Introduction to Statistics

CS 3130 / ECE 3530: Probability and Statistics for Engineers

March 14, 2024

Independent, Identically Distributed RVs

Definition

The random variables X_1, X_2, \ldots, X_n are said to be **independent, identically distributed (iid)** if they share the same probability distribution and are independent of each other.

Independence of *n* random variables means

$$f_{X_1,...,X_n}(x_1,\ldots,x_n) = \prod_{i=1}^n f_{X_i}(x_i).$$
University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

Independent, Identically Distributed RVs

Definition

The random variables X_1, X_2, \ldots, X_n are said to be **independent, identically distributed (iid)** if they share the same probability distribution and are independent of each other.

Independence of n random variables means

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i).$$

Random Samples X

Definition

A random sample from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the **sample size**.

- A random sample represents an experiment where n independent measurements are taken.
- A realization of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.

Random Samples

Definition

A **random sample** from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the **sample size**.

- A random sample represents an experiment where n independent measurements are taken.
- A realization of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.

Random Samples

Definition

A **random sample** from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the **sample size**.

- A random sample represents an experiment where n independent measurements are taken.
- A **realization** of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.

Statistics

Definition

A **statistic** on a random sample (X_1, \ldots, X_n) is a function $T(X_1, \ldots, X_n)$.

Examples:

Sample Mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Statistics

Definition

A **statistic** on a random sample (X_1, \ldots, X_n) is a function $T(X_1, \ldots, X_n)$.

Examples:

Sample Mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Statistics

Definition

A **statistic** on a random sample (X_1, \ldots, X_n) is a function $T(X_1, \ldots, X_n)$.

Examples:

Sample Mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Sample Variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

$$Varc(x) = f(x - f(x))^{2}$$

$$E(x) = x_{n}$$

$$= f(x - x_{n})^{2}$$

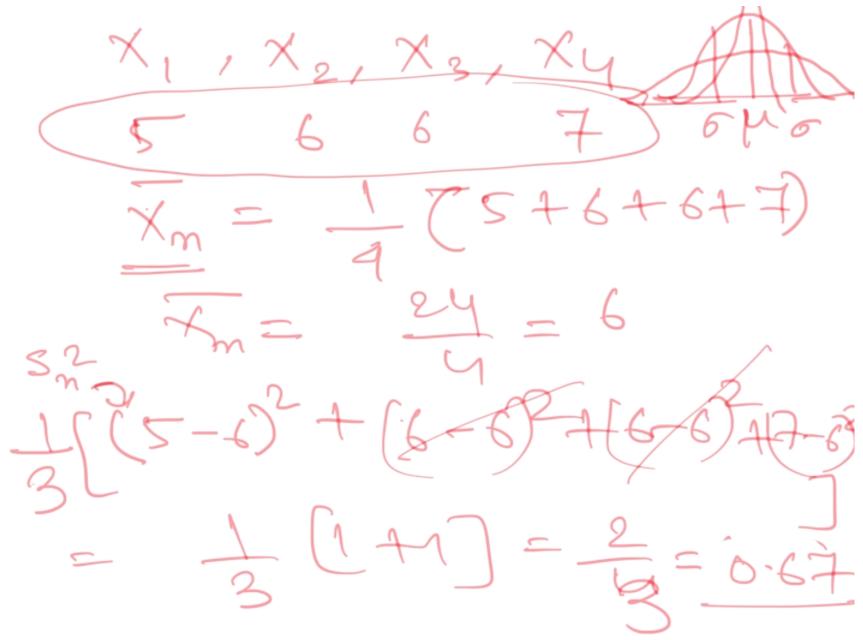
$$= \frac{2(x - x_{n})^{2}}{x_{n}}$$

$$= \frac{2(x - x_{n})^{2}}{x_{n}}$$

$$= \frac{2(x - x_{n})^{2}}{x_{n}}$$

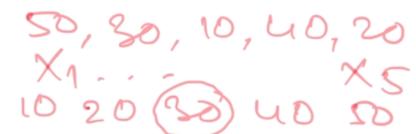
$$= \frac{2(x - x_{n})^{2}}{x_{n}}$$

University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker



University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

Order Statistics



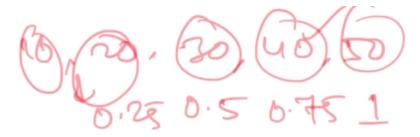
- The median is the center element in the list if n is odd, average of two middle elements if n is even.
- The ith order statistic is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- Quartiles are $q_n(p)$ for $p=\frac{1}{4},\frac{1}{2},\frac{3}{4},1.$ The inner-quartile range is $IQR=q_n(0.75)-q_n(0.25).$

- The median is the center element in the list if n is odd, average of two middle elements if n is even.
- The *i*th order statistic is the *i*th element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- Quartiles are $q_n(p)$ for $p=\frac{1}{4},\frac{1}{2},\frac{3}{4},1$. The inner-quartile range is $IQR=q_n(0.75)-q_n(0.25)$.

