Probstats L15c
Hypothesis Testing

$$
t-\text { Test }
$$

and p-values
April 13/2023

Hypotlesis Testrug
Step 1: Formolate Kgporthesis
null hyprthersis H_{0} : boring gorsst specific distribation $f\left(\theta_{0}\right)$
alternative hgpothersis H_{1} : interesting (10) with $\theta>\theta_{0}$

Step 2: Desisn Expritment
assomin $x_{i} \rightarrow H_{0}$ - Random Somple $x_{1}, x_{7} \ldots x_{n}$

Step 3 Run Experiment
realize sample $x_{1}, x_{7} \ldots x_{n}$ (lower case)
colocalate $t=T\left(x_{1}, \ldots x_{n}\right)$
L actual calculation
Compare t to ta constant.
If $t>t_{a} \Rightarrow$ reject th moll hypothesis
the probability, based on data $x_{1} \ldots x_{n}$, that tho is correct $\leq \alpha$.
if $t \leq \mathrm{ha} \Rightarrow$ do not reject hull hypoth eng

Consider $\quad t_{0.1} \leq t \leq t_{0.05}$
What fraction if experiments would this happen, under Ho

$$
\begin{aligned}
& P_{r_{x_{i, \pi} / H_{0}}}\left[t_{0.1} \leq T \leq t_{0.05} T=T\left(x_{1} \ldots x_{n}\right)\right.
\end{aligned}
$$

P-value: Prodabilits, under Ho, that the realized test statistic z, us something more extreme (es. larger) could occur.

$$
\begin{aligned}
& P_{H_{0}}(T \leq t)=1-P \\
& \Leftrightarrow \operatorname{Pr}_{H_{0}}(T>t)=p \quad \downarrow^{\text {rejecting using crijaidue }} \\
& \text { if } p<0.05 \Leftrightarrow t>t_{0.05} \\
& \text { pradere }<0.05
\end{aligned}
$$

Example People of Utc are tall!. compared to deaves.
H_{0} : route in Utah same as USA

$$
N\left(\begin{array}{ll}
y_{0}, & \left.r_{\mu}^{2}\right)_{\text {not known }}
\end{array}\right.
$$

$$
H_{1}: \mu_{v v}>40
$$

Random Sample utah $x_{1}, \ldots x_{n}$

$$
\begin{aligned}
& \bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{\dot{x}_{n}}\left(x_{i}-\bar{x}_{n}^{n}\right)^{n=64} \\
& T=\frac{\bar{x}_{n}-\mu}{s_{n} / \sqrt{n}}=\frac{x_{n}-20}{s_{n}(8} \sim t(d f=63) \\
& \alpha=0.05 \Rightarrow \text { critical value of } \alpha \\
& t_{\alpha}=q t(1-\alpha, d f=63)
\end{aligned}
$$

Draw seal sample from Uth

$$
\begin{aligned}
& \bar{x}_{n}=68 \text { inders } \quad S_{n}^{2}=36 \mathrm{in}^{2} \\
& \frac{\bar{x}_{n}-40}{S_{n} / 8}=\frac{28}{6 / 8}=\frac{4}{3} \cdot 28=36.33=t \\
& t_{0.05}=1.97
\end{aligned}
$$

$t>$ to.05 \Rightarrow reject noll hypothrsis pualue $\operatorname{pr}_{k_{0}}(T>t)$
$R: 1-p^{t}(t, d f=63) \quad$-vele $\leqslant 1 \cdot 10^{-100}$
(2) Sat experment
(1) $k_{0}: x_{i}-N\left(\mu, \sigma^{2}\right)$

$$
T=\frac{\bar{x}_{n}-\mu}{s_{n} / \sqrt{n}}-t(n-1)
$$

$H_{1}: \mu>\mu$ interesting
critucal value or
(3) collact douta
tass.t.

$$
\begin{aligned}
& P_{c}\left(T \leq t_{\alpha}\right)=1-\alpha \\
& t_{\alpha}=q t(1-\alpha, g f=n-1)
\end{aligned}
$$

$$
t=T\left(x_{1}, \ldots x_{n}\right)
$$

