
Image Processing with Nonparametric
Neighborhood Statistics

Ross T. Whitaker

Scientific Computing and Imaging Institute
School of Computing
University of Utah

PhD – Suyash P. Awate
University of Pennsylvania, Dept of Radiology

See also: http://www.cs.utah.edu/~suyash/pubs/uinta.html



Papers
• Suyash P. Awate and Ross T. Whitaker, "Higher-Order Image Statistics for Unsupervised, Information-

Theoretic, Adaptive Image Filtering UINTA", IEEE Computer Vision and Pattern Recognition (CVPR) 2005,
v 2, pp 44-51

• Suyash P. Awate and Ross T. Whitaker, "Nonparametric Neighborhood Statistics for MRI Denoising",
Information Processing in Medical Imaging (IPMI) 2005, pp 677-688

• Tolga Tasdizen, Suyash P. Awate, Ross T. Whitaker, Norman Foster, "MRI Tissue Classification with
Neighborhood Statistics: A Nonparametric, Entropy-Minimizing Approach",  Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2005, v 2, pp 517-525

• Suyash P. Awate and Ross T. Whitaker, "Unsupervised, Information-Theoretic, Adaptive Image Filtering
with Applications to Image Restoration UINTA",  IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI) 2006, 28(3):364-376

• Suyash P. Awate, Tolga Tasdizen, Ross T. Whitaker, "Unsupervised Texture Segmentation with
Nonparametric Neighborhood Statistics",  European Conference on Computer Vision (ECCV) 2006

• Suyash P. Awate, Tolga Tasdizen, Norman Foster, Ross T. Whitaker, "Adaptive, Nonparametric Markov
Modeling for Unsupervised, MRI Brain-Tissue Classification", Medical Image Analysis (MEDIA) 2006,
10(5):726-739

• Suyash P. Awate and Ross T. Whitaker, "Feature-Preserving MRI Denoising using a Nonparametric,
Empirical-Bayes Approach", IEEE Trans. Medical Imaging (TMI) 2007 (To Appear)



Talk Overview

• Motivation

• Image denoising

• Density estimation

• UINTA filtering strategy overview

• Entropy minimization

• Implementation issues: statistics, image processing

• Other applications

• Final thoughts
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Denoising Vs Reconstruction

• Any geometric/statistical penalty can be
applied in two ways:

1. Gradient descent as filter (choose # iterations)

2. With data (fidelity) term to steady state
• Variational

• Noise/measurement models, optimality, etc.



Variational Methods
E.g Anisotropic Diffusion

• Perona&Malik (1990)

• Penalty:
– Quadratic on grad-mag with

outliers (discontinuities)
• Nordstrom 1990; Black et. al

1998

– Favors piecewise const. Images



Other Flattening Approaches

• Total variation
– Rudin et. al (1992)

• Mumford-Shah (1989) related
– Explicit model of edges
– Cartoon model

• Level sets to model edges
– Chan & Vese (2000)
– Tsai, Yezzi, Willsky (2000)

• Model textures + boundaries
– Meyer (2000)
– Vese & Osher (2002)



PDE Methods
Other Examples

• Weickert (1998)
– Coherence enhancing

• Tasdizen et. al (2001)
– Piecewise-flat normals

• Wilmore flows
– Minimize curvature



Markov Random Fields
E.g. Geman and Geman (1984)

• Gibbs energies on cliques
– Quantify image preferences

• Discrete geometric configurations

– Given a priori

– Hidden variables/processes to capture features



Issues

• Prioritize geometric configurations a priori
– Works well of the model fits, otherwise…

• Free parameters
– Thresholds -> determine when to apply different models

(e.g. “preserve edge or smooth”)

• Generality
– Cartoon-like simplifications are disastrous in many

applications

• Increasing the geometric complexity
– Is there a better way?
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Observations About Images

• Statistics of natural images are not so random
– Huang & Mumford (1999)

• But not so simple
– Manifolds in high-dimensional spaces

– de Silva & Carlsson (2003)



Proposed Strategy

• Infer the appropriate Markovian relationships from
the data
– Images neighborhoods (nhds) as random processes
– Move away from geometric formulations

• Increase redundancy (functional dependency) of image
nhds
– Information content
– Entropy

• Optimal posteriori estimates (noise model)



Related Work
• DUDE algortihm–Weissman et. al (2003)

– Discrete channels + noise model
– MLE estimation

• Texture synthesis
– Efros & Leung (1999)
– Wei & Levoy (2002)

• NL-means, Baudes et al. (CVPR 2005)
– Independent, simultaneously presented
– More later…

• Sparsity in image neighborhoods
– Roth and Black 2005
– Elad and Aharon 2006



Image Model
• Pixels and neighborhoods Z = (X, Y)

– P(Z), P(X|Y)

• Scenario
– Corrupted image –> noise model

– Prior knowledge P(X|Y)

– Theorems:
• Can produce most likely image x’ using P(X|Y = y’)

