Summary of General Hypothesis Test Procedure:

1. Define the null hypothesis, which is the uninteresting or default explanation.
2. Assume that the null hypothesis is true, and determine the probability rules for the possible outcomes of the experiment.
3. After collecting data, compute the probability of the final outcome or even more extreme outcomes.

Fair Coin Experiment

$$
\begin{aligned}
& \text { Exp - flip's, } T=T\left(x_{1} \ldots, x_{b}\right)=\sum_{l=1}^{n} x_{i} \\
& H_{0} \text { - coil fair, } p=0.5 \\
& H_{1}-\begin{array}{c}
p \neq 0.5 \\
\text { doubled } \\
\text { sided }
\end{array}, ~ \underbrace{P>0.5, p 20.5}_{\text {amyl sided }} \\
& T \sim \operatorname{Bin}(n, p)=\operatorname{Bin}\left(n, \frac{1}{2}\right) \quad n=100 \\
& t=\sum_{i} x_{i} \quad \operatorname{gbinam}\left(.95,100, \frac{1}{2}\right)=58
\end{aligned}
$$

Appros W/ Normal

$$
\begin{aligned}
& T \sim N\left(50,100 \times \frac{1}{4}\right)=\quad N(50,25) \\
& Z_{1-\alpha}=Z_{0.95}=1.64 \quad Z=\frac{T-\mu}{6} \\
& (1.64 \times 5)+50=58.2
\end{aligned}
$$

Ehror

Table of error types		Null hypothesis (H_{0}) is	
		- True	False
Decision about null hypothesis $\left(H_{0}\right)$	Fail to reject	Correct inference (true negative) (probability = $1-a$)	Type II error (false negative) (probability $=\beta$)
	Reject	$\xrightarrow{\text { Type I error }} \begin{gathered}\text { (false positive) } \\ \text { (probability = a) }\end{gathered}$	Correct inference (true positive) $(\text { probability }=1-\beta)$
$P(\text { Reyét }$		Ho trwe $=0$	

(1) Hypotheris Testy of Me ans
H_{0}
is $z^{>} z_{2}$

\bar{x} - sumples near.
aticale
$z=\left(\bar{x}-\mu_{0}\right) /\left(\sigma / r_{n}\right) \sim N(0,1)$

Hyp of Mean.
(bb)

Paired Samples - Hypothesis Testing
Same set of speumens tho
condillons
"before" \&ो "after"

$$
\begin{aligned}
& \binom{x_{1}}{x_{h}}\left(\begin{array}{c}
y_{1} \\
\vdots \\
\bar{x}
\end{array} \quad \begin{array}{l}
y_{i}-x_{i}=h_{i} \\
\frac{\left(h_{1}\right.}{y} \\
\bar{y} \\
h_{n}
\end{array}\right) \quad \bar{h}=\sum_{n}^{n} \sum_{i=1}^{n} h_{i}
\end{aligned}
$$

$$
\begin{gathered}
\bar{n} \sim N\left(0, \sigma^{2} / n\right) \simeq N\left(0, s_{n}^{2} / n\right) \\
T=\frac{\bar{h}-0}{j \cdot S_{n} / \sqrt{n} j} \ll \begin{array}{c}
\text { staduat-t } \\
\text { dist. }
\end{array}
\end{gathered}
$$

$H_{0}=$ mean of h is zero
$\begin{array}{ll}t_{1-\alpha} \alpha=0.05 & \text { If } t>t_{1-\alpha} \\ \text { reed } N_{0}\end{array}$

Two semple hy potheris test equal varranies
Scenario: two popot, ions, whknom means, unk no wh vaniances. (egual).

$$
\begin{aligned}
& \sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2} \\
& \bar{X}_{n}, \bar{Y}_{m} \\
& S_{x}^{2} S_{y}^{2}
\end{aligned}
$$

$$
x=x_{1} \ldots x_{n}
$$

$$
\left.\widehat{y}=y_{1} \cdots y_{m}\right\}
$$

$$
S_{p}^{2}=\frac{(n-1) S_{x}^{2}+(m-1) S_{y}^{2}}{n+m-2}
$$

stadistic

$$
T=\frac{\bar{x}_{n}-\bar{y}_{m}}{\operatorname{sp}_{p}\left(\frac{1}{n}+\frac{1}{m}\right)^{\frac{1}{2}}}
$$

swhut $n+m-2$ feeder.

Statistical Smulatini
What is sumalation?
why?
complex
Predict outconcs - avena-je
manie Corlo.

Rantom ths is Comp.
Peerdo-rarkum ${ }^{2}$ s.
Generate secumies of integers
securie hes menory.

Pseudo -Rarlam.
stendand unifirem distup ofino $u \sim u(0,1)$

Ex: $\operatorname{Ber}(p) \quad u \leftarrow \operatorname{runif} l)$

$$
b=\left\{\begin{array}{l}
1 \\
\text { is } u<p \\
0 \\
\text { if } u \geq p
\end{array} \quad u\right. \text { tipe float }
$$

