Bayes Rule

CS 3130/ECE 3530:
 Probability and Statistics for Engineers

Jan 23, 2023

Bayes Rule

In-Class Problem:

University of Utah, CS3130, Spring 2024, Prof. Ross Whitaker

In-Class Problem:

You have two urns, one with 4 black balls and 3 white balls, the other with 2 black balls and 2 white balls. You pick one urn at random and then select a ball from the urn. What is the probability the ball is white?
If you picked a black ball, what is the probability that you had picked the first urn (the 4 black, 3 white urn)?

Bayes Rule - Terminology

Bayes Rule - Meaning

In-Class Problem:

You have a system with a main power supply and auxiliary power supply. The main power supply has a 10% chance of failure. If the main power supply is running, the auxiliary power supply also has a 10\% chance of failure. But if the main supply fails, the auxiliary supply is more likely to be overloaded and has a 15% chance to fail. What is the probability that the auxiliary power will fail?
If the auxiliary power fails, what is the probability that the main power also tailed?
$A<0 b s$.
Me knom

$$
\begin{array}{r}
\begin{array}{r}
P(m \mid A)= \\
\left.\begin{array}{rl}
P(A \mid m) P(n)^{\prime} \\
P(A l a l
\end{array}\right) \\
P(A \mid m) p(n)+ \\
P(A \mid \sim m) p(2 m)
\end{array} \\
=
\end{array}
$$

In-Class Problem:

You work in a factory that makes sensors for airbags in automobiles. You have three machines that run continuously/simultaneously: A) the old machine makes 10 parts/hour and 10% of parts are faulty, B) a newer machine makes 20 parts/hour and 5% of parts are faulty, and C) the newest machine makes 30 parts/hour and 1\% of parts are faulty. The parts get mixed in a bin and you sample one part from that bin. The part is faulty. What is the probability that the part came from machine B ?
$P(A)=\frac{1}{6}$ prob of pout rom machine A

$$
\begin{aligned}
& P(B)=\frac{2}{6} \\
& P(F \mid A)=.1 \\
& P(C)=\frac{3}{6} \\
& P(F \mid B)=.05 \\
& P(F \mid C)=.01 \quad P(F \mid A) P(A) \\
& \begin{array}{l}
+P(F \mid B) P(B) \\
+P L F A C) P(C)
\end{array} \\
& 23 \text { (} 12
\end{aligned}
$$

In-Class Problem:

You are given a machine learning, face recognition system for an escaped fugative that has a twie positio rate of 99.9%, and a false positive rate of 10^{-6}. Approximately 2 million people pass through airports on a given day, and you need to find where this fugative is. You snap a picture, at random, of a passenger, and the detector says it's the fugative. Is it more likely to be the fugative or a bystander?

$$
\begin{aligned}
& P(F \mid T)=\frac{P(T \mid F) P(F)}{P(T)} \approx \frac{1}{210^{6}}=.5 \times 10^{-6} \\
& P(T)=1 \\
& =\frac{1}{2 \times 10^{6}}+10^{-6} \\
& P\left(T(B)=10^{-6} \quad P(B)=\frac{2 \times 10^{6}-1}{2 \times 10^{6}} \approx 1\right.
\end{aligned}
$$

Testing and Bayes Rule

Bayes Rule in Machine Learning

Discirta Ramdon Variables
"Pacdom Voriables" RV
Sample xpaice Ω.
RV fimction $x: \Omega \rightarrow \mathbb{R}$.
uneaning
Sinite $R r_{s} . a_{1}, a_{2}, \ldots, a_{n} \quad\left|_\Omega\right|=n$ m_{1} find $R V_{S} \quad a_{1}, a_{2}, \ldots \quad|-\Omega|=$ inf cuntebly lo

Examples:
sum of two dice

$$
\begin{aligned}
& \{(1,1),(1,2) \cdots(6, b)\}, \\
& X=i+j \quad \forall(i, j) \text { in } \Omega . \\
& \operatorname{Pr}(X=a)=\operatorname{Pr}(\{(1,2)(2,1)\}) . \\
& a=3
\end{aligned}
$$

Piffince of tho dice

$$
\begin{aligned}
& \text { Diffince of } \\
& x=i, j \forall(i, j) ~ i n ~ \Omega . ~
\end{aligned}
$$

