## Introduction to Statistics

# CS 3130 / ECE 3530: Probability and Statistics for Engineers 

March 14, 2024

## Independent, Identically Distributed RVs

## Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent, identically distributed (iid) if they share the same probability distribution and are independent of each other.

Independence of $n$ random variables means


## Independent, Identically Distributed RVs

## Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent, identically distributed (iid) if they share the same probability distribution and are independent of each other.

Independence of $n$ random variables means

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right) .
$$

## Random Samples



## Definition

A random sample from the distribution $F$ of length $n$ is a set $\left(X_{1}, \ldots, X_{n}\right)$ of iid random variables with distribution $F$. The length $n$ is called the sample size.

- A random sample represents an experiment where $n$ independent measurements are taken.
- A realization of a random sample, denoted $\left(x_{1}, \ldots, x_{n}\right)$ are the values we get when we take the measurements.


## Random Samples

## Definition <br> A random sample from the distribution $F$ of length $n$ is a set $\left(X_{1}, \ldots, X_{n}\right)$ of iid random variables with distribution $F$. The length $n$ is called the sample size.

- A random sample represents an experiment where $n$ independent measurements are taken.
- A realization of a random sample, denoted $\left(x_{1}, \ldots, x_{n}\right)$ are the values we get when we take the measurements.


## Random Samples

## Definition <br> A random sample from the distribution $F$ of length $n$ is a set $\left(X_{1}, \ldots, X_{n}\right)$ of iid random variables with distribution $F$. The length $n$ is called the sample size.

- A random sample represents an experiment where $n$ independent measurements are taken.
- A realization of a random sample, denoted $\left(x_{1}, \ldots, x_{n}\right)$ are the values we get when we take the measurements.


## Statistics

## Definition <br> A statistic on a random sample $\left(X_{1}, \ldots, X_{n}\right)$ is a function $T\left(X_{1}, \ldots, X_{n}\right)$.

## Examples:

- Sample Mean



## Statistics

## Definition

A statistic on a random sample $\left(X_{1}, \ldots, X_{n}\right)$ is a function $T\left(X_{1}, \ldots, X_{n}\right)$.

## Examples:

- Sample Mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

$$
\begin{aligned}
& x \sim P \\
& E(x)=\sum_{i=1}^{n} x_{i} p\left(x_{i}\right)=\sum x_{i} f_{x}\left(m_{i}\right) \\
&=\sum_{E=1}^{n} x_{i} \cdot \frac{1}{n}=\frac{1}{n} \sum x_{i} \\
&=\frac{1}{n} \sum x_{i}
\end{aligned}
$$

## Statistics

## Definition

A statistic on a random sample $\left(X_{1}, \ldots, X_{n}\right)$ is a function $T\left(X_{1}, \ldots, X_{n}\right)$.

## Examples:

- Sample Mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Sample Variance

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left[(x-E(x))^{2}\right] \\
E(x) & =\bar{x}_{n} \quad x_{\sim} p \\
& =E\left[\left(x-\bar{x}_{n}\right)^{2}\right] \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right) p\left(x_{i}\right) \\
& =\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i} \bar{x}_{m}\right)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, \frac{x_{4}}{7} \text { ANII } \\
& \frac{5}{6}{ }^{6}{ }^{6} \\
& \overline{\bar{x}_{m}}=\frac{1}{4}(5+6+6+7) \\
& s_{n}^{2} \overline{x_{m}}=\frac{24}{4}=6 \\
& \frac{1}{3}\left[(5-6)^{2}+(6-6)^{2}+(6 / 6)+(7-6)\right. \\
& =\frac{1}{3}(1+1]=\frac{2}{5}=0.67
\end{aligned}
$$

## Order Statistics

Given a sample $X_{1}, X_{2}, \ldots, X_{n}$, start by sorting the list of numbers.

- The median is the center element in the list if $n$ is odd, average of two middle elements if $n$ is even.
- The $i$ th order statistic is the $i$ th element in the list.
- The empirical quantile $q_{n}(p)$ is the first point at which $p$ proportion of the data is below.
- Quartiles are $q_{n}(p)$ for $p=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is $I Q R=q_{n}(0.75)-q_{n}(0.25)$.


## Order Statistics



Given a sample $X_{1}, X_{2}, \ldots, X_{n}$, start by sorting the list of numbers.

- The median is the center element in the list if $n$ is odd, average of two middle elements if $n$ is even.
- The $i$ th order statistic is the $i$ th element in the list.
- The empirical quantile $q_{n}(p)$ is the first point at which $p$ proportion of the data is below.
- Quartiles are $a_{n}(p)$ for $p=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is $I Q R=q_{n}(0.75)-q_{n}(0.25)$


## Order Statistics

Given a sample $X_{1}, X_{2}, \ldots, X_{n}$, start by sorting the list of numbers.

- The median is the center element in the list if $n$ is odd, average of two middle elements if $n$ is even.
- The $i$ th order statistic is the $i$ th element in the list.
- The empirical quantile $q_{n}(p)$ is the first point at which $p$ proportion of the data is below.