Order Statistics

- The median is the center element in the list if n is odd, average of two middle elements if n is even.
- The ith order statistic is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- Quartiles are $q_n(p)$ for $p=\frac{1}{4},\frac{1}{2},\frac{3}{4},1.$ The inner-quartile range is $IQR=q_n(0.75)-q_n(0.25).$

Order Statistics



- The **median** is the center element in the list if *n* is odd, average of two middle elements if *n* is even.
- The *i*th order statistic is the *i*th element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- Quartiles are $q_n(p)$ for $p = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is

inner-quartile range is
$$IQR = q_n(0.75) - q_n(0.25)$$
.

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample (x_1, x_2, \ldots, x_n) . Plugging these numbers into =6, the formula for our statistic gives a **realization of the** statistic, $t = T(x_1, x_2, \ldots, x_n)$.

Example: given realizations x_i of a random sample, the realization of the sample mean is $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample (x_1, x_2, \ldots, x_n) . Plugging these numbers into the formula for our statistic gives a **realization of the statistic**, $t = T(x_1, x_2, \ldots, x_n)$.

Example: given realizations x_i of a random sample, the realization of the sample mean is $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample (x_1, x_2, \ldots, x_n) . Plugging these numbers into the formula for our statistic gives a **realization of the statistic**, $t = T(x_1, x_2, \ldots, x_n)$.

Example: given realizations x_i of a random sample, the realization of the sample mean is $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample (x_1, x_2, \ldots, x_n) . Plugging these numbers into the formula for our statistic gives a **realization of the statistic**, $t = T(x_1, x_2, \ldots, x_n)$.

Example: given realizations x_i of a random sample, the realization of the sample mean is $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Statistical Plots

(See example code "StatPlots.r")

- Histograms
- Empirical CDF
- Box plots
- Scatter plots

Sampling Distributions

Given a sample (X_1, X_2, \ldots, X_n) . Each X_i is a random variable, all with the same pdf.

And a statistic $T = T(X_1, X_2, ..., X_n)$ is also a random variable and has its own pdf (different from the X_i pdf). This distribution is the **sampling distribution** of T.

If we know the distribution of the statistic T, we can answer questions such as "What is the probability that T is in some range?" This is $P(a \le T \le b)$ – computed using the cdf of T.

Sampling Distributions

Given a sample (X_1, X_2, \ldots, X_n) . Each X_i is a random variable, all with the same pdf.

And a statistic $T = T(X_1, X_2, ..., X_n)$ is also a random variable and has its own pdf (different from the X_i pdf). This distribution is the **sampling distribution** of T.

If we know the distribution of the statistic T, we can answer questions such as "What is the probability that T is in some range?" This is $P(a \le T \le b)$ – computed using the cdf of T.

Sampling Distributions

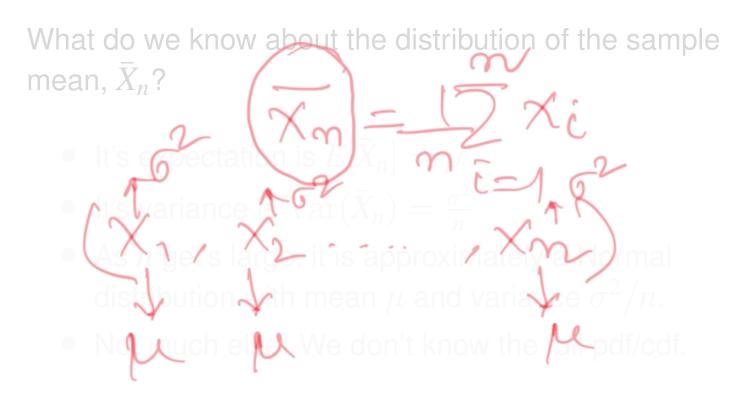
1.0

Given a sample (X_1, X_2, \dots, X_n) . Each X_i is a random variable, all with the same pdf.

And a statistic $T = T(X_1, X_2, ..., X_n)$ is also a random variable and has its own pdf (different from the X_i pdf). This distribution is the **sampling distribution** of T.

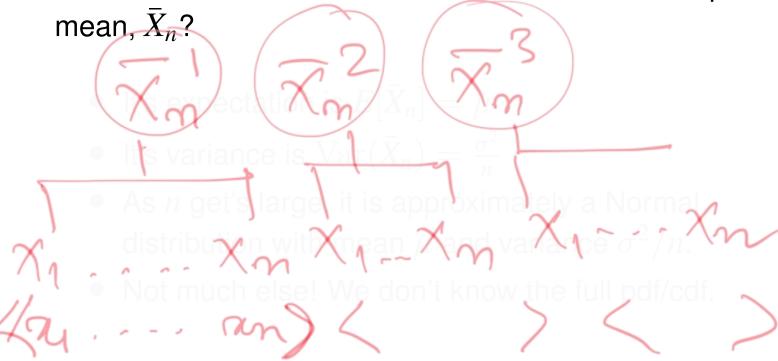
If we know the distribution of the statistic T, we can answer questions such as "What is the probability that T is in some range?" This is $P(a \le T \le b)$ — computed using the cdf of T.

