputs to outputs defined by a **directed acyclic graph**

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights

• To define a neural network, we need to specify:
 - The structure of the graph
 • How many nodes, the connectivity
 - The activation function on each node
 - The edge weights
A neural network

A function that converts inputs to outputs defined by a **directed acyclic graph**

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights

- To define a neural network, we need to specify:
 - The structure of the graph
 - How many nodes, the connectivity
 - The activation function on each node
 - The edge weights

Called the *architecture* of the network
Typically predefined, part of the design of the classifier
A neural network

A function that converts inputs to outputs defined by a **directed acyclic graph**

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights

- To define a neural network, we need to specify:
 - The structure of the graph
 - How many nodes, the connectivity
 - The activation function on each node
 - The edge weights

Called the *architecture* of the network

Typically predefined, part of the design of the classifier

Learned from data
A brief history of neural networks

- 1943: McCullough and Pitts showed how linear threshold units can compute logical functions
- 1949: Hebb suggested a learning rule that has some physiological plausibility
- 1950s: Rosenblatt, the Peceptron algorithm for a single threshold neuron
- 1969: Minsky and Papert studied the neuron from a geometrical perspective
- 1980s: Convolutional neural networks (Fukushima, LeCun), the backpropagation algorithm (various)
- 2003-today: More compute, more data, deeper networks

See also: http://people.idsia.ch/~juergen/deep-learning-overview.html
What functions do neural networks express?
A single neuron with threshold activation

Prediction = \textit{sgn}(b + w_1 x_1 + w_2 x_2)

b + w_1 x_1 + w_2 x_2 = 0
Two layers, with threshold activations

In general, convex polygons

Figure from Shai Shalev-Shwartz and Shai Ben-David, 2014
Three layers with threshold activations

In general, unions of convex polygons

Figure from Shai Shalev-Shwartz and Shai Ben-David, 2014
Neural networks are universal function approximators

- Any continuous function can be approximated to arbitrary accuracy using one hidden layer of sigmoid units [Cybenko 1989]

- Approximation error is insensitive to the choice of activation functions [DasGupta et al 1993]

- Two layer threshold networks can express any Boolean function
Neural networks are universal function approximators

- Any continuous function can be approximated to arbitrary accuracy using one hidden layer of sigmoid units [Cybenko 1989]

- Approximation error is insensitive to the choice of activation functions [DasGupta et al 1993]

- Two layer threshold networks can express any Boolean function

- VC dimension of threshold network with edges E: \(VC = O(|E\log |E|) \)

- VC dimension of sigmoid networks with nodes V and edges E:
 - Upper bound: \(O(|V|^2|E|^2) \)
 - Lower bound: \(\Omega(|E|^2) \)
Neural networks are universal function approximators

- Any continuous function can be approximated to arbitrary accuracy using one hidden layer of sigmoid units [Cybenko 1989]

- Approximation error is insensitive to the choice of activation functions [DasGupta et al 1993]

- Two layer threshold networks can express any Boolean function

- VC dimension of threshold network with edges E: $VC = O(|E| \log |E|)$

- VC dimension of sigmoid networks with nodes V and edges E:
 - Upper bound: $O(|V|^2 |E|^2)$
 - Lower bound: $\Omega(|E|^2)$

Exercise: Show that if we have only linear units, then multiple layers does not change the expressiveness