## **Summary of General Hypothesis Test Procedure:**

- 1. Define the **null hypothesis**, which is the uninteresting or default explanation.
- 2. Assume that the null hypothesis is true, and determine the probability rules for the possible outcomes of the experiment.
- 3. After collecting data, compute the probability of the final outcome or even more extreme outcomes.

calculato. Uni statiz

Fair Coin Experiment  

$$E_{xp} - f_{1,p's}, T = T(X_{1}...,X_{n}) = \sum_{i=1}^{n} X_{i}$$
  
 $H_{0} - coin f_{air}, P = 0.5$   
 $H_{1} - P \neq 0.5, P > 0.5, P \ge 0.5$   
 $doubb
sided Sided Sided
 $T \sim Bin(n, p) = Bin(n, \frac{1}{2}) n = 100$   
 $t = Z \times gbinom(.95, 100, \frac{1}{2}) = 58$$ 



Approx W/Normal $\overline{D} \sim N(50, 100 \times \frac{1}{4})^{-3}$  $\mathcal{H}(50, 25)$  $Z = T \cdot m$  $T = \mathcal{I} \cdot \mathcal{I}$  $T = \mathcal{I} \cdot \mathcal{I}$  $Z_{10} = Z_{0.95} = 1.64$ (1.64 × 5) + 50 = 58.2

Error

| Table of error types                                           |                | Null hypothesis ( <i>H</i> <sub>0</sub> ) is                         |                                                                    |
|----------------------------------------------------------------|----------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                |                | 🔰 True                                                               | False                                                              |
| Decision<br>about null<br>hypothesis ( <i>H</i> <sub>0</sub> ) | Fail to reject | Correct inference<br>(true negative)<br>(probability = 1- <i>a</i> ) | Type II error<br>(false negative)<br>(probability = $\beta$ )      |
|                                                                | Reject         | Type I error<br>(false positive)<br>(probability = <i>a</i> )        | Correct inference<br>(true positive)<br>(probability = $1-\beta$ ) |
| P(                                                             | Reject         | Ho tru                                                               | i) = d                                                             |









 $h \sim N(0, 5/n) = N(0, 5/n)$  $T = \frac{h-0}{1! s_n / v_n}$   $\leq \frac{studiet-t}{dist}$  $H_0 = mean d h is zer$  $t_{1-\infty} = 0.05$ zero If t>+,~~ reged No



Two sample hypilhesis test Equal variances Scenario: two poputions, unknom mans, unknown variances. (equal).  $\sigma_x^2 = \sigma_y^2 = \sigma^2$  $X = X_1 - X_n$  $Y = Y_1 - Y_m$  $X_n, Y_m$  $S_x^z S_y^z$ 

$$S_{p}^{2} = (n-1)S_{x}^{2} + (m-1)S_{y}^{2}$$
  
Stabistics  

$$T = \frac{X_{n} - Y_{m}}{S_{p}(\frac{1}{h} + \frac{1}{m})^{\frac{1}{2}}}$$

$$U_{x} M_{y}$$
Studiet n+M-2 feedle.  

$$M_{x} M_{y}$$

Statistical Sundation? Mat is Sundation? Why? Complex Reduct outcomes. - average

Mende Carlo.

Rondom #5 in Comp.

Pseudo-vendeum Us. Cenerate seguries of integers Securie hes memory. Poly homials - chaotic Junitien dist

Pseudo - Rondom.  
Standard uniform distribution  

$$M \sim U(0, 1)$$
  $M$   
Ex:  $\text{Rer}(p)$   $u \leftarrow \text{runif}(l)$   
 $b = \begin{cases} 1 \text{ If } u  $u \text{ type float}$$ 







 $y = \begin{cases} 0 \le 4 \le \frac{3}{5} \\ \frac{3}{5} \le 4 \le \frac{4}{5} \\ \frac{4}{5$ 





Generate samples from 
$$Exp(\lambda)$$
  
 $f(x) = \lambda e^{-\lambda x}$   
 $F(x) = 1 - e^{-\lambda x}$   
 $1 - e^{-\lambda x} = 1 - u = e^{-\lambda x}$   
 $1 - u = e^{-\lambda x}$   
 $\ln(1 - u) = -\lambda x$   
 $x = -\frac{\ln(1 - u)}{\lambda} = -\frac{\ln(h)}{\lambda}$ 

Generating Random #5.  $n \land U(0,1)$ Ex. Bernoulli  $b = \begin{cases} 1 & u \leq P \\ 0 > P \end{cases}$   $b^{=}$  $b = \begin{cases} 0 & 4 \leq 1 - p \\ 0 & 4 \neq - p \end{cases}$ 



Exp RV'S-  
F(X) = 1 - e<sup>-3x</sup>  

$$x = -\frac{h(u)}{\lambda}$$
  
Nôte:  
Many distributions - formulas & approx  
Many distributions - formulas & approx  
Normal.

Similations I) I dentify random vou ables - stanlegy for generateon 2) Generaate H< 3) Apply mode !" 4) Analyze ont comes. description statistics





Warting times mean, medrin, max, 95% percentle histogrom W. AAA

Linear Regression Fitting models  $y_i = \alpha + \beta x_i + \varepsilon_i , dependent$  $- y_i$ E: -randeni noise X: - margandent  $\xi \sim UL$ ) | E[E\_i] = 0 |

Models. Cenerative model. Find parameters v, P & - parameters of dist



Method & least squares Objective function / penalty.  $S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$