Given a sample (X_1, X_2, \dots, X_n) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,



Given a sample $(X_1, X_2, ..., X_n)$ with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,

What do we know about the distribution of the sample



University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

Given a sample
$$(X_1, X_2, \ldots, X_n)$$
 with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,

What do we know about the distribution of the sample mean, \bar{X}_n ?

- It's expectation is $E[\bar{X}_n] = \mu$
- It's variance is $Var(X_n) = \frac{\sigma^2}{n}$
- As n get's large, it is approximately a Normal distribution with mean μ and variance σ^2/n .
- Not much else! We don't know the full pdf/cdf.

Given a sample (X_1, X_2, \dots, X_n) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,

What do we know about the distribution of the sample ~~

mean, \bar{X}_n ?

- ullet It's expectation is $E[ar{X}_n] \stackrel{ extsf{-}}{=} \mu$
- It's variance is $\operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$
- As n get's large, it is approximately a Normal of distribution with mean μ and variance σ^2/n .
- Not much else! We don't know the full pdf/cdf. mt

Given a sample (X_1, X_2, \dots, X_n) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,

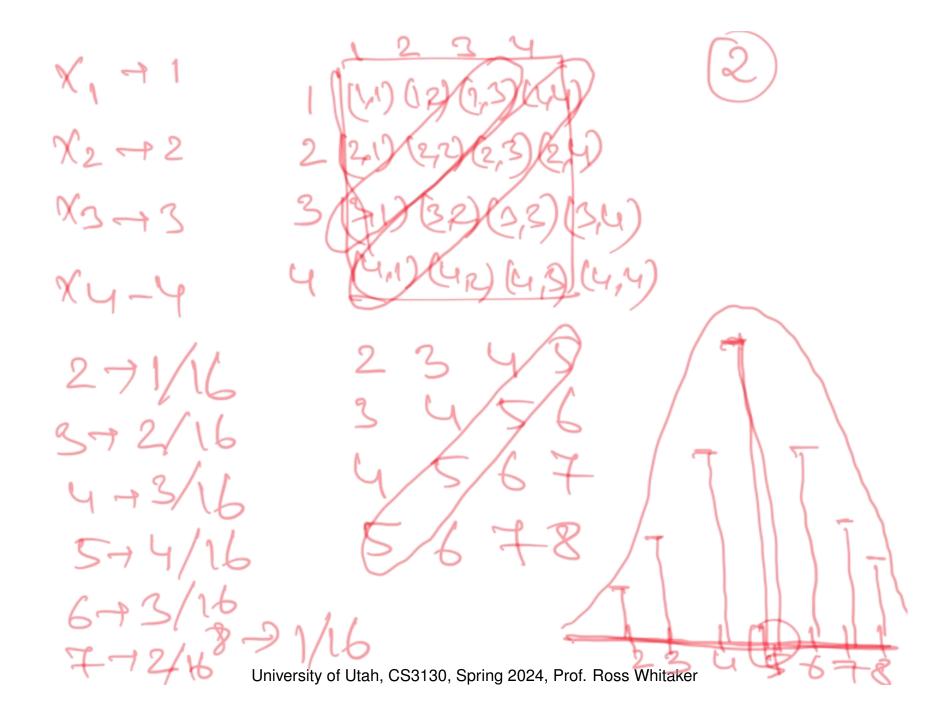
What do we know about the distribution of the sample mean, \bar{X}_n ?

- It's expectation is $E[\bar{X}_n] = \mu$
- It's variance is $\operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$
- As n get's large, it is approximately a Normal distribution with mean μ and variance σ^2/n .
- Not much else! We don't know the full pdf/cdf.

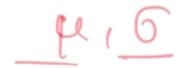
Given a sample (X_1, X_2, \dots, X_n) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$,

What do we know about the distribution of the sample mean, \bar{X}_n ?

- It's expectation is $E[\bar{X}_n] = \mu$
- It's variance is $\operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$
- As n get's large, it is approximately a Normal distribution with mean μ and variance σ^2/n .
- Not much else! We don't know the full pdf/cdf.



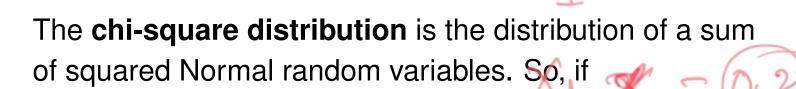
When the X_i are Normal



When the sample is Normal, i.e., $X_i \sim N(\mu, \sigma^2)$, then we know the *exact* sampling distribution of the mean \bar{X}_n is Nornal:

$$\bar{X}_n \sim N(\underline{\mu}, \underline{\sigma^2/n})$$

Chi-Square Distribution



 $X_i \sim N(0,1)$ are iid, then

$$Y = \sum_{i=1}^{k} X_i^2$$

has a chi-square distribution with k degrees of freedom. We write $Y \sim \chi^2(k)$.

Read the Wikipedia page for this distribution!!