## Order Statistics



Given a sample $X_{1}, X_{2}, \ldots, X_{n}$, start by sorting the list of numbers.

- The median is the center element in the list if $n$ is odd, average of two middle elements if $n$ is even.
- The $i$ th order statistic is the $i$ th element in the list.
- The empirical quantile $q_{n}(p)$ is the first point at which $p$ proportion of the data is below.
- Quartiles are $q_{n}(p)$ for $p=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is

$$
I Q R=q_{n}(0.75)-q_{n}(0.25) .
$$



## Realizations of Statistics

Remember, a statistic is a random variable! it is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Plugging these numbers into $=6.25$ the formula for our statistic gives a realization of the statistic, $t=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Example: given realizations $x_{i}$ of a random sample, the realization of the sample mean is $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Upper-case = random variable, Lower-case = realization

## Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Plugging these numbers into the formula for our statistic gives a realization of the statistic, $t=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Example: given realizations $x_{i}$ of a random sample, the realization of the sample mean is $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Upper-case = random variable, Lower-case = realization

## Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Plugging these numbers into the formula for our statistic gives a realization of the statistic, $t=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Example: given realizations $x_{i}$ of a random sample, the realization of the sample mean is $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
$x$
Upper-case $=$ random variable, Lower-case $=$ realization

## Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Plugging these numbers into the formula for our statistic gives a realization of the statistic, $t=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Example: given realizations $x_{i}$ of a random sample, the realization of the sample mean is $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Upper-case = random variable, Lower-case = realization

University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

## Statistical Plots

(See example code "StatPlots.r")

- Histograms
- Empirical CDF
- Box plots
- Scatter plots


## Sampling Distributions

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Each $X_{i}$ is a random variable, all with the same pdf.

And a statistic $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is also a random variable and has its own pdf (different from the $X_{i}$ pdf). This distribution is the sampling distribution of $T$.

If we know the distribution of the statistic $T$, we can answer questions such as "What is the probability that $T$ is in some range?" This is $P(a \leq T \leq b)$ - computed using the colf of $T$.

## Sampling Distributions

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Each $X_{i}$ is a random variable, all with the same pdf.

And a statistic $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is also a random variable and has its own pdf (different from the $X_{i}$ pdf). This distribution is the sampling distribution of $T$.

If we know the distribution of the statistic $T$, we can
answer questions such as "What is the probability that $T$
is in some range?" This is $P(a \leq T \leq b)$ - computed
using the colf of $T$.

## Sampling Distributions

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Each $X_{i}$ is a random variable, all with the same pdf.

And a statistic $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is also a random variable and has its own pdf (different from the $X_{i}$ pdf). This distribution is the sampling distribution of $T$.

If we know the distribution of the statistic $T$, we can answer questions such as "What is the probability that $T$ is in some range?" This is $P(a \leq T \leq b)$-computed using the cdf of $T$.

## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,


University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

What do we know about the distribution of the sample mean, $\bar{X}_{n}$ ?


University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

What do we know about the distribution of the sample mean, $\bar{X}_{n}$ ?


- As $n$ get's large, it is approximately a Normal distribution with mean $\mu$ and variance $\sigma^{2} / n$.
- Not much else! We don't know the full pdf/cdf



## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

What do we know about the distribution of the sample mean, $\bar{X}_{n}$ ?


- It's expectation is $E\left[\bar{X}_{n}\right]=\mu$
- It's variance is $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$

- As $n$ get's large, it is approximately a Normay $=1$

- Not much else! We don't know the full pdf/cdf. nұ


## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

What do we know about the distribution of the sample mean, $\bar{X}_{n}$ ?

- It's expectation is $E\left[\bar{X}_{n}\right]=\mu$
- It's variance is $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$
- As $n$ get's large, it is approximately a Normal distribution with mean $\mu$ and variance $\sigma^{2} / n$.
- Not much else! We don't know the full pdf/cdf.


## Sampling Distribution of the Mean

Given a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

What do we know about the distribution of the sample mean, $\bar{X}_{n}$ ?

- It's expectation is $E\left[\bar{X}_{n}\right]=\mu$
- It's variance is $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$
- As $n$ get's large, it is approximately a Normal distribution with mean $\mu$ and variance $\sigma^{2} / n$.
- Not much else! We don't know the full pdf/cdf.



## When the $X_{i}$ are Normal



When the sample is Normal, i.e., $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then we know the exact sampling distribution of the mean $\bar{X}_{n}$ is Nornal:

$$
\bar{X}_{n} \sim N\left(\underline{\mu}, \underline{\left.\sigma^{2} / n\right)}\right.
$$



## Chi-Square Distribution



The chi-square distribution is the distribution of a sum of squared Normal random variables. Sô, if $X_{i} \sim N(0,1)$ are iid, then

$$
Y=\sum_{i=1}^{k} X_{i}^{2}
$$


has a chi-square distribution with $k$ degrees of freedom. We write $Y \sim \chi^{2}(k)$.

Read the Wikipedia page for this distribution!!