• Iterate to produce optimal estimate



Modeling P(Z)

• Set of image neighborhoods
– Large, complex, high-dimensions

• Approach
– Represent complexity through examples

– Nonparametric density estimation



• Nonparametric estimation
– No prior knowledge of densities

– Can model real densities

• Statistics in higher dimensions
– Curse of dimensionality (volume of n-sphere -> 0)

+ However, empirically more optimistic

+ Z has identical marginal distributions

+ Lower dimensional manifolds in feature space

Nonparametric, Multivariate
Density Estimation



• Scattered-data interpolation

• Window function
– G ≡ Gaussian

– Covariance matrix:

Parzen Windows
(Parzen 1962)

z1 z2 z3 z4z5 z6 z7



Parzen Windows
(Parzen 1962)

•  Effects of finite sampling (Duda & Hart)

σ = 1 σ = 0.5 σ = 0.1

n = 1

n = 10

n = 100

n = ∞



• Entropy of a random variable X (instance x)
– Measure of uncertainty – information content of a sample

Entropy
 (Shannon 1948)

x

Low entropy

High entropy

p(x)



UINTA Strategy
Awate & Whitaker CVPR 2005, PAMI 2006

• Iterative algorithm

• Progressively minimizes the entropy of image
nhds Z = (X, Y)
– Pixel entropies (X) conditioned on nhd values (Y)

– Gradient descent (time steps -> mean shift)

• Nonparametric density estimation
– Stochastic gradient descent



• Entropy as sample mean

– Set B: all pixels in image

– Set A: a small random selection of pixels

– zi shorthand for z(si)

•  Stochastic approximation

Entropy Minimization



Entropy Minimization

• Stochastic approximation
– Reduce O(|B|2) to O(|A||B|)

– Efficient optimization

• Stochastic-gradient descent



Mean-Shift Procedure
(Fukunaga et al. 1975)

• Entropy minization <–> mean shift

• Mean-shift – a mode seeking procedure

x1 x2 x3 x4 x5 x6

p(x)



Mean-Shift Procedure
(Fukunaga et al. 1975)

• Data filtering to reduce noise
– Hand tuned parameters



Implementation Issues

• Scale selection for Parzen windowing
– Automatic – min entropy with cross validation

• Rotational invariance

• Boundary neighborhoods

• Random sample selection – nonstationary
image statistics

• Stopping criteria
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Quality of Denoising

• σ, joint entropy, and RMS- error vs. number of
iterations



Vs Perona Malik
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Fractal
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Quantitative Results

• Generalizes well
– Relatively insensitive to a few parameters (e.g. nhd

size)

• Compares favorably with s.o.t.a. wavelet
denoisers
– Close but worse for standard images (photographs)
– Better for less typical images (defy wavelet

shrinkage assumptions)

• Spectral data -> gets even better



Entropy Scale Space?



Other Applications

• Optimal reconstruction
– Noise model
– Awate&Whitaker, IPMI, 2005

• MRI head segmentation
– Iterative tissue classification
– Tasdizen et al., MICCAI, 2005

• Texture segmentation
– Awate, Tasdizen, Whitaker, ECCV 2005



Optimal Reconstruction

• What if we had a noise model and a PDF
conditioned on image nhds?
– –> “Optimal” estimate for each pixel (minimize

expected error)

• Image statistics (each nhd forms a
“lookup”)
– Database of “perfect” image nhds
– Bootstrap from the noisy images (“denoise” pdf)

• Noisy neighborhoods
– Iterate on sequence of improving estimates

? nhd
examples

nhd
statistics

prior

noise model

Y=y

x

likelihood

optimal
estimate



Optimal Estimation (MRI)

noiseless Rician noise known prior reconstructed

noiseless Rician noise estimated prior reconstructed



MRI Tissue Classification
• Classify pixels based on spectral (multi-modal) MRI

measurements

• Overlapping (noisy) clusters
– ambiguity and misclassified pixels

• Use spatial data to influence decision
– Large-scale (absolute) relationships <-> statistical atlases

– Local (nhd) relationships <-> Markov random fields (smooth
configurations)

• Idea: learn nhd relationships from data
– Classify (iterative) to reduce in-class nhd entropy



MRI Tissue Classification

MRI Input GM, WM, CSF Seg. Comparison: SOTA–EM w/MRFs & Atlas
(Leemput et al.)

GM Classification Performance vs Noise Level
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Proposed Leemput

• Algorithm: 1) initialize with atlas, 2) iteratively
relabel to reduce tissue-wise nhd entropy



Texture Segmentation

• Reassign class labels to reduce in-class
entropy
– Deformable model to keep spatial coherence

• Recompute pdfs from new class labels
– Random samples + nonparametric nhd

statistics

• Iterate Min entropy



Texture Segmentation
Awate et al., 2005

• Initialization -> checkerboard

• Deformable model -> level sets (Tsai and Seglmi, 2004)
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