CS6190 Probabilistic Modeling

Fall 2019

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing
Shandian Zhe: Probabilistic Machine Learning

Assistant Professor, School of Computing, University of Utah

zhe@cs.utah.edu

Research Topics:
1. Bayesian Nonparametrics
2. Bayesian Deep Learning
3. Probabilistic Graphical Models
4. Large-Scale Learning System
5. Tensor/Matrix Factorization
6. Embedding Learning

Applications:
• Collaborative Filtering
• Online Advertising
• Physical Simulation
• Brain Imaging Data Analysis

...
Outline

• What is probabilistic machine learning
• Why probabilistic/Bayesian machine learning
• Course requirements/policies (homework assignments, projects, final exams, etc.)
• Basic knowledge review
What is machine learning

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

Tom Mitchell (1999)
Machine learning is the driving force of AI
Alpha-Go! A ML algorithm rather AI
Machine learning is everywhere!

And you are probably already using it
Machine learning is everywhere!

And you are probably already using it

• Is an email spam?
• Find all the people in this photo
• If I like these three movies, what should I watch next?
• Based on your purchase history, you might be interested in...
• Will a stock price go up or down tomorrow? By how much?
• Handwriting recognition
• What are the best ads to place on this website?
• I would like to read that Dutch website in English
• Ok Google, Drive this car for me. And, fly this helicopter for me.
• Does this genetic marker correspond to Alzheimer’s disease?
What is probabilistic (Bayesian) learning?

In a nutshell, probabilistic learning is branch of ML that uses **probabilistic (or Bayesian) principles** for model design and algorithm development.
Probabilistic Learning

Prior distribution

\[p(\theta) \]

Data likelihood

\[p(D|\theta) \]

Posterior distribution

\[p(\theta|D) \]

Bayes’s Rule

\[
p(\theta|D) = \frac{p(\theta, D)}{p(D)} = \frac{p(\theta)p(D|\theta)}{\int p(\theta)p(D|\theta)d\theta}
\]
Advantage

- Unified, principled mathematical framework

\[\theta \sim p(\theta) \quad \text{D}|\theta \sim p(\text{D}|\theta) \quad \Rightarrow \quad p(\theta|\text{D}) \]

- Uncertainty reasoning

Asthma: 60%
Heart disease: 30%
Healthy: 10%
Raining: 70%
Sunny: 30%
How important is the uncertainty?

Tesla death smash probe: Neither driver nor autopilot saw the truck
Challenges

• Modeling

Complex Knowledge/assumptions

• Calculation

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{\int p(\theta)p(D|\theta) d\theta}$$

Valid Prior Distributions

- MCMC sampling
- Variational approximations
- Belief propagation

High dimensional integration

Rules
1. You can....
2. You can’t...
3. You can....
4. You can’t
In this course

- We will cover both the classical and state-of-the-art approaches to deal with these challenges.
Overview of this course

Syllabus

https://www.cs.utah.edu/~zhe/teach/cs6190.html
Warning

This course is \textit{math intensive} and requires \textit{nontrivial} programming (with Matlab, R or Python). Python components may require TensorFlow and/or PyTorch. The coding workload is not heavy, but requires \textit{mathematical derivations and careful debugging}.
How will you learn?

• Take classes to follow the math, understand the models and algorithms
• **Derive the math details by yourself!**
• Finish the homework assignments to deepen your understanding
• **Implement and debug the models and algorithms by yourself!**
• Course project to enlarge your vision and practice your capability
This course

Focuses on the **mathematic foundations, modeling and algorithmic ideas** in probabilistic learning

This course is **not** about

• Using a specific machine learning tools, e.g., scikit-learn
• How to use Python, R or Matlab
We assume that

• You are not scared of math, statistics, calculus and calculations
• Your are comfortable with matrices operations
• You can pick-up Matlab/Python/R very quickly (even if you have never used them before)
• You enjoy debugging, step in, step out, print, etc.
• You can quickly learn how to use TensorFlow and PyTorch by following the documentation and searching for the online examples
If you feel NOT right about these assumptions

• Seriously consider whether to take this course
Course information

• The course website contains all the detailed information
• The course website is linked to my homepage

My home page http://www.cs.utah.edu/~zhe/

Course website https://www.cs.utah.edu/~zhe/teach/cs6190.html
Basic Knowledge Review for Convex Functions and Matrix Derivatives
Basic Knowledge Review

- Convex region/set
Basic Knowledge Review

- Convex function \(f: X \rightarrow R \)

- The input domain \(X \) is a convex region/set

\[
\forall x_1, x_2 \in X, \forall t \in [0, 1] : \quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).
\]
Basic Knowledge Review

• Examples of convex functions

<table>
<thead>
<tr>
<th>Single variable</th>
<th>multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = e^x$</td>
<td>$f(x) = \mathbf{a}^\top \mathbf{x} + b$</td>
</tr>
<tr>
<td>$f(x) = -\log(x)$</td>
<td>$f(x) = \frac{1}{2} \mathbf{x}^\top \mathbf{x}$</td>
</tr>
</tbody>
</table>

• How to determine a convex function?

When differentiable

\[f(x) \geq f(y) + \nabla f(y)^\top (x - y) \]

When twice differentiable

\[\nabla^2 f(x) \succeq 0 \]
Basic Knowledge Review

• Jensen’s inequality (for convex function)

When X is random variable

$$f\left(E(X) \right) \leq E\left(f(X) \right)$$

$$f\left(E(g(X)) \right) \leq E\left(f(g(X)) \right)$$
Basic Knowledge Review

• Convex conjugate (Fenchel Conjugate)

for an arbitrary convex function \(f(\cdot) \), there exists a duality function \(g(\cdot) \)

\[
\begin{align*}
 f(x) &= \max_{\lambda} \lambda x - g(\lambda) \\
 g(\lambda) &= \max_{x} \lambda x - f(x)
\end{align*}
\]

Jensen’s equality and convex conjugate plays the key role in approximate inference
Basic Knowledge Review

• Matrix derivative: everything comes from the definition of the differential

\[y(x + dx) = y(x) + A \, dx + \text{(high order terms)} \]

Derivative, a.k.a Jacobian

In general

\[y : m \times 1 \quad x : n \times 1 \quad A : m \times n \]

\[\partial y = A \, dx \quad \frac{\partial y}{\partial x} = A \]

Some books use \(A^\top \) instead, because they perform the chain rule from right to left
Basic Knowledge Review

• Commonly used results

\[
\begin{align*}
\partial A &= 0 \quad (A \text{ is a constant}) \\
\partial (\alpha X) &= \alpha \partial X \\
\partial (X + Y) &= \partial X + \partial Y \\
\partial (\text{Tr}(X)) &= \text{Tr}(\partial X) \\
\partial (XY) &= (\partial X)Y + X(\partial Y) \\
\partial (X \circ Y) &= (\partial X) \circ Y + X \circ (\partial Y) \\
\partial (X \otimes Y) &= (\partial X) \otimes Y + X \otimes (\partial Y) \\
\partial (X^{-1}) &= -X^{-1}(\partial X)X^{-1} \\
\partial (\det(X)) &= \det(X)\text{Tr}(X^{-1}\partial X) \\
\partial (\ln(\det(X))) &= \text{Tr}(X^{-1}\partial X) \\
\partial X^T &= (\partial X)^T \\
\partial X^H &= (\partial X)^H
\end{align*}
\]

An excellent note: [Old and New Matrix Algebra Useful for Statistics](https://people.reed.edu/~minka/notes.pdf), By Tom Minka, 2001

Another excellent reference: [Matrix Cookbook](https://matrixcookbook.com)

Hint: Decompose the derivatives into simpler terms, and look up the results from the above references.